RESUMO
Central North America is the global hotspot for tornadoes, fueled by elevated terrain of the Rockies to the west and a source of warm, moist air from equatorward oceans. This conventional wisdom argues that central South America, with the Andes to the west and Amazon basin to the north, should have a "tornado alley" at least as active as central North America. Central South America has frequent severe thunderstorms yet relatively few tornadoes. Here, we show that conventional wisdom is missing an important ingredient specific to tornadoes: a smooth, flat ocean-like upstream surface. Using global climate model experiments, we show that central South American tornado potential substantially increases if its equatorward land surface is smoothed and flattened to be ocean-like. Similarly, we show that central North American tornado potential substantially decreases if its equatorward ocean surface is roughened to values comparable to forested land. A rough upstream surface suppresses the formation of tornadic environments principally by weakening the poleward low-level winds, characterized by a weakened low-level jet east of the mountain range. Results are shown to be robust for any midlatitude landmass using idealized experiments with a simplified continent and mountain range. Our findings indicate that large-scale upstream surface roughness is likely a first-order driver of the strong contrast in tornado potential between North and South America.
RESUMO
The effects of surface roughness on the performance of the Zn metal anode in aqueous electrolytes are investigated by experiments and computational simulations. Smooth surfaces can homogenize the nucleation and growth of Zn, which helps to form a flat Zn anode under high current density. In spite of these advantages, the whole surface of the smooth electrode serves as the reactive contact area for parasitic reactions, generating severe hydrogen evolution, corrosion, and byproduct formation, which seriously hinder the long-term cycle stability of the Zn anode. To trade off this double-sided effect, we identify a medium degree of surface roughness that could stabilize the Zn anode for 1000 h cycling at 1.0 mAh cm-2. The electrode also enabled stable cycling for 800 h at a high current density of 5.0 mAh cm-2. This naked Zn metal anode with optimized surface roughness holds great promise for direct use in aqueous zinc ion batteries.
RESUMO
Hydrophobic polymer plates with smooth and rough surfaces are used as a stabilizer for cubic liquid marbles (LMs) to study the effect of surface roughness on their formation. The smooth and rough polymer plates can stabilize LMs using liquids with surface tensions of 72.8-26.6 and 72.8-22.9 mN m-1, respectively. It is clarified that the higher the surface roughness, the lower the surface tension of the liquids are stabilized to form the LMs. These results indicated that the introduction of surface roughness improves the hydrophobicity of the polymer plates and the rough polymer plates can stabilize LMs using liquids with a wider surface tension range. Electron microscopy studies and numerical analyses confirmed that the LMs can be formed, when the Cassie-Baxter wetting state, where θY>90° (θY: the contact angle on smooth surfaces) and θR>90° (θR: the contact angle on rough surfaces), and the metastable Cassie-Baxter wetting state, where θY<90° and θR>90°, are realized. Finally, the synthesis of cubic polymer particles are succeeded by free radical polymerization of the cubic LMs containing a hydrophobic vinyl monomer (dodecyl acrylate) in a solvent-free manner.
RESUMO
A simple two-step spray method is used to prepare superhydrophobic and bacteriostatic surfaces, involving dual-coating with polydimethylsiloxane-normal-fluorine (PDMS-NF) or branched-fluorine (PDMS-BF) in combination with fluorinated silica nanoparticles (FSiO2 -NPs) using a spray technique. This approach has the potential to create surfaces with both water-repellent and antimicrobial properties, which could be useful in a variety of applications. It is noteworthy that the dual-coating on cotton fabric exhibited an impressive dual-scale roughness and achieved superhydrophobicity with a water contact angle of 158° and a hysteresis of less than 3°. Additionally, the coating was subjected to an ultra-high concentration of bacteria (109 CFU/mL) and was still able to inhibit more than 80 % of attachment, demonstrating its effectiveness as a bacteriostatic surface.
RESUMO
Sample preparation is of utmost importance for any microscopy and microstructural analysis. Correct preparation will allow accurate interpretation of microstructural features. A well-polished section is essential when scanning electron microscopy (SEM) is used in backscattering electron (BSE) mode and characteristic X-rays are to be quantified using an energy-dispersive spectroscopy (EDS) detector. However, obtaining a well-polished section, especially for cementitious materials containing aggregates, is considered to be challenging and requires experience. A sample preparation procedure consists of cutting, grinding and polishing. Undercutting of soft and brittle paste between harder aggregates can be overcome by vacuum epoxy impregnation offering mechanical support in the matrix. Furthermore, most of the attention during the sample preparation is given to the polishing of the sample. There is a wide range of suggestions on polishing steps, ranging from grain sizes, time and applied force; however, the final assessment of a polish surface is often subjective and qualitative. Therefore, a quantitative, reproducible guidance on the grinding steps, effect of experimental parameters and the influence of different grinding steps on the surface quality are required. In this paper, the influence of grinding was quantitatively evaluated by a digital microscope equipped with optical profilometry tools, through a step-wise procedure, including sample orientation, grinding time and the difference between cement paste and concrete. Throughout the grinding procedure, the surface profiles were determined after each grinding step. This showed the step-wise change in surface roughness and quality during the grinding procedure. Finally, the surface qualities were evaluated using optical and electron microscopy, which show the importance of the grinding/prepolishing steps during sample preparation.
RESUMO
The performance of cementitious composites reinforced with fibres or/and bars depends on the bond strength between inclusion and cementitious matrix. The nature of formation of fibre-matrix bond is crucial for enhancing the reliability and utilisation of reinforced composites. The research provides a review on the recently published result about the changes in the microstructure of cement matrix surrounding steel fibres with different surface roughness, using a scanning electron microscope (SEM) coupled with k-means clustering algorithm for image segmentation. The debonding pattern of the fibre-matrix bond after the tensile loading cycles was discussed by observing the amount of adhered cement paste to the pulled out fibre surface with SEM. Therefore, analysis of SEM images enabled to explain the connection between the micro-scale properties of cement paste and fibre after application of cyclic loading.
RESUMO
OBJECTIVE: The aim of this in vitro study was to evaluate the effect of radiotherapy on the surface microhardness and roughness of different bioactive restorative materials. MATERIALS AND METHODS: A total of 60-disc specimens (5 mm × 2 mm) were performed in four groups (n = 15 each) from Equia Forte HT, Cention N, Activa Bioactive Restorative, and Beautifil II. Following the polishing procedure (600, 1000, 1200 grit silicon carbide papers), all specimens were irradiated at 2 Gy per fraction, five times a week for a total dose of 70 Gy in 30 fractions over 7 weeks. Before and after the irradiation, the specimens were analyzed regarding the surface roughness and microhardness. Surface morphology was also analyzed by scanning electron microscopy. Kruskal-Wallis test, Wilcoxon test, and paired sample t-test were used for statistical analysis. RESULTS: Significant differences were found after radiation with increased mean roughness of both Cention N (p = 0.001) and Beautifil II (p < 0.001) groups. In terms of microhardness, only the Beautifil II group showed significant differences with decreased values after radiation. There were statistically significant differences among the groups' roughness and microhardness data before and after radiotherapy (p < 0.05). CONCLUSION: The effect of radiotherapy might differ according to the type of the restorative material. Although results may differ for other tested materials, giomer tends to exhibit worse behaviour in terms of both surface roughness and microhardness. CLINICAL RELEVANCE: In patients undergoing head and neck radiotherapy, it should be taken into consideration that the treatment process may also have negative effects on the surface properties of anti-caries restorative materials.
Assuntos
Cárie Dentária , Radioterapia (Especialidade) , Humanos , Cariostáticos , Pescoço , Projetos de PesquisaRESUMO
The aim of the study was to evaluate the effects of erosion and abrasion on resin-matrix ceramic CAD/CAM materials [CERASMART (GC); VITA ENAMIC (VITA Zahnfabrik); Lava Ultimate (3 M)] in comparison to feldspar ceramic (VITABLOCS Mark II, VITA Zahnfabrik) and resin composite materials (ceram.x universal, Dentsply Sirona). Daily brushing and acid exposure were simulated using a brushing apparatus and a solution of 0.5 vol% citric acid. Microhardness, surface roughness, and substance loss were measured at baseline and after simulation of 1 and 3 years of function. All materials showed a decrease in microhardness after 3 years and an increase in surface roughness (Ra) after 1 and 3 years. The Ra increase was statistically significantly lower for the resin-matrix ceramics than for feldspar ceramic and similar to composite material. After 3 years, only feldspar ceramic showed no significant substance loss. In conclusion, resin-matrix ceramics demonstrate reduced roughening compared to feldspar ceramics, potentially improving restoration longevity by preventing plaque buildup, but differences in abrasion resistance suggest the need for further material-specific research. Future research should aim to replicate clinical conditions closely and to transition to in vivo trials.
Assuntos
Cerâmica , Porcelana Dentária , Compostos de Potássio , Propriedades de Superfície , Teste de Materiais , Resinas Compostas , Silicatos de Alumínio , Desenho Assistido por Computador , Materiais DentáriosRESUMO
Microbial fouling involves the physicochemical interactions between microorganisms and solid surfaces. An electromagnetic field (EMF) may change the diffusion rates of microbial cells and the electrical double layer around the cells and contacting surfaces. In the current study, polycardanol exhibiting antibiofouling activity was modified with ferromagnetic iron oxide (IO) to investigate the EMF effects on bacterial adhesion. When there was a flow of electrolyte that contained bacterial cells, flow-induced EMF was generated according to Faraday's principle. It was observed that the IO-ionic solution (IS)-modified surfaces, with an induced current of 44, 53, 66 nA, showed decreases in the adhesion of bacteria cells more than the unmodified (polycardanol) and IO-nanoparticles-modified ones. In addition to the EMF effects, the nano-scale uniform roughness of the modified surfaces appeared to play an important role in the reduction of cell adhesion. The results demonstrated that the IOIS-modified surface (3.2 × 10-6 mM IO) had the highest antibiofouling activity.
Assuntos
Aderência Bacteriana , Incrustação Biológica , Campos Eletromagnéticos , Fenóis , Propriedades de Superfície , Incrustação Biológica/prevenção & controle , Aderência Bacteriana/efeitos dos fármacos , Fenóis/química , Fenóis/farmacologia , Compostos Férricos/química , Biofilmes/efeitos dos fármacosRESUMO
In this study, a novel application of synchrotron X-ray nanotomography based on high-resolution full-field transmission X-ray microscopy for characterizing the structure and morphology of micrometric hollow polymeric fibers is presented. By employing postimage analysis using an open-source software such as Tomviz and ImageJ, various key parameters in fiber morphology, including diameter, wall thickness, wall thickness distribution, pore size, porosity, and surface roughness, were assessed. Electrospun polycaprolactone fibers with micrometric diameters and submicrometric features with induced porosity via gas dissolution foaming were used to this aim. The acquired synchrotron X-ray nanotomography data were analyzed using two approaches: 3D tomographic reconstruction and 2D radiographic projection-based analysis. The results of the combination of both approaches demonstrate unique capabilities of this technique, not achievable by other available techniques, allowing for a full characterization of the internal and external morphology and structure of the fibers as well as to obtain valuable qualitative insights into the overall fiber structure.
RESUMO
AIM: The aim of the present study was to evaluate the efficacy of 30°-angled Er:YAG laser tip and different periodontal instruments on root surface roughness and morphology in vitro. METHODS: Eighteen bovine teeth root without carious lesion were decoronated from the cementoenamel junction and seperated longitidunally. A total of 36 obtained blocks were mounted in resin blocks and polished with silicon carbide papers under water irrigation. These blocks were randomly assigned into 3 treatment groups. In Group 1, 30°-angled Er:YAG laser (2.94 µm) tip was applied onto the blocks with a 20 Hz, 120 mJ energy output under water irrigation for 20 s. In Groups 2 and 3, the same treatment was applied to the blocks with new generation ultrasonic tip and conventional curette apico-coronally for 20 s with a sweeping motion. Surface roughness and morphology were evaluated before and after instrumentation with a profilometer and SEM, respectively. RESULTS: After instrumentation, profilometric analysis revealed significantly higher roughness values compared to baseline in all treatment groups(p < 0.05). Laser group revealed the roughest surface morphology followed by conventional curette and new generation ultrasonic tip treatment groups (p < 0.05). In SEM analysis, irregular surfaces and crater defects were seen more frequently in the laser group. CONCLUSION: Results of the study showed that the use of new generation ultrasonic tip was associated with smoother surface morphology compared to 30°-angled Er-YAG laser tip and conventional curette. Further in vitro and in vivo studies with an increased sample size are necessary to support the present study findings.
Assuntos
Lasers de Estado Sólido , Animais , Bovinos , Lasers de Estado Sólido/uso terapêutico , Projetos de Pesquisa , Tamanho da Amostra , Colo do Dente , ÁguaRESUMO
OBJECTIVES: To compare ultrasonic scaler prototypes based on a planar piezoelectric transducer with different working frequencies featuring a titanium (Ti-20, Ti-28, and Ti-40) or stainless steel (SS-28) instrument, with a commercially available scaler (com-29) in terms of biofilm removal and reformation, dentine surface roughness and adhesion of periodontal fibroblasts. MATERIALS AND METHODS: A periodontal multi-species biofilm was formed on specimens with dentine slices. Thereafter specimens were instrumented with scalers in a periodontal pocket model or left untreated (control). The remaining biofilms were quantified and allowed to reform on instrumented dentine slices. In addition, fibroblasts were seeded for attachment evaluation after 72 h of incubation. Dentine surface roughness was analyzed before and after instrumentation. RESULTS: All tested instruments reduced the colony-forming unit (cfu) counts by about 3 to 4 log10 and the biofilm quantity (each p < 0.01 vs. control), but with no statistically significant difference between the instrumented groups. After 24-hour biofilm reformation, no differences in cfu counts were observed between any groups, but the biofilm quantity was about 50% in all instrumented groups compared to the control. The attachment of fibroblasts on instrumented dentine was significantly higher than on untreated dentine (p < 0.05), with the exception of Ti-20. The dentine surface roughness was not affected by any instrumentation. CONCLUSIONS: The planar piezoelectric scaler prototypes are able to efficiently remove biofilm without dentine surface alterations, regardless of the operating frequency or instrument material. CLINICAL RELEVANCE: Ultrasonic scalers based on a planar piezoelectric transducer might be an alternative to currently available ultrasonic scalers.
Assuntos
Biofilmes , Raspagem Dentária , Dentina , Fibroblastos , Ligamento Periodontal , Propriedades de Superfície , Titânio , Humanos , Raspagem Dentária/instrumentação , Técnicas In Vitro , Dentina/microbiologia , Ligamento Periodontal/citologia , Transdutores , Adesão Celular , Aço Inoxidável , Desenho de Equipamento , Terapia por Ultrassom/instrumentaçãoRESUMO
OBJECTIVES: The purpose of this study is to evaluate the bond strength of different computer-aided design / computer-aided manufacturing (CAD/CAM) hybrid ceramic materials following different pretreatments. METHODS: A total of 306 CAD/CAM hybrid material specimens were manufactured, n = 102 for each material (VarseoSmile Crownplus [VSCP] by 3D-printing; Vita Enamic [VE] and Grandio Blocs [GB] by milling). Each material was randomly divided into six groups regarding different pretreatment strategies: control, silane, sandblasting (50 µm aluminum oxide particles), sandblasting + silane, etching (9% hydrofluorics acid), etching + silane. Subsequently, surface roughness (Ra) values, surface free energy (SFE) were measured. Each specimen was bonded with a dual-cured adhesive composite. Half of the specimens were subjected to thermocycling (5000 cycles, 5-55 °C). The shear bond strength (SBS) test was performed. Data were analyzed by using a two-way analysis of variance, independent t-test, and Mann-Whitney-U-test (α = 0.05). RESULTS: Material type (p = 0.001), pretreatment strategy (p < 0.001), and the interaction (p < 0.001) all had significant effects on Ra value. However, only etching on VSCP and VE surface increased SFE value significantly. Regarding SBS value, no significant difference was found among the three materials (p = 0.937), while the pretreatment strategy significantly influenced SBS (p < 0.05). Etching on VSCP specimens showed the lowest mean value among all groups, while sandblasting and silane result in higher SBS for all test materials. CONCLUSIONS: The bond strength of CAD/CAM hybrid ceramic materials for milling and 3D-printing was comparable. Sandblasting and silane coupling were suitable for both millable and printable materials, while hydrofluoric etching should not be recommended for CAD/CAM hybrid ceramic materials. CLINICAL RELEVANCE: Since comparable evidence between 3D-printable and millable CAD/CAM dental hybrid materials is scarce, the present study gives clear guidance for pretreatment planning on different materials.
Assuntos
Desenho Assistido por Computador , Coroas , Colagem Dentária , Análise do Estresse Dentário , Teste de Materiais , Resistência ao Cisalhamento , Propriedades de Superfície , Colagem Dentária/métodos , Cerâmica/química , Silanos/química , Materiais Dentários/química , Corrosão Dentária/métodos , Porcelana Dentária/química , Técnicas In Vitro , HumanosRESUMO
Surface roughness is one of the main bases for measuring the surface quality of machined parts. A large amount of training data can effectively improve model prediction accuracy. However, obtaining a large and complete surface roughness sample dataset during the ultra-precision machining process is a challenging task. In this article, a novel virtual sample generation scheme (PSOVSGBLS) for surface roughness is designed to address the small sample problem in ultra-precision machining, which utilizes a particle swarm optimization algorithm combined with a broad learning system to generate virtual samples, enriching the diversity of samples by filling the information gaps between the original small samples. Finally, a set of ultra-precision micro-groove cutting experiments was carried out to verify the feasibility of the proposed virtual sample generation scheme, and the results show that the prediction error of the surface roughness prediction model was significantly reduced after adding virtual samples.
RESUMO
Surface roughness prediction is a pivotal aspect of the manufacturing industry, as it directly influences product quality and process optimization. This study introduces a predictive model for surface roughness in the turning of complex-structured workpieces utilizing Gaussian Process Regression (GPR) informed by vibration signals. The model captures parameters from both the time and frequency domains of the turning tool, encompassing the mean, median, standard deviation (STD), and root mean square (RMS) values. The signal is from the time to frequency domain and it is executed using Welch's method complemented by time-frequency domain analysis employing three levels of Daubechies Wavelet Packet Transform (WPT). The selected features are then utilized as inputs for the GPR model to forecast surface roughness. Empirical evidence indicates that the GPR model can accurately predict the surface roughness of turned complex-structured workpieces. This predictive strategy has the potential to improve product quality, streamline manufacturing processes, and minimize waste within the industry.
RESUMO
This in vitro study aimed to evaluate surface roughness and wear of highly filled flowables and traditional packable composites. Additionally, the effect of polymerization time on these parameters was evaluated. Two flowable higly filled composites (CMf-Clearfil Majesty ES flow-low viscosity, Kuraray and GUf-Gaenial Universal Injectable, GC) and two packable composites (CM-Clearfil Majesty ES-2, Kuraray and GU-Gaenial A'CHORD, GC) were used to create 160 specimens (n = 40;8 × 6 × 4mm). For each tested material, two subgroups were considered according to the polymerization time (n = 20): 10 s or 80 s. After setting, the specimens were subjected to chewing simulations (240.000 cycles, 20N), and wear was measured by the laser integrated in the chewing simulator. The surface roughness was measured using a rugosimeter, before and after chewing cycles. Two representative specimens per group were observed under scanning electron microscope (SEM). Data were collected and statistically analyzed (p < 0.05). Wear analysis highlighted statistically significant differences between the groups: CMf10-CMf80 (p = 0.000), CMf10-CM10 (p = 0.019), CMf10-GUf10 (p = 0.002), CM10-CM80 (p = 0.000), CM80-GUf80 (p = 0.02), GUf10-GUf80 (p = 0.000), GUf10-GU10 (p = 0.043) and GU10-GU80 (p = 0.013). Statistically significant differences in surface roughness were highlighted between the groups: CMf10-CMf80 (p = 0.038), CMf80-CM80 (p = 0.019), CMf80-GU80 (p = 0.010), CM80-GUf80 (p = 0.34) and GUf80-GU80 (p = 0.003). Surface roughness and wear of highly filled flowable composites were comparable to that of traditional paste composites. Furthermore, a longer curing time leads to an improvement in the mechanical properties of the composites. Highly filled flowables can be a valid alternative to paste composites in occlusal areas due to its similar surface roughness and wear values, especially when overcured.
RESUMO
The aim of this study was to evaluate the surface roughness and contact angle of composite resins produced by CAD/CAM milling and three-dimensional (3D) printing for permanent restorations as well as the adhesion of S. mutans and S. sanguinis bacteria to these composites. Three CAD/CAM milling composite resins (Vita Enamic-VE, Cerasmart-CE, Lava Ultimate-LU) and three 3D printing resins (Varseo Smile Crown plus-VSC, Saremco print Crowntech-SPC, Formlabs 3B Permanent crown-FLP) were selected. Twenty samples were prepared for each group. Using a contact profilometer, the surface roughness was determined, and an optical goniometer was used to quantify the contact angle. To evaluate the bacterial adhesion, composite specimens were immersed in mucin containing artificial saliva. All samples were incubated for 24 h at 37°C in 5% CO2. CFUs were determined by counting colonies after the incubation period. Surface roughness values of test samples were the highest in the Group VSC [0.46 (0.14) µm], whereas the lowest values were found in the Group LU [0.23 (0.05) µm]. There was no statistically significant difference between the groups in contact angle values (p > 0.05). The S. mutans adhesion extent on the Group SPC was statistically higher compared to all other materials with p < 0.05. For S. sanguinis, the lowest bacterial adhesion value was recorded in Group CE (3.00 × 104 CFU/ml) and statistically significant differences were found with Group VE and VSC (p < 0.05). Different digital manufacturing techniques and material compositions can affect the surface roughnesses of composite resins. All composite resin samples have hydrophobic characteristics. Microbial adhesion of the tested composite resins may be varied depending on the bacterial species. S. mutans showed much more adhesion to these materials than S. sanguinis.
Assuntos
Aderência Bacteriana , Resinas Compostas , Resinas Compostas/química , Propriedades de Superfície , Cerâmica , Desenho Assistido por Computador , Impressão Tridimensional , Teste de MateriaisRESUMO
Zirconia-based dental implants are in direct contact with living tissues and any improvements in their bioactivity and adhesion to the tissues are highly welcome. In this study, different ratios of barium titanate (BT) were added to 3 mol% yttria-stabilized zirconia (3YSZ) through conventional sintering. The laser-texturing technique was also conducted to improve the biological performance of 3YSZ ceramics. The composition and the surface of the prepared composites were characterized by X-ray diffraction and scanning electron microscopy (SEM), respectively. The roughness and surface wettability of the composites were also measured. Furthermore, MC3T3-E1 pre-osteoblast cells were used for the in vitro experiments. Cell viability was evaluated using a commercial resazurin-based method. Morphology and cellular adhesion were observed using SEM. Based on the results, the laser texturing and the barium titanate content influenced the surface characteristics of the prepared composites. The laser-textured 3YSZ/7 mol% BT composites showed a lower water contact angle compared to the other samples, which indicated superior surface hydrophilicity. The cell viability and cell adhesion of 3YSZ/BT composites increased with the rise in the barium titanate content and laser power. An elongated cell morphology and apatite nucleation were also observed by the BT content. Overall, the laser-treated 3YSZ/5 and 7 mol% BT composites may be promising candidates in hard tissue repair due to their good cell response.
Assuntos
Lasers , Zircônio , Bário , Propriedades de Superfície , MolhabilidadeRESUMO
The objective of the study was to assess the initial adhesion of Streptococcus mutans (S. mutans) and surface roughness of different particulate-filled (PFC) and short fiber-reinforced (SFRC) composites. Five PFC composites (CeramX Universal, Filtek Universal, Omnichroma, Tetric Prime and Venus Diamond) and four SFRC composites (everX Posterior, everX Flow Bulk, everX Flow Dentin and experimental packable SFRC) were tested in this study. A non-contact 3D profilometer was employed to assess the surface roughness (Ra) of the polished specimens (using 4000-grit abrasive paper). For the bacterial adhesion test, the specimens (n = 5/group) were immersed in a solution of S. mutans to facilitate initial adhesion. To determine the number of cells on the surfaces of the discs as colony-forming units (CFU), the vials holding the microbial samples were highly agitated using a vortex machine. Subsequently, the samples were diluted multiple times and anaerobically incubated for 48 h at 37 °C on Mitis Salivarius Agar plates (Difco) supplemented with bacitracin. Bacterial adherence assessment was performed using SEM. The data were analyzed using ANOVA. All tested PFC and SFRC composites showed similar adhesion of S. mutan. The lowest Ra values (0.26 µm) (p < 0.05) were found in the flowable SFRCs (everX Flow Bulk & Dentin), while the highest values (p < 0.05) were observed in CeramX and everX Posterior (0.42 µm). Experimental SFRC had comparable Ra value (0.38 µm) than other commercial composites. The presence of short microfibers in the composite appeared to have no adverse effects on the initial adhesion of bacteria or the surface roughness.
RESUMO
OBJECTIVES: This laboratory study evaluated the effect of three polishing systems on the surface roughness and gloss of resin composites. MATERIALS AND METHODS: Thirty specimens (6 mm Ø × 8 mm) were fabricated from each of three resin composites: Z 350 XT (nanofill), Harmonize (nanohybrid), and Estelite Omega (supranonofill). All specimens were photopolymerized using a multi-peak LED curing unit (VALO-Standard mode), having a exitance irradiance of approximately 1000 mW/cm2 against a polyester strip (PS). 2 mm was then removed from the irradiated end (finished) using #320 abrasive paper (F). Specimens were then randomly polished (P) using a one-step (1S) (OneGloss), two-step (2S) (EVE Diacomp Twist Basic CA), or 3-step (3S) (Astropol P) system (n = 10). For PS, F, and P groups, surface roughness (Ra) was measured using a surface roughness tester, and surface gloss was measured with a glossmeter. For each specimen, the percent recovery to the PS value (%R) of surface roughness and surface gloss were calculated. Data were analyzed using two-way ANOVA, followed by Tukey's test. Surface roughness and gloss values were submitted to Pearson's correlation test (α = 0.05). All statistical testing was performed using a pre-set alpha of 0.05. RESULTS: The interaction term [resin composite × polishing system] was significant for both surface roughness (p = 0.001) and gloss (p = 0.0001). For all resin composites, the 2S and 3S systems provided a higher %R of surface roughness and gloss compared to those of the 1S system. There was a negative correlation between surface roughness and gloss, but only a few combinations showed strong correlations. CONCLUSIONS: The 2S and 3S polishing systems provided surfaces having greater smoothness and gloss compared to the 1S system. The ability to recover surface roughness and gloss was dependent on type of resin composite filler classification. CLINICAL SIGNIFICANCE: The 3S and 2S polishing systems were more effective in achieving PS values than was the 1S system for all tested resin composites. However, individual polishing systems performed differently depending on type of resin composite.