Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Physiol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979871

RESUMO

Although synapsins have long been proposed to be key regulators of synaptic vesicle (SV) clustering, their mechanism of action has remained mysterious and somewhat controversial. Here, we review synapsins and their associations with each other and with SVs. We highlight the recent hypothesis that synapsin tetramerization is a mechanism for SV clustering. This hypothesis, which aligns with numerous experimental results, suggests that the larger size of synapsin tetramers, in comparison to dimers, allows tetramers to form optimal bridges between SVs that overcome the repulsive force associated with the negatively charged membrane of SVs and allow synapsins to form a reserve pool of SVs within presynaptic terminals.

2.
Proc Natl Acad Sci U S A ; 114(23): E4648-E4657, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533388

RESUMO

Mounting evidence indicates that soluble oligomeric forms of amyloid proteins linked to neurodegenerative disorders, such as amyloid-ß (Aß), tau, or α-synuclein (αSyn) might be the major deleterious species for neuronal function in these diseases. Here, we found an abnormal accumulation of oligomeric αSyn species in AD brains by custom ELISA, size-exclusion chromatography, and nondenaturing/denaturing immunoblotting techniques. Importantly, the abundance of αSyn oligomers in human brain tissue correlated with cognitive impairment and reductions in synapsin expression. By overexpressing WT human αSyn in an AD mouse model, we artificially enhanced αSyn oligomerization. These bigenic mice displayed exacerbated Aß-induced cognitive deficits and a selective decrease in synapsins. Following isolation of various soluble αSyn assemblies from transgenic mice, we found that in vitro delivery of exogenous oligomeric αSyn but not monomeric αSyn was causing a lowering in synapsin-I/II protein abundance. For a particular αSyn oligomer, these changes were either dependent or independent on endogenous αSyn expression. Finally, at a molecular level, the expression of synapsin genes SYN1 and SYN2 was down-regulated in vivo and in vitro by αSyn oligomers, which decreased two transcription factors, cAMP response element binding and Nurr1, controlling synapsin gene promoter activity. Overall, our results demonstrate that endogenous αSyn oligomers can impair memory by selectively lowering synapsin expression.


Assuntos
Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Sinapsinas/metabolismo , alfa-Sinucleína/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Cognição/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Genes Supressores de Tumor , Humanos , Transtornos da Memória/genética , Camundongos , Camundongos Transgênicos , Proteínas Nucleares , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade , Sinapsinas/genética , alfa-Sinucleína/química , alfa-Sinucleína/genética
3.
Artigo em Zh | MEDLINE | ID: mdl-28614919

RESUMO

Objective: To investigate the effects of developmental exposure to DEHP on learning and memory of mice. Methods: Male littermates of ICR mice randomly assigned to five experimental groups (n=14 for each condition) on PND4 to receive distilled water, vehicle and 10, 50 and 200 mg/ (kg·d) DEHP from PND5 to PND38 by gavage, weighing and recording body weight of mice. Open field task were conducted on PND 26 and Morris water maze task were begun from PND30 to PND 37 to evaluate spontaneous exploration activity and emotion, spatial learning and memory performance of pubertal mice, respectively. On PND39, all animals were killed and hippocampi were isolated on ice, then total proteins of hippocampus were extracted, followed by determining the expression of PSD95 and synapsin I by western blotting. Results: 200 mg/ (kg·d) DEHP significantly reduced the growth of body weight of mice and the time staying in the central area in open field, prolonged the time searching the hidden platform in Morris water maze (P<0.05) . 50 mg/ (kg·d) DEHP didn't change the growth of body weight and the emotion (P>0.05) , but reduced the percent of time and distance in the target quadrant during the probe trial of mice in Morris water maze (P<0.05) . The results of western blotting showed that DEHP significantly reduced the expression of PSD95 in hippocampus of mice with all dose groups (P<0.01) , but only 200 mg/ (kg·d) DEHP reduced the expression of synapsin I (P<0.05) . Conclusion: Developmental exposure to DEHP can damage the development of synapse in hippocampus, adversely impacting spatial memory performance of mice at a dose that are insufficient to significantly influence the general development and result in anxiety.


Assuntos
Dietilexilftalato/toxicidade , Desenvolvimento Fetal/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Animais , Ansiedade , Dietilexilftalato/administração & dosagem , Hipocampo , Masculino , Camundongos , Camundongos Endogâmicos ICR
4.
J Neurosci ; 34(44): 14752-68, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25355227

RESUMO

Synapsins (Syns) are synaptic vesicle (SV)-associated proteins involved in the regulation of synaptic transmission and plasticity, which display a highly conserved ATP binding site in the central C-domain, whose functional role is unknown. Using molecular dynamics simulations, we demonstrated that ATP binding to SynI is mediated by a conformational transition of a flexible loop that opens to make the binding site accessible; such transition, prevented in the K269Q mutant, is not significantly affected in the absence of Ca(2+) or by the E373K mutation that abolishes Ca(2+)-binding. Indeed, the ATP binding to SynI also occurred under Ca(2+)-free conditions and increased its association with purified rat SVs regardless of the presence of Ca(2+) and promoted SynI oligomerization. However, although under Ca(2+)-free conditions, SynI dimerization and SV clustering were enhanced, Ca(2+) favored the formation of tetramers at the expense of dimers and did not affect SV clustering, indicating a role of Ca(2+)-dependent dimer/tetramer transitions in the regulation of ATP-dependent SV clustering. To elucidate the role of ATP/SynI binding in synaptic physiology, mouse SynI knock-out hippocampal neurons were transduced with either wild-type or K269Q mutant SynI and inhibitory transmission was studied by patch-clamp and electron microscopy. K269Q-SynI expressing inhibitory synapses showed increased synaptic strength due to an increase in the release probability, an increased vulnerability to synaptic depression and a dysregulation of SV trafficking, when compared with wild-type SynI-expressing terminals. The results suggest that the ATP-SynI binding plays predocking and postdocking roles in the modulation of SV clustering and plasticity of inhibitory synapses.


Assuntos
Trifosfato de Adenosina/metabolismo , Exocitose/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/ultraestrutura , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Sinapses/ultraestrutura , Sinapsinas/genética , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura
5.
J Neurosci Res ; 93(10): 1492-506, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26213348

RESUMO

Synapsins (Syns) are an evolutionarily conserved family of synaptic vesicle-associated proteins related to fine tuning of synaptic transmission. Studies with mammals have partially clarified the different roles of Syns; however, the presence of different genes and isoforms and the development of compensatory mechanisms hinder accurate data interpretation. Here, we use a simple in vitro monosynaptic Helix neuron connection, reproducing an in vivo physiological connection as a reliable experimental model to investigate the effects of Syn knockdown. Cells overexpressing an antisense construct against Helix Syn showed a time-dependent decrease of Syn immunostaining, confirming protein loss. At the morphological level, Syn-silenced cells showed a reduction in neurite linear outgrowth and branching and in the size and number of synaptic varicosities. Functionally, Syn-silenced cells presented a reduced ability to form synaptic connections; however, functional chemical synapses showed similar basal excitatory postsynaptic potentials and similar short-term plasticity paradigms. In addition, Syn-silenced cells presented faster neurotransmitter release and decreased postsynaptic response toward the end of long tetanic presynaptic stimulations, probably related to an impairment of the synaptic vesicle trafficking resulting from a different vesicle handling, with an increased readily releasable pool and a compromised reserve pool.


Assuntos
Neuritos/fisiologia , Neurogênese/genética , Neurônios/citologia , Neurotransmissores/metabolismo , Sinapses/fisiologia , Sinapsinas/metabolismo , Potenciais de Ação/genética , Animais , Células Cultivadas , Gânglios dos Invertebrados/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Caracois Helix , Microinjeções , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Serotonina/farmacologia , Sinapsinas/genética , Transdução Genética
7.
Cell Rep ; 42(8): 113004, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37597184

RESUMO

Synapsins cluster synaptic vesicles (SVs) to provide a reserve pool (RP) of SVs that maintains synaptic transmission during sustained activity. However, it is unclear how synapsins cluster SVs. Here we show that either liquid-liquid phase separation (LLPS) or tetramerization-dependent cross-linking can cluster SVs, depending on whether a synapse is excitatory or inhibitory. Cell-free reconstitution reveals that both mechanisms can cluster SVs, with tetramerization being more effective. At inhibitory synapses, perturbing synapsin-dependent LLPS impairs SV clustering and synchronization of gamma-aminobutyric acid (GABA) release, while preventing synapsin tetramerization does not. At glutamatergic synapses, the opposite is true: synapsin tetramerization enhances clustering of glutamatergic SVs and mobilization of these SVs from the RP, while synapsin LLPS does not. Comparison of inhibitory and excitatory transmission during prolonged synaptic activity reveals that synapsin LLPS serves as a brake to limit GABA release, while synapsin tetramerization enables rapid mobilization of SVs from the RP to sustain glutamate release.


Assuntos
Sinapses , Sinapsinas , Análise por Conglomerados , Ácido Glutâmico , Ácido gama-Aminobutírico
8.
Trends Neurosci ; 46(4): 293-306, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36725404

RESUMO

Neuronal communication crucially relies on exocytosis of neurotransmitters from synaptic vesicles (SVs) which are clustered at synapses. To ensure reliable neurotransmitter release, synapses need to maintain an adequate pool of SVs at all times. Decades of research have established that SVs are clustered by synapsin 1, an abundant SV-associated phosphoprotein. The classical view postulates that SVs are crosslinked in a scaffold of protein-protein interactions between synapsins and their binding partners. Recent studies have shown that synapsins cluster SVs via liquid-liquid phase separation (LLPS), thus providing a new framework for the organization of the synapse. We discuss the evidence for phase separation of SVs, emphasizing emerging questions related to its regulation, specificity, and reversibility.


Assuntos
Sinapsinas , Vesículas Sinápticas , Humanos , Vesículas Sinápticas/metabolismo , Sinapsinas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Biologia
9.
Arthropod Struct Dev ; 77: 101309, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37879171

RESUMO

Immunohistochemical analyses on the distribution of neuropeptides in the pancrustacean brain in the past have focussed mostly on representatives of the decapod ("ten-legged") pancrustaceans whereas other taxa are understudied in this respect. The current report examines the post-embryogenic and adult brain and ventral nerve cord of the amphipod pancrustacean Parhyale hawaiensis (Dana. 1853; Peracarida, Amphipoda, Hyalide), a subtropical species with a body size of 1.5 cm and a direct post-embryonic development using immunohistochemistry to label the neuropeptide SIFamide and synaptic proteins (synapsins). We found strong SIFamide-like labelling in proto-, deuto- and tritocerebrum, especially in the lamina, the lateral protocerebrum, lateral assessory lobe, the central body, olfactory lobe, medial antenna 1 neuropil and antenna 2 neuropil. Out of a total of 28 ± 5 (N = 12) SIFamide-positive neurons in the central brain of adult P. hawaiensis, we found three individually identifiable somata which were consistently present within the brain of adult and subadult animals. Additionally, the subesophageal and two adjacent thoracic ganglia were analysed in only adult animals and also showed a strong SIFamide-like immunoreactivity. We compare our findings to other pancrustaceans including hexapods and discuss them in an evolutionary context.


Assuntos
Anfípodes , Neuropeptídeos , Animais , Neuropeptídeos/metabolismo , Neurônios , Encéfalo , Neurópilo
10.
Brain Res Bull ; 189: 111-120, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987295

RESUMO

Static magnetic fields (SMF) have neuroprotective and behavioral effects in rats, however, little is known about the effects of SMF on cognition, motor function and the underlying neurochemical mechanisms. In this study, we focused on the effects of short-term (5-10d) and long-term (13-38d) SMF exposure on selective attention and motor coordination of rats, as well as associated alterations in expression level of neuroplasticity-related structural proteins and cryptochrome (CRY1) protein in the cortex, striatum and ventral midbrain. The results showed that 6d SMF exposure significantly enhanced selective attention without affecting locomotor activity in open field. All SMF exposures non-significantly enhanced motor coordination (Rotarod test). Neurochemical analysis demonstrated that 5d SMF exposure increased the expression of cortical and striatal CRY1 and synapsin-1 (SYN1), striatal total synapsins (SYN), and synaptophysin (SYP), growth associated protein-43 (GAP43) and post-synaptic density protein-95 (PSD95) in the ventral midbrain. Exposure to SMF for 14d increased PSD95 level in the ventral midbrain while longer SMF exposure elevated the levels of PSD95 in the cortex, SYN and SYN1 in all the examined brain areas. The increased expression of cortical and striatal CRY1 and SYN1 correlated with the short-lasting effect of SMF on improving selective attention. Collectively, SMF's effect on selective attention attenuated following longer exposure to SMF whereas its effects on neuroplasticity-related structural biomarkers were time- and brain area-dependent, with some protein levels increasing with longer time exposure. These findings suggest a potential use of SMF for treatment of neurological diseases in which selective attention or neuroplasticity is impaired.


Assuntos
Criptocromos , Sinapsinas , Animais , Atenção , Campos Magnéticos , Plasticidade Neuronal , Ratos , Sinaptofisina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA