Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Small ; 20(9): e2305796, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37857585

RESUMO

Although various types of bifacial solar cells exist, few studies have been conducted on bifacial semitransparent CuInSe2 solar cells (BS-CISe SCs) despite the attractive potential in power generation from both sides in an albedo environment. The optimized BS-CISe SCs with 300 and 800 nm-thick absorber via a streamlined single-stage co-evaporation process exhibit a power conversion efficiency (PCE) of 6.32% and 10.6%, respectively. When double-sided total 2.0 sun illumination is assumed in an albedo environment, the bifacial power generation densities (BPGD) of them increases to 9.41% and 13.9%. Four-terminal bifacial semitransparent tandem solar cells (4T-BST SCs) are fabricated to increase the BPGD by mechanically stacking a BS-perovskite (PVK) top cell on top of a BS-CISe bottom cell with the 300 and 800 nm-thick absorber layers. When summed up, the best top and bottom cell PCEs of the 4T-BST SC with 300 and 800 nm-thick BS-CISe SC are 18.8% and 21.1%, respectively. However, the practical BPGD values of the 4T-BST SC under total 2 sun illumination are interestingly 23.4% and 24.4%, respectively. This is because the BS-CISe bottom cell's thickness affects how much rear-side illumination is transmitted to the BS-PVK top cell, increasing its current density and BPGD.

2.
Small ; : e2402903, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923389

RESUMO

Integrated electrochromic devices powered by photovoltaic cells have evoked a lot of interest due to their promising commercial prospects. However, their application has been restricted by the voltage adaption between the self-powered voltage and the color-changing threshold voltage (Vt). Herein, a strategy of bidirectional voltage regulating is proposed to develop a novel stand-alone integrated photovoltachromic device (I-PVCD), which integrates perovskite/organic tandem solar cells (P/O-TSCs) to drive color-changing process of conjugated poly(3-hexylthiophene) (P3HT) films. To lower the driving-voltage of electrochromic layer, C60 is introduced to decrease the onset oxidation potential of P3HT film, and thus leading to a reduced Vt of 0.70 V benefiting from the enhanced highest occupied molecular orbital level and decreased charge transfer resistance from 67.46 to 49.89 Ω. Simultaneously, PBDB-T is utilized as the hole transport layer in the interconnecting layer of CsPbI2Br/PTB7-Th:IEICO-4F P/O-TSC to improve its open-circuit voltage (Voc) to 1.85 V. Under their synergetic merits, a I-PVCD with a wider self-adaptive voltage range is achieved. This device can undergo fast and reversible chromic transition from beautiful magenta to transparent only under the solar radiation, and demonstrates a coloration efficiency of 351.90 cm2 C-1 and a switching time of 2 s besides its excellent operating reliability.

3.
Small ; 20(21): e2308553, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100299

RESUMO

Monolithic perovskite/silicon tandem solar cells have been attracted much attention in recent years. Despite their high performances, the stability issue of perovskite-based devices is recognized as one of the key challenges to realize industrial application. When comes to the perovskite top subcell, the interface between perovskite and electron transporting layers (usually C60) significantly affects the device efficiency as well as the stability due to their poor adhesion. Here, different from the conventional interfacial passivation using metal fluorides, a hybrid intermediate layer is proposed-PMMA functionalized with ionic liquid (IL)-is introduced at the perovskite/C60 interface. The application of PMMA essentially improves the interfacial stability due to its strong hydrophobicity, while adding IL relieves the charge accumulation between PMMA and the perovskite. Thus, an optimal wide-bandgap perovskite solar cells achieves power conversion efficiency of 20.62%. These cells are further integrated as top subcells with silicon bottom cells in a monolithic tandem structure, presenting an optimized PCE up to 27.51%. More importantly, such monolithic perovskite/silicon cells exhibit superior stability by maintaining 90% of initial efficiency after 1200 h under continuous illumination.

4.
Small ; 20(30): e2310584, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38470191

RESUMO

Renewable energy is crucial for sustainable future, and Cu2ZnSnS4 (CZTS) based solar cells shine as a beacon of hope. CZTS, composed of abundant, low-cost, and non-toxic elements, shares similarities with Cu(In,Ga)Se2 (CIGS). However, despite its promise and appealing properties for solar cells, CZTS-based solar cells faces performance challenges owing to inherent issues with CZTS material, and conventional substrate structure complexities. This review critically examines these roadblocks, explores ongoing efforts and breakthroughs, providing insight into the evolving landscape of CZTS-based solar cells research. Furthermore, as an optimistic turn in the field, the review first highlights the crucial need to transition to a superstrate structure for CZTS-based single junction devices, and summarizes the substantial progress made in this direction. Subsequently, dive into the discussion about the fascinating realm of CZTS-based tandem devices, providing an overview of the existing literature as well as outlining the possible potential strategies for enhancing the efficiency of such devices. Finally, the review provides a useful outlook that outlines the priorities for future research and suggesting where efforts should concentrate to shape the future of CZTS-based solar cells.

5.
Nanotechnology ; 35(19)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38316051

RESUMO

Axially heterostructured nanowires (NWs) constitute a promising platform for advanced electronic and optoelectronic nanodevices. The presence of different materials in these NWs introduces a mismatch resulting in complex strain distributions susceptible of changing the band gap and carrier mobility. The growth of these NWs presents challenges related to the reservoir effect in the catalysts droplet that affect to the junction abruptness, and the occurrence of undesired lateral growth creating core-shell heterostructures that introduce additional strain. We present herein a cathodoluminescence (CL) analysis on axially heterostructured InP/InGaP NWs with tandem solar cell structure. The CL is complemented with micro Raman, micro photoluminescence (PL), and high resolution transmission electron microscopy measurements. The results reveal the zinc blende structure of the NWs, the presence of a thin InGaP shell around the InP bottom cell, along with its associated strain, and the doping distribution.

6.
Angew Chem Int Ed Engl ; 63(32): e202407766, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38778504

RESUMO

Inverted perovskite solar cells (PSCs) are preferred for tandem applications due to their superior compatibility with diverse bottom solar cells. However, the solution processing and low formation energy of perovskites inevitably lead to numerous defects at both the bulk and interfaces. We report a facile and effective strategy for precisely modulating the perovskite by incorporating AlOx deposited by atomic layer deposition (ALD) on the top interface. We find that Al3+ can not only infiltrate the bulk phase and interact with halide ions to suppress ion migration and phase separation but also regulate the arrangement of energy levels and passivate defects on the perovskite surface and grain boundaries. Additionally, ALD-AlOx exhibits an encapsulation effect through a dense interlayer. Consequently, the ALD-AlOx treatment can significantly improve the power conversion efficiency (PCE) to 21.80 % for 1.66 electron volt (eV) PSCs. A monolithic perovskite-silicon TSCs using AlOx-modified perovskite achieved a PCE of 28.5 % with excellent photothermal stability. More importantly, the resulting 1.55 eV PSC and module achieved a PCE of 25.08 % (0.04 cm2) and 21.01 % (aperture area of 15.5 cm2), respectively. Our study provides an effective way to efficient and stable wide-band gap perovskite for perovskite-silicon TSCs and paves the way for large-area inverted PSCs.

7.
Angew Chem Int Ed Engl ; : e202412515, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155244

RESUMO

Inverted perovskite/organic tandem solar cells (P/O TSCs) suffer from poor long-term device stability due to halide segregation in organic-inorganic hybrid wide-bandgap (WBG) perovskites, which hinders their practical deployment. Therefore, developing all-inorganic WBG perovskites for incorporation into P/O TSCs is a promising strategy because of their superior stability under continuous illumination. However, these inorganic WBG perovskites also face some critical issues, including rapid crystallization, phase instability, and large energy loss, etc. To tackle these issues, two multifunctional additives based on 9,10-anthraquinone-2-sulfonic acid (AQS) are developed to regulate the perovskite crystallization by mediating the intermediate phases and suppress the halide segregation through the redox-shuttle effect. By coupling with organic cations having the desirable functional groups and dipole moments, these additives can effectively passivate the defects and adjust the alignment of interface energy levels. Consequently, a record Voc approaching 1.3 V with high power conversion efficiency (PCE) of 18.59% could be achieved in a 1.78 eV bandgap single-junction inverted all-inorganic PSC. More importantly, the P/O TSC derived from this cell demonstrates a T90 lifetime of 1000 h under continuous operation, presenting the most stable P/O TSCs reported so far.

8.
Angew Chem Int Ed Engl ; : e202415966, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292507

RESUMO

High Br-content mixed-halide perovskites with wide-bandgap (WBG) of 1.6-2.0 eV have showcased vast potential to be used in tandem solar cells. However, they often suffer from severe halide segregation, phase separation and ion migration issues, which would accelerate the decomposition of perovskites films, deteriorate the photovoltaic performance and even aggravate the lead leakage from damaged devices. Here, we report a novel chemical synergic interaction strategy to mitigate the abovementioned issues. A small amount of cationic ß-cyclodextrin, composed of multiple ammonium cations, chlorine ions and abundant hydroxyl functional groups, was introduced into WBG perovskites, which effectively stabilized the halide ions and homogenized the phase distribution, comprehensively passivated the defects,and efficiently immobilized the Pb2+ ions. Encouragingly, the cationic ß-cyclodextrin was universal and useful for different WBG perovskites, which favorably boosted the efficiencies by 10%-36% and extended the device operational stability to 2680 h. The integrated four-terminal or six-terminal all-perovskite tandem solar cells exhibited efficiencies up to 24.39% and 22.42%, respectively. We demonstrated the cationic ß-cyclodextrin-assisted internal chemical encapsulation effectively prevented the Pb leakage from severely damaged devices with only 5.63 ppb Pb leaching out. The target tandem solar cells with cationic ß-cyclodextrin modification also realized a Pb sequestration efficiency of 93.4%.

9.
Small ; 18(38): e2203319, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35896945

RESUMO

Wide-bandgap perovskite solar cells (PSCs) with an optimal bandgap between 1.7 and 1.8 eV are critical to realize highly efficient and cost-competitive silicon tandem solar cells (TSCs). However, such wide-bandgap PSCs easily suffer from phase segregation, leading to performance degradation under operation. Here, it is evident that ammonium diethyldithiocarbamate (ADDC) can reduce the detrimental I2 back to I- in precursor solution, thereby reducing the density of deep level traps in perovskite films. The resultant perovskite film exhibits great phase stability under continuous illumination and 30-60% relative humidity conditions. Due to the suppression of defect proliferation and ion migration, the PSCs deliver great operation stability which retain over 90% of the initial power conversion efficiency (PCE) after 500 h maximum power point tracking. Finally, a highly efficient semitransparent PSC with a tailored bandgap of 1.77 eV, achieving a PCE approaching 18.6% with a groundbreaking open-circuit voltage (VOC ) of 1.24 V enabled by ADDC additive in perovskite films is demonstrated. Integrated with a bottom silicon solar cell, a four-terminal (4T) TSC with a PCE of 30.24% is achieved, which is one of the highest efficiencies in 4T perovskite/silicon TSCs.

10.
Small ; 18(49): e2204081, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36310130

RESUMO

Wide bandgap (WBG) perovskites through tuning iodine/bromine ratios are capable of merging with narrow bandgap organic bulk heterojunctions to construct tandem solar cells to overcome the Shockley-Queisser limitation. However, WBG perovskites readily suffer from light-induced halide ion migration, leading to detrimental phase segregation and hence severe open-circuit voltage (VOC ) loss. Here, to solve this issue, lead thiocyanate (Pb(SCN)2 ) and 2-thiopheneethylammonium chloride (TEACl) are synergistically employed to passivate and stabilize WBG perovskites with 1.79 eV bandgap. It is demonstrated that the synergetic employment of Pb(SCN)2 and TEACl suppresses light-induced phase segregation, passivates WBG perovskite defects, and reduces non-radiative recombination, hence alleviating VOC loss. As a result, optimized WBG perovskite solar cells (PSCs) are obtained with an impressive VOC of 1.26 V and power conversion efficiency (PCE) over 17.0%. Furthermore, the interconnection layer is optimized to minimize the VOC loss and construct two-terminal perovskite/organic tandem solar cells with a narrow bandgap organic blend bulk heterojunction of PM6:Y6 and achieve a champion PCE of 22.29% with a high VOC of 2.072 V. In addition, these tandem solar cells maintain 81% of their initial efficiency after 1000 h continuous tracking at the maximum power point (MPP) under 100 mW cm-2 white light illumination.

11.
Small ; 17(23): e2006145, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33856096

RESUMO

The organic-inorganic hybrid perovskite solar cells present a rapid improvement on power conversion efficiency from 3.8% to 25.5% in the past decades. Owing to the tuneable bandgaps, low-cost, and ease of fabrication, perovskites become ideal candidate materials for fabricating tandem solar cells, especially for efficient and high-voltage monolithic two-terminal devices. In this review, an overview of recent advances in various monolithic perovskite-based tandem solar cells with a focus on the key challenges is provided. Subsequently, the recombination layer materials, construction of wide-bandgap perovskite layer, stability of narrow-bandgap, and current matching principle in tandems are highlighted in order to optimize the output voltage and conversion efficiency of tandem solar cells. Finally, the recent progress is summarized with a focus on potential applications of tandem solar cells for energy conversion and storage, including hydrogen production by water splitting, CO2 reduction, supercapacitors, and rechargeable batteries, benefiting from the adjustable output voltage of tandem solar cells. It is hoped that this work can offer a feasible strategy to explore more possibilities for fabricating new two-terminal tandem solar cells with high voltage and high conversion efficiency for energy conversion and storage.

12.
Small ; 15(21): e1900134, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30989808

RESUMO

The quest for sustainable energy sources has led to accelerated growth in research of organic solar cells (OSCs). A solution-processed bulk-heterojunction (BHJ) OSC generally contains a donor and expensive fullerene acceptors (FAs). The last 20 years have been devoted by the OSC community to developing donor materials, specifically low bandgap polymers, to complement FAs in BHJs. The current improvement from ≈2.5% in 2013 to 17.3% in 2018 in OSC performance is primarily credited to novel nonfullerene acceptors (NFA), especially fused ring electron acceptors (FREAs). FREAs offer unique advantages over FAs, like broad absorption of solar radiation, and they can be extensively chemically manipulated to tune optoelectronic and morphological properties. Herein, the current status in FREA-based OSCs is summarized, such as design strategies for both wide and narrow bandgap FREAs for BHJ, all-small-molecule OSCs, semi-transparent OSC, ternary, and tandem solar cells. The photovoltaics parameters for FREAs are summarized and discussed. The focus is on the various FREA structures and their role in optical and morphological tuning. Besides, the advantages and drawbacks of both FAs and NFAs are discussed. Finally, an outlook in the field of FREA-OSCs for future material design and challenges ahead is provided.

13.
Sci Technol Adv Mater ; 19(1): 263-270, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29707066

RESUMO

Multi-junction solar cells show the highest photovoltaic energy conversion efficiencies, but the current technologies based on wafers and epitaxial growth of multiple layers are very costly. Therefore, there is a high interest in realizing multi-junction tandem devices based on cost-effective thin film technologies. While the efficiency of such devices has been limited so far because of the rather low efficiency of semitransparent wide bandgap top cells, the recent rise of wide bandgap perovskite solar cells has inspired the development of new thin film tandem solar devices. In order to realize monolithic, and therefore current-matched thin film tandem solar cells, a bottom cell with narrow bandgap (~1 eV) and high efficiency is necessary. In this work, we present Cu(In,Ga)Se2 with a bandgap of 1.00 eV and a maximum power conversion efficiency of 16.1%. This is achieved by implementing a gallium grading towards the back contact into a CuInSe2 base material. We show that this modification significantly improves the open circuit voltage but does not reduce the spectral response range of these devices. Therefore, efficient cells with narrow bandgap absorbers are obtained, yielding the high current density necessary for thin film multi-junction solar cells.

14.
Small Methods ; 8(2): e2300432, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37530212

RESUMO

Tandem solar cells are rationally designed and fabricated by stacking multiple subcells to achieve power conversion efficiency well above the Shockley-Queisser (SQ) limit. There is a large selection pool for the subcell candidates, such as Si, III-V, Kesterite, Perovskite, and organic solar cells. A series of different combinations of these subcells have been successfully demonstrated in practical tandem solar cell devices. However, there has not been a systematic summary of how to connect subcells in a tandem solar cell using a practical, cost-effective, and efficiency-beneficial fashion. In this work, the connection manners of subcells within a tandem cell are classified into three main categories, performing sequential growth, using the physical connection, and applying an intermediate layer, focusing on systematical description of intermediate layers using different materials. The advantages and disadvantages of these connection methods and their applicability to tandem cell types are further elaborated using two typical example models, III-V/Si and Perovskite inclusive tandem cell devices. Eventually, this work can provide useful guidance on how to carry out a suitable intermediate connection in the design of tandem solar cells depending on the selected subcells and device structure.

15.
Adv Mater ; 36(21): e2311745, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38300183

RESUMO

The primary performance limitation in inverted perovskite-based solar cells is the interface between the fullerene-based electron transport layers and the perovskite. Atomic layer deposited thin aluminum oxide (AlOX) interlayers that reduce nonradiative recombination at the perovskite/C60 interface are developed, resulting in >60 millivolts improvement in open-circuit voltage and 1% absolute improvement in power conversion efficiency. Surface-sensitive characterizations indicate the presence of a thin, conformally deposited AlOx layer, functioning as a passivating contact. These interlayers work universally using different lead-halide-based absorbers with different compositions where the 1.55 electron volts bandgap single junction devices reach >23% power conversion efficiency. A reduction of metallic Pb0 is found and the compact layer prevents in- and egress of volatile species, synergistically improving the stability. AlOX-modified wide-bandgap perovskite absorbers as a top cell in a monolithic perovskite-silicon tandem enable a certified power conversion efficiency of 29.9% and open-circuit voltages above 1.92 volts for 1.17 square centimeters device area.

16.
Adv Mater ; 36(1): e2307987, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956304

RESUMO

Wide-bandgap (WBG) perovskite solar cells have attracted considerable interest for their potential applications in tandem solar cells. However, the predominant obstacles impeding their widespread adoption are substantial open-circuit voltage (VOC ) deficit and severe photo-induced halide segregation. To tackle these challenges, a crystal orientation regulation strategy by introducing dodecyl-benzene-sulfonic-acid as an additive in perovskite precursors is proposed. This method significantly promotes the desired crystal orientation, passivates defects, and mitigates photo-induced halide phase segregation in perovskite films, leading to substantially reduced nonradiative recombination, minimized VOC deficits, and enhanced operational stability of the devices. The resulting 1.66 eV bandgap methylamine-free perovskite solar cells achieve a remarkable power conversion efficiency (PCE) of 22.40% (certified at 21.97%), with the smallest VOC deficit recorded at 0.39 V. Furthermore, the fabricated semitransparent WBG devices exhibit a competitive PCE of 20.13%. Consequently, four-terminal tandem cells comprising WBG perovskite top cells and 1.25 eV bandgap perovskite bottom cells showcase an impressive PCE of 28.06% (stabilized 27.92%), demonstrating great potential for efficient multijunction tandem solar cell applications.

17.
Small Methods ; 8(2): e2300207, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37203293

RESUMO

A tandem solar cell, which is composed of a wide bandgap (WBG) top sub-cell and a narrow bandgap (NBG) bottom subcell, harnesses maximum photons in the wide spectral range, resulting in higher efficiency than single-junction solar cells. WBG (>1.6 eV) perovskites are currently being studied a lot based on lead mixed-halide perovskites, and the power conversion efficiency of lead mixed-halide WBG perovskite solar cells (PSCs) reaches 21.1%. Despite the excellent device performance of lead WBG PSCs, their commercialization is hampered by their Pb toxicity and low stability. Hence, lead-free, less toxic WBG perovskite absorbers are needed for constructing lead-free perovskite tandem solar cells. In this review, various strategies for achieving high-efficiency WBG lead-free PSCs are discussed, drawing inspiration from prior research on WBG lead-based PSCs. The existing issues of WBG perovskites such as VOC loss are discussed, and toxicity issues associated with lead-based perovskites are also addressed. Subsequently, the natures of lead-free WBG perovskites are reviewed, and recently emerged strategies to enhance device performance are proposed. Finally, their applications in lead-free all perovskite tandem solar cells are introduced. This review presents helpful guidelines for eco-friendly and high-efficiency lead-free all perovskite tandem solar cells.

18.
Adv Mater ; 36(18): e2312170, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38245819

RESUMO

The rapid relaxation of hot carriers leads to energy loss in the form of heat and consequently restricts the theoretical efficiency of single-junction solar cells; However, this issue has not received much attention in tin-lead perovskites solar cells. Herein, tin(II) oxalate (SnC2O4) is introduced into tin-lead perovskite precursor solution to regulate hot-carrier cooling dynamics. The addition of SnC2O4 increases the length of carrier diffusion, extends the lifetime of carriers, and simultaneously slows down the cooling rate of carriers. Furthermore, SnC2O4 can bond with uncoordinated Sn2+ and Pb2+ ions to regulate the crystallization of perovskite and enable large grains. The strongly reducing properties of the C2O4 2- can inhibit the oxidation of Sn2+ to Sn4+ and minimize the formation of Sn vacancies in the resulting perovskite films. Additionally, as a substitute for tin(II) fluoride, the introduction of SnC2O4 avoids the carrier transport issues caused by the aggregation of F- ions at the interface. As a result, the SnC2O4-treated Sn-Pb cells show a champion efficiency of 23.36%, as well as 27.56% for the all-perovskite tandem solar cells. Moreover, the SnC2O4-treated devices show excellent long-term stability. This finding is expected to pave the way toward stable and highly efficient all-perovskite tandem solar cells.

19.
ACS Appl Mater Interfaces ; 16(22): 28379-28390, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771721

RESUMO

This study proposes a titanium silicide (TiSi2) recombination layer for perovskite/tunnel oxide passivated contact (TOPCon) 2-T tandem solar cells as an alternative to conventional transparent conductive oxide (TCO)-based recombination layers. TiSi2 was formed while TiO2 was made by oxidizing a Ti film deposited on the p+-Si layer. The reaction formation mechanism was proposed based on the diffusion theory supported by experimental results. The optical and electrical properties of the TiSi2 layer were optimized by controlling the initial Ti thicknesses (5-100 nm). With the initial Ti of 50 nm, the lowest reflectance and highly ohmic contact between the TiO2 and p+-Si layers with a contact resistivity of 161.48 mΩ·cm2 were obtained. In contrast, the TCO interlayer shows Schottky behavior with much higher contact resistivities. As the recombination layer of TiSi2 and the electron transport layer of TiO2 are formed simultaneously, the process steps become simpler. Finally, the MAPbI3/TOPCon tandem device yielded an efficiency of 16.23%, marking the first reported efficiency for a device including a silicide-based interlayer.

20.
Adv Sci (Weinh) ; 11(31): e2401175, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38888517

RESUMO

The reverse bias stability is a key concern for the commercialization and reliability of halide perovskite photovoltaics. Here, the robustness of perovskite-silicon tandem solar cells to reverse bias electrical degradation down to -40 V is investigated. The two-terminal tandem configuration, with the perovskite coupled to silicon, can improve the solar cell resistance to severe negative voltages when the tandem device is properly designed. While perovskite cells typically exhibit early reverse bias breakdown voltages, the serial connection with silicon cells with large shunt resistances and high voltage breakdown limits their negative polarization and prevent the passage of large current densities when reverse biased. The importance of careful optical design is illustrated, with bottom-limited conditions required to prevent the perovskite top cell from exploring its own breakdown. This aspect is of great importance in the case of partial shading events when the solar spectrum is richer in the IR components than the standard AM1.5G. Notably, 100% of efficiency retained after polarization at -40 V in different stressing conditions is observed. The results presented suggest that standard industrial bypass diode schemes may be compatible with silicon/perovskite tandem photovoltaics and provide new guidelines for the standardization of the stressing protocols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA