RESUMO
A compact protein with a size of <1,000 amino acids, the CRISPR-associated protein CasX is a fundamentally distinct RNA-guided nuclease when compared to Cas9 and Cas12a. Although it can induce RNA-guided genome editing in mammalian cells, the activity of CasX is less robust than that of the widely used S. pyogenes Cas9. Here, we show that structural features of two CasX homologs and their guide RNAs affect the R-loop complex assembly and DNA cleavage activity. Cryo-EM-based structural engineering of either the CasX protein or the guide RNA produced two new CasX genome editors (DpbCasX-R3-v2 and PlmCasX-R1-v2) with significantly improved DNA manipulation efficacy. These results advance both the mechanistic understanding of CasX and its application as a genome-editing tool.
Assuntos
Edição de Genes , RNA Guia de Cinetoplastídeos , Animais , Sistemas CRISPR-Cas/genética , Endonucleases/genética , Endonucleases/metabolismo , Edição de Genes/métodos , Mamíferos/metabolismo , RNA/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismoRESUMO
While lead sulfide shows notable thermoelectric properties, its production costs remain high, and its mechanical hardness is low, which constrains its commercial viability. Herein, we demonstrate a straightforward and cost-effective method to produce PbS nanocrystals at ambient temperature. By introducing controlled amounts of silver, we achieve p-type conductivity and fine-tune the energy band structure and lattice configuration. Computational results show that silver shifts the Fermi level into the valence band, facilitating band convergence and thereby enhancing the power factor. Besides, excess silver is present as silver sulfide, which effectively diminishes the interface barrier and enhances the Seebeck coefficient. Defects caused by doping, along with dislocations and interfaces, reduce thermal conductivity to 0.49 W m-1 K-1 at 690 K. Moreover, the alterations in crystal structure and chemical composition enhance the PbS mechanical properties. Overall, optimized materials show thermoelectric figures of merit approximately 10-fold higher than that of pristine PbS, alongside an average hardness of 1.08 GPa.
RESUMO
High-value-added biomass materials like biocarbon are being actively pursued integrating them with soft materials in a broad range of advanced renewable energy technologies owing to their advantages, such as lightweight, relatively low-cost, diverse structural engineering applications, and high energy storage potential. Consequently, the hybrid integration of soft and biomass-derived materials shall store energy to mitigate intermittency issues, primarily through enthalpy storage during phase change. This paper introduces the recent advances in the development of natural biomaterial-derived carbon materials in soft material assembly and its applications in multidirectional renewable energy storage. Various emerging biocarbon materials (biochar, carbon fiber, graphene, nanoporous carbon nanosheets (2D), and carbon aerogel) with intrinsic structures and engineered designs for enhanced enthalpy storage and multimodal applications are discussed. The fundamental design approaches, working mechanisms, and feature applications, such as including thermal management and electromagnetic interference shielding, sensors, flexible electronics and transparent nanopaper, and environmental applications of biocarbon-based soft material composites are highlighted. Furthermore, the challenges and potential opportunities of biocarbon-based composites are identified, and prospects in biomaterial-based soft materials composites are presented.
RESUMO
Stretchable electronics have attracted tremendous attention amongst academic and industrial communities due to their prospective applications in personal healthcare, human-activity monitoring, artificial skins, wearable displays, human-machine interfaces, etc. Other than mechanical robustness, stable performances under complex strains in these devices that are not for strain sensing are equally important for practical applications. Here, a comprehensive summarization of recent advances in stretchable electronics with strain-resistive performance is presented. First, detailed overviews of intrinsically strain-resistive stretchable materials, including conductors, semiconductors, and insulators, are given. Then, systematic representations of advanced structures, including helical, serpentine, meshy, wrinkled, and kirigami-based structures, for strain-resistive performance are summarized. Next, stretchable arrays and circuits with strain-resistive performance, that integrate multiple functionalities and enable complex behaviors, are introduced. This review presents a detailed overview of recent progress in stretchable electronics with strain-resistive performances and provides a guideline for the future development of stretchable electronics.
RESUMO
As a sustainable energy technology, electrocatalytic energy conversion requires electrocatalysts, which greatly motivates the exploitation of high-performance electrocatalysts based on nonprecious metals. Molybdenum-based nanomaterials have demonstrated promise as electrocatalysts because of their unique physiochemical and electronic properties. Among them, atomic Mo catalysts, also called Mo-based single-atom catalysts (Mo-SACs), have the most accessible active sites and tunable microenvironments and are thrivingly explored in various electrochemical conversion reactions. A timely review of such rapidly developing topics is necessary to provide guidance for further exploration of optimized Mo-SACs toward electrochemical energy technologies. In this review, recent advances in the synthetic strategies for Mo-SACs are highlighted, focusing on the microenvironment engineering of Mo atoms. Then, the representative achievements of their applications in various electrocatalytic reactions involving the N2, H2O, and CO2 cycles are summarized by combining experimental and computational results. Finally, prospects for the future development of Mo-SACs in electrocatalysis are provided and the key challenges that require further investigation and optimization are highlighted.
RESUMO
Triboelectric Nanogenerator (TENG) has proven highly effective in converting mechanical energy into electrical energy. Previous research on manipulating microstructure for performance enhancement primarily focused on the surface of TENGs. In this study, an innovative bottom-up strategic design to control the internal nano-architecture for the enhanced output of TENG is proposed. This multiscale structural design strategy consists of defect chemistry (angstrom-scale), surface modification (nano-scale), and spatial regulation of nanoparticles (meso-scale), which helps explore the optimal utilization of TENG's internal structure. After fine-tuning the nano-architecture, the output voltage is significantly increased. This optimized TENG serves as a robust platform for developing self-powered systems, including self-powered electrochemical chlorination systems for sterilization. Additionally, through the utilization of multiscale simulations (density functional theory, all-atom molecular dynamics, and dissipative particle dynamics), the underlying mechanisms governing how the optimized nanoparticle-polymer interface and spatial arrangement of nanoparticles influence the storage and transfer of charges are comprehensively elucidated. This study not only demonstrates the effectiveness of manipulating internal nano-architecture to enhance TENG performance for practical applications but also provides invaluable insights into structural engineering for TENG advancement.
RESUMO
Structural engineers are often required to draw two-dimensional engineering sketches for quick structural analysis, either by hand calculation or using analysis software. However, calculation by hand is slow and error-prone, and the manual conversion of a hand-drawn sketch into a virtual model is tedious and time-consuming. This paper presents a complete and autonomous framework for converting a hand-drawn engineering sketch into an analyzed structural model using a camera and computer vision. In this framework, a computer vision object detection stage initially extracts information about the raw features in the image of the beam diagram. Next, a computer vision number-reading model transcribes any handwritten numerals appearing in the image. Then, feature association models are applied to characterize the relationships among the detected features in order to build a comprehensive structural model. Finally, the structural model generated is analyzed using OpenSees. In the system presented, the object detection model achieves a mean average precision of 99.1%, the number-reading model achieves an accuracy of 99.0%, and the models in the feature association stage achieve accuracies ranging from 95.1% to 99.5%. Overall, the tool analyzes 45.0% of images entirely correctly and the remaining 55.0% of images partially correctly. The proposed framework holds promise for other types of structural sketches, such as trusses and frames. Moreover, it can be a valuable tool for structural engineers that is capable of improving the efficiency, safety, and sustainability of future construction projects.
RESUMO
Boosting charge separation and transfer of photoanodes is crucial for providing high viability of photoelectrochemical hydrogen (H2 ) generation. Here, a structural engineering strategy is designed and synthesized for uniformly coating an ultrathin CoFe bimetal-organic framework (CoFe MOF) layer over a BiVO4 photoanode for boosted charge separation and transfer. The photocurrent density of the optimized BiVO4 /CoFe MOF(NA) photoanode reaches a value of 3.92 mA cm-2 at 1.23 V versus reversible hydrogen electrode (RHE), up to 6.03 times that of pristine BiVO4 , due to the greatly increased efficiency of charge transfer and separation. In addition, this photoanode records one onset potential that is considerably shifted negatively when compared to BiVO4 . Transient absorption spectroscopy reveals that the CoFe MOF(NA) prolongs charge recombination lifetime by blocking the hole-transfer pathway from the BiVO4 to its surface trap states. This work sheds light on boosting charge separation and transfer through structural engineering to enhance the photocurrent of photoanodes for solar H2 production.
RESUMO
Constructing all-solid-state lithium-sulfur batteries (ASSLSBs) cathodes with efficient charge transport and mechanical flexibility is challenging but critical for the practical applications of ASSLSBs. Herein, a multiscale structural engineering of sulfur/carbon composites is reported, where ultrasmall sulfur nanocrystals are homogeneously anchored on the two sides of graphene layers with strong SC bonds (denoted as S@EG) in chunky expanded graphite particles via vapor deposition method. After mixing with Li9.54 Si1.74 P1.44 S11.7 Cl0.3 (LSPSCL) solid electrolytes (SEs), the fabricated S@EG-LSPSCL cathode with interconnected "Bacon and cheese sandwich" feature can simultaneously enhance electrochemical reactivity, charge transport, and chemomechanical stability due to the synergistic atomic, nanoscopic and microscopic structural engineering. The assembled InLi/LSPSCL/S@EG-LSPSCL ASSLSBs demonstrate ultralong cycling stability over 2400 cycles with 100% capacity retention at 1 C, and a record-high areal capacity of 14.0 mAh cm-2 at a record-breaking sulfur loading of 8.9 mg cm-2 at room temperature as well as high capacities with capacity retentions of ≈100% after 600 cycles at 0 and 60 °C. Multiscale structural engineered sulfur/carbon cathode has great potential to enable high-performance ASSLSBs for energy storage applications.
RESUMO
Lithium-ion batteries (LIBs) have become the preferred battery system for portable electronic devices and transportation equipment due to their high specific energy, good cycling performance, low self-discharge, and absence of memory effect. However, excessively low ambient temperatures will seriously affect the performance of LIBs, which are almost incapable of discharging at -40~-60 °C. There are many factors affecting the low-temperature performance of LIBs, and one of the most important is the electrode material. Therefore, there is an urgent need to develop electrode materials or modify existing materials in order to obtain excellent low-temperature LIB performance. A carbon-based anode is one candidate for use in LIBs. In recent years, it has been found that the diffusion coefficient of lithium ion in graphite anodes decreases more obviously at low temperatures, which is an important factor limiting its low-temperature performance. However, the structure of amorphous carbon materials is complex; they have good ionic diffusion properties, and their grain size, specific surface area, layer spacing, structural defects, surface functional groups, and doping elements may have a greater impact on their low-temperature performance. In this work, the low-temperature performance of LIBs was achieved by modifying the carbon-based material from the perspectives of electronic modulation and structural engineering.
RESUMO
A new utilization of entropy in the context of buckling is presented. The novel concept of connecting the strain energy and entropy for a pin-ended strut is derived. The entropy of the buckling mode is extracted through a surrogate model by decomposing the strain energy into entropy and virtual temperature. This concept rationalizes the ranking of buckling modes based on their strain energy under the assumption of given entropy. By assigning identical entropy to all buckling modes, they can be ranked according to their deformation energy. Conversely, with identical strain energy assigned to all the modes, ranking according to entropy is possible. Decreasing entropy was found to represent the scaling factors of the buckling modes that coincide with the measurement of the initial out-of-straightness imperfections in IPE160 beams. Applied to steel plane frames, scaled buckling modes can be used to model initial imperfections. It is demonstrated that the entropy (scale factor) for a given energy roughly decreases with the inverse square of the mode index. For practical engineering, this study presents the possibility of using scaled buckling modes of steel plane frames to model initial geometric imperfections. Entropy proves to be a valuable complement to strain energy in structural mechanics.
RESUMO
By virtue of low cost, eco-friendliness, competitive gravimetric energy density, and intrinsic safety, more and more attention has increasingly focused on aqueous zinc ion batteries (AZIBs) as a promising alternative for scalable energy storage. However, plagued by a complex interfacial process, sluggish dynamics, lability of electrodes and electrolytes, insufficient energy density, and poor cycle life heavily restrict practical applications of AZIBs, indicating that profound understandings on cathode storage chemistry are necessarily needed. Hence, this paper comprehensively summarizes recent advance in cathodes with critical insight on the energy storage mechanism. Furthermore, the issues and challenges for high-performance cathodes are meticulously explored, presenting inspiring structural engineering and modification strategies. Finally, rational evaluations on representative cathodes are rendered, suggesting the potential development direction of AZIBs.
Assuntos
Zinco , EletrodosRESUMO
Currently, the development of advanced 2D nanomaterials has become an interdisciplinary subject with extensive studies due to their extraordinary physicochemical performances. Beyond graphene, the emerging 2D-material-derived electrocatalysts (2D-ECs) have aroused great attention as one of the best candidates for heterogeneous electrocatalysis. The tunable physicochemical compositions and characteristics of 2D-ECs enable rational structural engineering at the molecular/atomic levels to meet the requirements of different catalytic applications. Due to the lack of instructive and comprehensive reviews, here, the most recent advances in the nanostructure and catalytic center design and the corresponding structure-function relationships of emerging 2D-ECs are systematically summarized. First, the synthetic pathways and state-of-the-art strategies in the multifaceted structural engineering and catalytic center design of 2D-ECs to promote their electrocatalytic activities, such as size and thickness, phase and strain engineering, heterojunctions, heteroatom doping, and defect engineering, are emphasized. Then, the representative applications of 2D-ECs in electrocatalytic fields are depicted and summarized in detail. Finally, the current breakthroughs and primary challenges are highlighted and future directions to guide the perspectives for developing 2D-ECs as highly efficient electrocatalytic nanoplatforms are clarified. This review provides a comprehensive understanding to engineer 2D-ECs and may inspire many novel attempts and new catalytic applications across broad fields.
Assuntos
Grafite , Nanoestruturas , Catálise , Nanoestruturas/químicaRESUMO
Nitrile hydratase (NHase), an excellent bio-catalyst for the synthesis of amide compounds, was composed of two heterologous subunits. A thermoalkaliphilic NHase NHCTA1 (Tm = 71.3°C) obtained by in silico screening in our study exhibited high flexibility of α-subunit but excellent thermostability, as opposed to previous examples. To gain a deeper structural insight into the thermostability of NHCTA1, comparative molecular dynamics simulation of NHCTA1 and reported NHases was carried out. By comparison, we speculated that ß-subunit played a key role in adjusting the flexibility of α-subunit and the different conformations of linker in "α5-helix-coil ring" supersecondary structure of ß-subunit can affect the interaction between ß-subunit and α-subunit. Mutant NHCTA1-α6 C with a random coil linker and mutant NHCTA1-αßγ with a truncated linker were therefore constructed to understand the impact on NHCTA1 thermostability by varying the supersecondary structure. The varied thermostability of NHCTA1-α6 C and NHCTA1-αßγ (Tmα6C = 74.4°C, Tmαßγ = 65.6°C) verified that the flexibility of α-subunit adjusted by ß-subunit was relevant to the stability of NHCTA1. This study gained an insight into the NNHCTA1 thermostability by virtual dynamics comparison and experimental studies without crystallization, and this approach could be applied to other industrial-important enzymes.
RESUMO
Tremendous efforts have been dedicated to the development of high-performance electrochemical energy storage devices. The development of lithium- and sodium-ion batteries (LIBs and SIBs) with high energy densities is urgently needed to meet the growing demands for portable electronic devices, electric vehicles, and large-scale smart grids. Anode materials with high theoretical capacities that are based on alloying storage mechanisms are at the forefront of research geared towards high-energy-density LIBs or SIBs. However, they often suffer from severe pulverization and rapid capacity decay due to their huge volume change upon cycling. So far, a wide variety of advanced materials and electrode structures are developed to improve the long-term cyclability of alloying-type materials. This review provides fundamentals of anti-pulverization and cutting-edge concepts that aim to achieve high-performance alloying anodes for LIBs/SIBs from the viewpoint of architectural engineering. The recent progress on the effective strategies of nanostructuring, incorporation of carbon, intermetallics design, and binder engineering is systematically summarized. After that, the relationship between architectural design and electrochemical performance as well as the related charge-storage mechanisms is discussed. Finally, challenges and perspectives of alloying-type anode materials for further development in LIB/SIB applications are proposed.
RESUMO
Layered metal oxides including MoO3 and WO3 have been widely explored for biological applications owing to their excellent biocompatibility, low toxicity, and easy preparation. However, they normally exhibit weak or negligible near-infrared (NIR) absorption and thus are inefficient for photo-induced biomedical applications. Herein, the structural engineering of layered MoO3 and WO3 nanostructures is first reported to activate their NIR-II absorption for efficient photothermal cancer therapy in the NIR-II window. White-colored micrometre-long MoO3 nanobelts are transformed into blue-colored short, thin, defective, interlayer gap-expanded MoO3-x nanobelts with a strong NIR-II absorption via the simple lithium treatment. The blue MoO3-x nanobelts exhibit a large extinction coefficient of 18.2â L g-1 cm-1 and high photothermal conversion efficiency of 46.9% at 1064 nm. After surface modification, the MoO3-x nanobelts can be used as a robust nanoagent for photoacoustic imaging-guided photothermal therapy to achieve efficient cancer cell ablation and tumor eradication under irradiation by a 1064 nm laser. Importantly, the biodegradable MoO3-x nanobelts can be rapidly degraded and excreted from body. The study highlights that the structural engineering of layered metal oxides is a powerful strategy to tune their properties and thus boost their performances in given applications.
Assuntos
Nanoestruturas , Neoplasias , Linhagem Celular Tumoral , Humanos , Neoplasias/terapia , Óxidos , Fototerapia , Nanomedicina TeranósticaRESUMO
The increasing demand for high-performance rechargeable energy storage systems has stimulated the exploration of advanced electrode materials. MXenes are a class of two-dimensional (2D) inorganic transition metal carbides/nitrides, which are promising candidates in electrodes. The layered structure facilitates ion insertion/extraction, which offers promising electrochemical characteristics for electrochemical energy storage. However, the low capacity accompanied by sluggish electrochemical kinetics of electrodes as well as interlayer restacking and collapse significantly impede their practical applications. Recently, interlayer space engineering of MXenes by different chemical strategies have been widely investigated in designing functional materials for various applications. In this review, an overview of the most recent progress of 2D MXenes engineering by intercalation, surface modification as well as heterostructures design is provided. Moreover, some critical challenges in future research on MXene-based electrodes have been also proposed.
RESUMO
There are critical and preventable inequalities in disaster impacts and postdisaster recovery. To formulate solutions for minimizing or preventing these unequal impacts, there is a great need for interdisciplinary methodologies that use social factors to set project scopes and drive engineering analyses and designs. At present time, however, limited guidance exists on how to develop and execute interdisciplinary methodologies, especially related to the study of community disaster resilience. This article offers an approach for developing and assessing interdisciplinary research methodologies. The framework incorporates insights from social science into structural engineering for integrated research focused on community disaster resilience. The two examples offered in the article assess the interdisciplinarity of two loss estimation methodologies. The goal of this perspectives article is to facilitate future interdisciplinary community disaster resilience research given its potential for transformative outcomes in terms of encouraging decision making that is driven by the needs of those who are often overlooked in disaster mitigation and recovery policies.
Assuntos
Comportamento Cooperativo , Planejamento em Desastres/métodos , Comunicação Interdisciplinar , HumanosRESUMO
Air suspension and alignment are fundamental requirements to make the best use of nanowires' unique properties; however, satisfying both requirements is very challenging due to the mechanical instability of air-suspended nanowires. Here, a perfectly aligned air-suspended nanowire array called "nanolene" is demonstrated, which has a high mechanical stability owing to a C-channel-shaped cross-section of the nanowires. The excellent mechanical stability is provided through geometrical modeling and finite element method simulations. The C-channel cross-section can be realized by top-down fabrication procedures, resulting in reliable demonstrations of the nanolenes with various materials and geometric parameters. The fabrication process provides large-area uniformity; therefore, nanolene can be considered as a 2D planar platform for 1D nanowire arrays. Thanks to the high mechanical stability of the proposed nanolene, perfectly aligned air-suspended nanowire arrays with an unprecedented length of 1 mm (aspect ratio ≈5100) are demonstrated. Since the nanolene can be used in an energy-efficient nanoheater, two energy-stringent sensors, namely, an air-flow sensor and a carbon monoxide gas sensor, are demonstrated. In particular, the gas sensor achieves sub-10 mW operations, which is a requirement for application in mobile phones. The proposed nanolene will pave the way to accelerate nanowire research and industrialization by providing reliable, high-performance nanowire devices.
RESUMO
Wireless technology plays an important role in data communication and power transmission, which has greatly boosted the development of flexible and stretchable electronics for biomedical applications and beyond. As a key component in wireless technology, flexible and stretchable antennas need to be flexible and stretchable, enabled by the efforts with new materials or novel integration approaches with structural designs. Besides replacing the conventional rigid substrates with textile or elastomeric ones, flexible and stretchable conductive materials also need to be used for the radiation parts, including conductive textiles, liquid metals, elastomeric composites embedding conductive fillers, and stretchable structures from conventional metals. As the microwave performance of the antenna (e.g., resonance frequency, radiation pattern, and radiation efficiency) strongly depend on the mechanical deformations, the new materials and novel structures need to be carefully designed. Despite the rapid progress in the burgeoning field of flexible and stretchable antennas, plenty of challenges, as well as opportunities, still exist to achieve miniaturized antennas with a stable or tunable performance at a low cost for bio-integrated electronics.