Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(2): e22773, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36629784

RESUMO

Alzheimer's disease (AD) and Parkinson's disease (PD) are age-dependent neurodegenerative disorders. There is a profound neuronal loss in the basal forebrain cholinergic system in AD and severe dopaminergic deficiency within the nigrostriatal pathway in PD. Swedish APP (APPSWE ) and SNCAA53T mutations promote Aß generation and α-synuclein aggregation, respectively, and have been linked to the pathogenesis of AD and PD. However, the mechanisms underlying selective cholinergic and dopaminergic neurodegeneration in AD and PD are still unknown. We demonstrated that APPSWE mutation enhanced Aß generation and increased cell susceptibility to Aß oligomer in cholinergic SN56 cells, whereas SNCAA53T mutations promoted aggregates formation and potentiated mutant α-synuclein oligomer-induced cytotoxicity in MN9D cells. Furthermore, syndecan-3 (SDC3) and fibroblast growth factor receptor-like 1 (FGFRL1) genes were differentially expressed in SN56 and MN9D cells carrying APPSWE or SNCAA53T mutation. SDC3 and FGFRL1 proteins were preferentially expressed in the cholinergic nucleus and dopaminergic neurons of APPSWE and SNCAA53T mouse models, respectively. Finally, the knockdown of SDC3 and FGFRL1 attenuated oxidative stress-induced cell death in SN56-APPSWE and MN9D-SNCAA53T cells. The results demonstrate that SDC3 and FGFRL1 mediated the specific effects of APPSWE and SNCAA53T on cholinergic and dopaminergic neurodegeneration in AD and PD, respectively. Our study suggests that SDC3 and FGFRL1 could be potential targets to alleviate the selective neurodegeneration in AD and PD.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Sindecana-3/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo
2.
FASEB J ; 35(4): e21246, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33769615

RESUMO

Osteoporosis is the most common age-related metabolic bone disorder, which is characterized by low bone mass and deterioration in bone architecture, with a propensity to fragility fractures. The best treatment for osteoporosis relies on stimulation of osteoblasts to form new bone and restore bone structure, however, anabolic therapeutics are few and their use is time restricted. Here, we report that Syndecan-3 increases new bone formation through enhancement of WNT signaling in osteoblasts. Young adult Sdc3-/- mice have low bone volume, reduced bone formation, increased bone marrow adipose tissue, increased bone fragility, and a blunted anabolic bone formation response to mechanical loading. This premature osteoporosis-like phenotype of Sdc3-/- mice is due to delayed osteoblast maturation and impaired osteoblast function, with contributing increased osteoclast-mediated bone resorption. Indeed, overexpressing Sdc3 in osteoblasts using the Col1a1 promoter rescues the low bone volume phenotype of the Sdc3-/- mice, and also increases bone volume in WT mice. Mechanistically, SDC3 enhances canonical WNT signaling in osteoblasts through stabilization of Frizzled 1, making SDC3 an attractive target for novel bone anabolic drug development.


Assuntos
Desenvolvimento Ósseo/fisiologia , Sindecana-3/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Animais Recém-Nascidos , Anticorpos , Proliferação de Células , Desenvolvimento Fetal , Masculino , Camundongos , Camundongos Knockout , Osteoblastos , Osteoclastos , Sindecana-3/genética
3.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328830

RESUMO

Early diagnosis of Alzheimer's disease (AD) is of paramount importance in preserving the patient's mental and physical health in a fairly manageable condition for a longer period. Reliable AD detection requires novel biomarkers indicating central nervous system (CNS) degeneration in the periphery. Members of the syndecan family of transmembrane proteoglycans are emerging new targets in inflammatory and neurodegenerative disorders. Reviewing the growing scientific evidence on the involvement of syndecans in the pathomechanism of AD, we analyzed the expression of the neuronal syndecan, syndecan-3 (SDC3), in experimental models of neurodegeneration. Initial in vitro studies showed that prolonged treatment of tumor necrosis factor-alpha (TNF-α) increases SDC3 expression in model neuronal and brain microvascular endothelial cell lines. In vivo studies revealed elevated concentrations of TNF-α in the blood and brain of APPSWE-Tau transgenic mice, along with increased SDC3 concentration in the brain and the liver. Primary brain endothelial cells and peripheral blood monocytes isolated from APPSWE-Tau mice exhibited increased SDC3 expression than wild-type controls. SDC3 expression of blood-derived monocytes showed a positive correlation with amyloid plaque load in the brain, demonstrating that SDC3 on monocytes is a good indicator of amyloid pathology in the brain. Given the well-established role of blood tests, the SDC3 expression of monocytes could serve as a novel biomarker for early AD detection.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Camundongos , Camundongos Transgênicos , Sindecana-3 , Sindecanas , Fator de Necrose Tumoral alfa
4.
Histochem Cell Biol ; 155(3): 355-367, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33170350

RESUMO

Syndecan-3 (SDC3) and Syndecan-4 (SDC4) are distributed throughout the nervous system (NS) and are favourable factors in motor neuron development. They are also essential for regulation of neurite outgrowth in the CNS. However, their roles in the reconstruction of the nodes of Ranvier after peripheral nerve injury (PNI) are still unclear. Present study used an in vivo model of end-to-side neurorrhaphy (ESN) for 1-3 months. The recovery of neuromuscular function was evaluated by grooming test. Expression and co-localization of SDC3, SDC4, and Nav1.6 channel (Nav1.6) at regenerating axons were detected by proximity ligation assay and confocal microscopy after ESN. Time-of-flight secondary ion mass spectrometry was used for imaging ions distribution on tissue. Our data showed that the re-clustering of sodium and Nav1.6 at nodal regions of the regenerating nerve corresponded to the distribution of SDC3 after ESN. Furthermore, the re-establishment of sodium and Nav1.6 correlated with the recovery of muscle power 3 months after ESN. This study suggested syndecans may involve in stabilizing Nav1.6 and further modulate the distribution of sodium at nodal regions after remyelination. The efficiency of sodium re-clustering was improved by the assistance of anionic syndecan, resulting in a better functional repair of PNI.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Procedimentos Neurocirúrgicos , Nós Neurofibrosos/metabolismo , Sódio/metabolismo , Sindecana-3/metabolismo , Animais , Masculino , Canal de Sódio Disparado por Voltagem NAV1.6/análise , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Regeneração Nervosa , Ratos , Ratos Wistar , Sódio/análise , Sindecana-3/análise , Sindecana-3/genética
5.
J Biol Chem ; 289(36): 25211-26, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25053416

RESUMO

Hair follicle (HF) morphogenesis and cycling are a result of intricate autonomous epithelial-mesenchymal interactions. Once the first HF cycle is complete it repeatedly undergoes cyclic transformations. Heparan sulfate (HS) proteoglycans are found on the cell surface and in the extracellular matrix where they influence a variety of biological processes by interacting with physiologically important proteins, such as growth factors. Inhibition of heparanase (an HS endoglycosidase) in in vitro cultured HFs has been shown to induce a catagen-like process. Therefore, this study aimed to elucidate the precise role of HS in HF morphogenesis and cycling. An inducible tetratransgenic mouse model was generated to excise exostosin glycosyltransferase 1 (Ext1) in keratin 14-positive cells from P21. Interestingly, EXT1(StEpiΔ/StEpiΔ) mice presented solely anagen HFs. Moreover, waxing the fur to synchronize the HFs revealed accelerated hair regrowth in the EXT1(StEpiΔ/StEpiΔ) mice and hindered cycling into catagen. The ablation of HS in the interfollicular epidermal cells of mature skin led to the spontaneous formation of new HFs and an increase in Sonic Hedgehog expression resembling wild-type mice at P0, thereby indicating that the HS/Sonic Hedgehog signaling pathway regulates HF formation during embryogenesis and prevents HF formation in mature skin. Finally, the knock-out of HS also led to the morphogenesis and hyperplasia of sebaceous glands and sweat glands in mature mice, leading to exacerbated sebum production and accumulation on the skin surface. Therefore, our findings clearly show that an intricate control of HS levels is required for HF, sebaceous gland, and sweat gland morphogenesis and HF cycling.


Assuntos
Folículo Piloso/metabolismo , Heparitina Sulfato/metabolismo , Glândulas Sebáceas/metabolismo , Transdução de Sinais , Animais , Animais Recém-Nascidos , Ectodisplasinas/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Proteínas Hedgehog/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Homeostase , Imuno-Histoquímica , Queratina-14/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Morfogênese , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Glândulas Sebáceas/crescimento & desenvolvimento , Pele/crescimento & desenvolvimento , Pele/metabolismo , Sindecanas/metabolismo , Proteína Wnt1/metabolismo
6.
Cells ; 13(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38534336

RESUMO

Amyotrophic lateral sclerosis (ALS) is a mysterious lethal multisystem neurodegenerative disease that gradually leads to the progressive loss of motor neurons. A recent non-contact dying-back injury mechanism theory for ALS proposed that the primary damage is an acquired irreversible intrafusal proprioceptive terminal Piezo2 channelopathy with underlying genetic and environmental risk factors. Underpinning this is the theory that excessively prolonged proprioceptive mechanotransduction under allostasis may induce dysfunctionality in mitochondria, leading to Piezo2 channelopathy. This microinjury is suggested to provide one gateway from physiology to pathophysiology. The chronic, but not irreversible, form of this Piezo2 channelopathy is implicated in many diseases with unknown etiology. Dry eye disease is one of them where replenishing synthetic proteoglycans promote nerve regeneration. Syndecans, especially syndecan-3, are proposed as the first critical link in this hierarchical ordered depletory pathomechanism as proton-collecting/distributing antennas; hence, they may play a role in ALS pathomechanism onset. Even more importantly, the shedding or charge-altering variants of Syndecan-3 may contribute to the Piezo2 channelopathy-induced disruption of the Piezo2-initiated proton-based ultrafast long-range signaling through VGLUT1 and VGLUT2. Thus, these alterations may not only cause disruption to ultrafast signaling to the hippocampus in conscious proprioception, but could disrupt the ultrafast proprioceptive signaling feedback to the motoneurons. Correspondingly, an inert Piezo2-initiated proton-based ultrafast signaled proprioceptive skeletal system is coming to light that is suggested to be progressively lost in ALS. In addition, the lost functional link of the MyoD family of inhibitor proteins, as auxiliary subunits of Piezo2, may not only contribute to the theorized acquired Piezo2 channelopathy, but may explain how these microinjured ion channels evolve to be principal transcription activators.


Assuntos
Esclerose Lateral Amiotrófica , Canalopatias , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Sindecana-3 , Mecanotransdução Celular , Prótons , Propriocepção/fisiologia
7.
Brain Res ; 1807: 148317, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36898477

RESUMO

To analyze the role of syndecan-3 (SDC3), a heparan sulfate proteoglycan, in cerebellum development, we examined the effect of SDC3 on the transition from cell cycle exit to the initial differentiation stage of cerebellar granule cell precursors (CGCPs). First, we examined SDC3 localization in the developing cerebellum. SDC3 was mainly localized to the inner external granule layer where the transition from the cell cycle exit to the initial differentiation of CGCPs occurs. To examine how SDC3 regulates the cell cycle exit of CGCPs, we performed SDC3-knockdown (SDC3-KD) and -overexpression (Myc-SDC3) assays using primary CGCPs. SDC3-KD significantly increased the ratio of p27Kip1+ cells to total cells at day 3 in vitro (DIV3) and 4, but Myc-SDC3 reduced that at DIV3. Regarding the cell cycle exit efficiency using 24 h-labelled bromodeoxyuridine (BrdU) and a marker of cell cycling, Ki67, SDC3-KD significantly increased cell cycle exit efficiency (Ki67-; BrdU+ cells/BrdU+ cells) in primary CGCP at DIV4 and 5, but Myc-SDC3 reduced that at DIV4 and 5. However, SDC3-KD and Myc-SDC3 did not affect the efficiency of the final differentiation from CGCPs to granule cells at DIV3-5. Furthermore, the ratio of CGCPs in the cell cycle exiting stage to total cells, identified by initial differentiation markers TAG1 and Ki67 (TAG1+; Ki67+ cells), was considerably decreased by SDC3-KD at DIV4, but increased by Myc-SDC3 at DIV4 and 5. Altogether, these results indicate that SDC3 regulates the timing of the transition from the cell cycle exit stage to the initial differentiation stage of CGCP.


Assuntos
Cerebelo , Camundongos , Animais , Bromodesoxiuridina/metabolismo , Antígeno Ki-67/metabolismo , Sindecana-3/metabolismo , Cerebelo/metabolismo , Diferenciação Celular , Ciclo Celular/fisiologia
8.
Biomed Mater ; 18(5)2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37321230

RESUMO

Peripheral nerve regeneration (PNR) following trauma requires the reconstruction of the extracellular matrix (ECM) and the proper stimulation of growth factors. Decellularised small intestine submucosa (SIS) has been extensively used as an ECM scaffold for tissue repair, but its potential to enhance the effects of exogenous growth factors on PNR is not well understood. In this study, we evaluated the effects of SIS implantation combined with glial cell-derived growth factor (GDNF) treatment on PNR in a rat neurorrhaphy model. We found that both SIS and regenerating nerve tissue expressed syndecan-3 (SDC3), one of major heparan sulphate proteoglycans in nerve tissue, and that SDC3 interacted with GDNF in the regenerating nerve tissue. Importantly, the SIS-GDNF combined treatment enhanced the recovery of neuromuscular function andß3-tubulin-positive axonal outgrowth, indicating an increase in the number of functioning motor axons connecting to the muscle after neurorrhaphy. Our findings suggest that the SIS membrane offers a new microenvironment for neural tissue and promotes neural regeneration based on SDC3-GDNF signalling, providing a potential therapeutic approach for PNR.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Nervos Periféricos , Ratos , Animais , Sindecana-3 , Regeneração Nervosa , Intestino Delgado
9.
Cancers (Basel) ; 15(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37370735

RESUMO

Ovarian cancer (OC) is the eighth cancer both in prevalence and mortality in women and represents the deadliest female reproductive cancer. Due to generally vague symptoms, OC is frequently diagnosed only at a late and advanced stage, resulting in high mortality. The tumor extracellular matrix and cellular matrix receptors play a key role in the pathogenesis of tumor progression. Syndecans are a family of four transmembrane heparan sulfate proteoglycans (PG), including syndecan-1, -2, -3, and -4, which are dysregulated in a myriad of cancers, including OC. Many clinicopathological studies suggest that these proteins are promising diagnostic and prognostic biomarkers for OC. Furthermore, functions of the syndecan family in the regulation of cellular processes make it an interesting pharmacological target for anticancer therapies.

10.
Matrix Biol ; 113: 61-82, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152781

RESUMO

Muscle stem cells (MuSCs) are indispensable for muscle regeneration. A multitude of extracellular stimuli direct MuSC fate decisions from quiescent progenitors to differentiated myocytes. The activity of these signals is modulated by coreceptors such as syndecan-3 (SDC3). We investigated the global landscape of SDC3-mediated regulation of myogenesis using a phosphoproteomics approach which revealed, with the precision level of individual phosphosites, the large-scale extent of SDC3-mediated regulation of signal transduction in MuSCs. We then focused on INSR/AKT/mTOR as a key pathway regulated by SDC3 during myogenesis and mechanistically dissected SDC3-mediated inhibition of insulin receptor signaling in MuSCs. SDC3 interacts with INSR ultimately limiting signal transduction via AKT/mTOR. Both knockdown of INSR and inhibition of AKT restore Sdc3-/- MuSC differentiation to wild type levels. Since SDC3 is rapidly downregulated at the onset of differentiation, our study suggests that SDC3 acts a timekeeper to restrain proliferating MuSC response and prevent premature differentiation.


Assuntos
Músculo Esquelético , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sindecana-3/genética , Sindecana-3/metabolismo , Células Cultivadas , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Diferenciação Celular
11.
Cell Signal ; 69: 109544, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31962151

RESUMO

Syndecans are single-pass transmembrane proteins on the cell surface that are involved in various cellular functions. Previously, we reported that both homo- and hetero-form of syndecan dimers affected their functionality. However, little is known about the structural role of the transmembrane domain of syndecan-3. A series of glutathione-S-transferase syndecan-3 proteins showed that syndecan-3 formed SDS-resistant dimers and oligomers. SDS-resistant oligomer formation was barely observed in the syndecan deletion mutants lacking the transmembrane domain. Interestingly, the presence of an alanine 397 residue in the transmembrane domain correlated with SDS-resistant oligomer, and its replacement by phenylalanine (AF mutant) significantly reduced SDS-resistant oligomer formation. Beside the AF mutant significantly reduced syndecan-3 mediated cellular processes such as cell adhesion, migration and neurite outgrowth of SH-SY5Y neuroblastoma. Furthermore, the alanine residue regulated hetero-oligomer formation of syndecan-3, and hetero-oligomer formation significantly reduced syndecan-3-mediated neurite outgrowth of SH-SY5Y cells. Taken together, all these data suggest that syndecan-3 has a specific feature of oligomerization by the transmembrane domain and this oligomerization tendency is crucial for the function of syndecan-3.


Assuntos
Alanina/metabolismo , Multimerização Proteica , Sindecana-3/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Humanos , Crescimento Neuronal , Domínios Proteicos , Ratos
12.
Front Immunol ; 11: 586977, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117401

RESUMO

The syndecan (Sdc) family is comprised of four members of cell surface molecules (Sdc-1 to 4) with different biological functions. Syndecan-3 (Sdc-3) is known to be mainly expressed in the brain and nervous tissue and plays a key role in development, cell adhesion, and migration. Recent studies point to important roles for Sdc-3 in inflammatory disease, but the patterns of expression and significance of Sdc-3 in cancer remains unexplored. Here we show that Sdc-3 expression is upregulated on several cancer types, especially in solid tumors that are known to be hypoxic. The Cancer Genome Atlas program (TCGA) data demonstrated that Sdc-3 expression in the tumor microenvironment positively correlates with a hypoxia gene signature. To confirm a potential cause-effect, we performed experiments with tumor cell lines showing increased expression upon in vitro exposure to 1% oxygen or dimethyloxalylglycine, an inhibitor of prolyl hydroxylases, indicating that Sdc-3 expression is promoted by hypoxia inducible factors (HIFs). HIF-1α was responsible for this upregulation as confirmed by CRISPR-engineered tumor cells. Using single-cell RNA sequencing data of melanoma patients, we show that Sdc-3 is expressed on tumor associated macrophages, cancer cells, and endothelial cells. Syndecan-3 expression positively correlated with a macrophage gene signature across several TCGA cancer types. In vitro experiments demonstrated that hypoxia (1% oxygen) or treatment with IFN-γ stimulate Sdc-3 expression on RAW-264.7 derived macrophages, linking Sdc-3 expression to a proinflammatory response. Syndecan-3 expression correlates with a better patient overall survival in hypoxic melanoma tumors.


Assuntos
Hipóxia Celular/fisiologia , Sindecana-3/metabolismo , Microambiente Tumoral/fisiologia , Humanos
13.
Arthritis Res Ther ; 21(1): 172, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300004

RESUMO

BACKGROUND: Syndecans are heparan sulfate proteoglycans that occur in membrane-bound or soluble forms. Syndecan-3, the least well-characterised of the syndecan family, is highly expressed on synovial endothelial cells in rheumatoid arthritis patients. Here, it binds pro-inflammatory chemokines with evidence for a role in chemokine presentation and leukocyte trafficking into the joint, promoting the inflammatory response. In this study, we explored the role of soluble syndecan-3 as a binder of chemokines and as an anti-inflammatory and therapeutic molecule. METHODS: A human monocytic cell line and CD14+ PBMCs were utilised in both Boyden chamber and trans-endothelial migration assays. Soluble syndecan-3 was tested in antigen-induced and collagen-induced in vivo arthritis models in mice. ELISA and isothermal fluorescence titration assays assessed the binding affinities. Syndecan-3 expression was identified by flow cytometry and PCR, and levels of shedding by ELISA. RESULTS: Using in vitro and in vivo models, soluble syndecan-3 inhibited leukocyte migration in vitro in response to CCL7 and its administration in murine models of rheumatoid arthritis reduced histological disease severity. Using isothermal fluorescence titration, the binding affinity of soluble syndecan-3 to inflammatory chemokines CCL2, CCL7 and CXCL8 was determined, revealing little difference, with Kds in the low nM range. TNFα increased cell surface expression and shedding of syndecan-3 from cultured human endothelial cells. Furthermore, soluble syndecan-3 occurred naturally in the sera of patients with rheumatoid arthritis and periodontitis, and its levels correlated with syndecan-1. CONCLUSIONS: This study shows that the addition of soluble syndecan-3 may represent an alternative therapeutic approach in inflammatory disease.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Movimento Celular , Quimiocinas/metabolismo , Leucócitos/metabolismo , Sindecana-3/metabolismo , Animais , Artrite Reumatoide/patologia , Células Cultivadas , Quimiocina CCL7/metabolismo , Quimiotaxia de Leucócito/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Leucócitos/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Ligação Proteica , Índice de Gravidade de Doença , Solubilidade , Sindecana-3/administração & dosagem , Sindecana-3/genética , Células THP-1 , Fator de Necrose Tumoral alfa/farmacologia
14.
Skelet Muscle ; 6: 34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27757223

RESUMO

BACKGROUND: The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. RESULTS: Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. CONCLUSIONS: Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.


Assuntos
Homeostase , Músculo Esquelético/fisiologia , Regeneração , Células Satélites de Músculo Esquelético/fisiologia , Nicho de Células-Tronco , Sindecana-3/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Células Satélites de Músculo Esquelético/patologia , Sindecana-3/genética
15.
BMJ Open ; 6(8): e011713, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27515755

RESUMO

OBJECTIVE: This study aimed to examine single-nucleotide polymorphisms (SNPs) of seven previously reported obesity genes in East Asians and to analyse their associations and synergistic effects on obesity in the Taiwanese population. DESIGN: Cross-sectional study. SETTING: One medical centre in northern Taiwan. PARTICIPANTS: A total of 323 non-obese and 264 obese participants were recruited. The threshold for obesity in this study was a body mass index of ≥27 kg/m(2), as defined by the Ministry of Health and Welfare in Taiwan. The study was performed with the approval of the institutional review board of MacKay Memorial Hospital, Taipei, Taiwan (application number 12MMHIS106). OUTCOME MEASURES: We analysed the genotype distributions of seven SNPs localising to the PPARγ2, GNB3, SDC3, ADRB2, FTO, PPARγ and ESR1 genes in obese and non-obese groups and then paired obesity-related SNPs to determine if they have synergistic effects on obesity. RESULTS: Analysis of the genotype distributions in obese and non-obese groups revealed only a significant positive correlation between an SNP in rs2282440-syndecan 3 (SDC3) and obesity in the Taiwanese population (p=0.006). In addition, the T/T genotype of SDC3 was significantly associated with a larger waist and hip circumference, higher body fat percentage and lower high-density lipoprotein cholesterol. Moreover, the combination of the rs2282440-SDC3T/T genotype with the rs1801282-peroxisome proliferator-activated receptor-gamma2 gene (PPARγ2) G carrier genotype was strongly associated with obesity (OR=6.77). CONCLUSIONS: We found that the rs2282440-SDC3T/T genotype is associated with obesity in the Taiwanese population. Furthermore, there is a synergistic effect of the high-risk alleles of the SDC3 and PPARγ2 genes on the obese phenotype in the Taiwanese population. TRIAL REGISTRATION NUMBER: 12MMHIS106; Results.


Assuntos
Povo Asiático/genética , Obesidade/genética , Adulto , Idoso , Alelos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Índice de Massa Corporal , HDL-Colesterol/sangue , Estudos Transversais , Receptor alfa de Estrogênio/genética , Feminino , Predisposição Genética para Doença , Genótipo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , PPAR gama/genética , Polimorfismo de Nucleotídeo Único , Receptores Adrenérgicos beta 2/genética , Sindecana-3/genética , Taiwan , Adulto Jovem
16.
World J Gastroenterol ; 20(11): 3018-24, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24659893

RESUMO

AIM: To investigate midkine (MK) and syndecan-3 protein expression in pancreatic cancer by immunohistochemistry, and to analyze their correlation with clinicopathological features, perineural invasion, and prognosis. METHODS: Pancreatic cancer tissues (including adequately sized tumor tissue samples and tissue samples taken from areas less than 2.0 cm around the tumor) were taken from 42 patients who were undergoing a partial duodenopancreatectomy. MK and syndecan-3 proteins were detected by immunohistochemistry using a standardized streptavidin-peroxidase method, and analyzed for their correlation with clinicopathological features, perineural invasion, and prognosis. Associations of neural invasion with aggressive characteristics of pancreatic cancer and the presence of perineural invasion were assessed by two independent observers blinded to the patient status. RESULTS: MK and syndecan-3 were found in 26 (61.9%) and 24 (57.1%) specimens, respectively. MK and syndecan-3 expression was associated with perineural invasion (P = 0.018 and 0.031, respectively). High MK expression was closely associated with advanced tumor, node and metastasis stage (P = 0.008), lymph node metastasis (P = 0.042), and decreased postoperative survival at 3 years (51.0% vs 21.8%, P = 0.001). Syndecan-3 levels were correlated with tumor size (P = 0.028). Patients who were syndecan-3 negative had a higher cumulative survival rate than those who were positive, but the difference was not significant (44.0% vs 23.0%, P > 0.05). CONCLUSION: MK and syndecan-3 are frequently expressed in pancreatic cancer and associated with perineural invasion. High expression of MK and syndecan-3 may contribute to the highly perineural invasion and poor prognosis of human pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/patologia , Fatores de Crescimento Neural/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Sindecana-3/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Estudos de Casos e Controles , China/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Midkina , Invasividade Neoplásica , Pâncreas/inervação , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade
17.
Invest Ophthalmol Vis Sci ; 55(8): 5109-15, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25061112

RESUMO

PURPOSE: Extracellular matrix (ECM) and cellular membrane proteoglycans (PGs) play important roles in neural differentiation and cell adhesion. Vascular endothelial growth factor, an important signal protein in vascular and retinal neural cell development, is retained in the ECM due to its high affinity for PG. Bevacizumab, an anti-VEGF agent, has been extensively used for treating retinal diseases in adult and newborn patients, although its effect on the developing retina remains largely unknown. The purpose of this study was to investigate the effect of bevacizumab on neurocan, phosphacan, and syndecan-3 PG levels in newborn rat retina. METHODS: Retinal explants of sixty 2-day-old Lister hooded rats were obtained after eye enucleation and maintained in culture media with or without bevacizumab for 48 hours. Immunohistochemical staining was assessed against neurocan, phosphacan, and syndecan-3. Proteoglycan content was quantified based on the intensity of immunohistochemical labeling. Gene expressions were quantified by real-time reverse-transcription polymerase chain reaction. The results from the treatment and control groups were compared. RESULTS: No significant difference in the staining intensity and mRNA expression of phosphacan and syndecan-3 was observed between the groups. However, a significant decrease in neurocan content and mRNA expression was observed in bevacizumab-treated retinal explants compared with controls. CONCLUSIONS: Bevacizumab did not affect phosphacan and syndecan-3 levels but decreased neurocan content and gene expression. Therefore, it may interfere with early postnatal retinal cell differentiation. Although further studies are necessary to confirm our findings, we suggest anti-VEGF agents be used with caution in developing retinal tissue.


Assuntos
Inibidores da Angiogênese/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Retina/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Bevacizumab , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Imuno-Histoquímica , Neurocam , Ratos , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Retina/metabolismo , Sindecana-3/metabolismo
18.
Exp Neurol ; 247: 537-51, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23454176

RESUMO

The development of the central nervous system requires an appropriate micro-environment that is conditioned by a combination of various extracellular components. Most of the known signaling factors, such as neurotransmitters or neuropeptides, are soluble and diffuse into the extracellular matrix. However, other secreted molecules like proteoglycans or glycosaminoglycans anchor in the extracellular matrix to influence cerebral ontogenesis. As such, pleiotrophin (PTN), which binds the proteoglycans syndecan-3 (SDC3) and protein tyrosine phosphatase zeta (PTPζ), has been described as a pro-migratory and a pro-differentiating secreted cytokine on cortical neurons. In rat cerebellum, PTN is highly expressed during the first postnatal week, suggesting that this cytokine could participate to the development of the cerebellar cortex. According to this hypothesis, our spatio-temporal cartography of PTN, PTPζ and SDC3 indicated that, in mouse, the PTNergic system was present in the cerebellum at least from the first postnatal day (P0). Until P12, PTN was mainly expressed by granule cell precursors and located in the extracellular matrix, while SDC3 was expressed by Purkinje cells, Golgi cells and granule cell precursors, and PTPζ was present on Purkinje cells and Bergmann fibers. In vitro studies confirmed the presence of SDC3 on immature granule cells and demonstrated that PTN could stimulate directly their velocity in culture. In contrast, subarachnoidal injection of PTN in the cerebellum significantly reduced the rate of migration of granule cells, exacerbated their apoptosis and induced an atrophy of the Purkinje cell dendritic tree. Since differentiated granule cells did not express SDC3 or PTPζ, the PTN effect observed on migration and apoptosis may be indirectly mediated by Purkinje and/or Bergmann cells. From P21 to adulthood, the distribution of PTN, SDC3 and PTPζ changed and their expression dramatically decreased even if they were still detectable. PTN and SDC3 immunolabeling was restricted around Purkinje cell bodies and Golgi cells, whereas PTPζ was located around interneurons. These data suggested that, in the cerebellum of adult mice, PTN participates to the perineuronal nets that control neuronal plasticity. To conclude, the present work represents the first spatio-temporal characterization of the PTNergic system in the mouse cerebellum and indicates that PTN may contribute to cerebellum ontogenesis during the postnatal development as well as to neuronal plasticity at adulthood.


Assuntos
Proteínas de Transporte/metabolismo , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Citocinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores Etários , Animais , Calbindinas/metabolismo , Proteínas de Transporte/farmacologia , Caspase 3/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/citologia , Citocinas/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato Descarboxilase/metabolismo , Técnicas In Vitro , Microdissecção e Captura a Laser , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Ratos , Estatísticas não Paramétricas , Sindecana-3/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA