Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361851

RESUMO

Tandemly arranged and dispersed repetitive DNA sequences are important structural and functional elements that make up a significant portion of vertebrate genomes. Using high throughput, low coverage whole genome sequencing followed by bioinformatics analysis, we have identified seven major tandem repetitive DNAs and two fragments of LTR retrotransposons in the genome of the Nile crocodile (Crocodylus niloticus, 2n = 32). The repeats showed great variability in structure, genomic organization, and chromosomal distribution as revealed by fluorescence in situ hybridization (FISH). We found that centromeric and pericentromeric heterochromatin of C. niloticus is composed of previously described in Crocodylus siamensis CSI-HindIII and CSI-DraI repetitive sequence families, a satellite revealed in Crocodylus porosus, and additionally contains at least three previously unannotated tandem repeats. Both LTR sequences identified here belong to the ERV1 family of endogenous retroviruses. Each pericentromeric region was characterized by a diverse set of repeats, with the exception of chromosome pair 4, in which we found only one type of satellite. Only a few repeats showed non-centromeric signals in addition to their centromeric localization. Mapping of 18S-28S ribosomal RNA genes and telomeric sequences (TTAGGG)n did not demonstrate any co-localization of these sequences with revealed centromeric and pericentromeric heterochromatic blocks.


Assuntos
Jacarés e Crocodilos , Animais , Jacarés e Crocodilos/genética , Hibridização in Situ Fluorescente , Centrômero/genética , Sequências Repetitivas de Ácido Nucleico , RNA Ribossômico 18S/genética
2.
Chemistry ; 27(45): 11707-11720, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34152657

RESUMO

Human telomeric DNA with hundreds of repeats of the 5'-TTAGGG-3' motif plays a crucial role in several biological processes. It folds into G-quadruplex (G4) structures and features a pocket at the interface of two contiguous G4 blocks. Up to now no structural NMR and crystallographic data are available for ligands interacting with contiguous G4s. Naphthalene diimide monomers and dyads were investigated as ligands of a dimeric G4 of human telomeric DNA comparing the results with those of the model monomeric G4. Time-resolved fluorescence, circular dichroism, isothermal titration calorimetry and molecular modeling were used to elucidate binding features. Ligand fluorescence lifetime and induced circular dichroism unveiled occupancy of the binding site at the interface. Thermodynamic parameters confirmed the hypothesis as they remarkably change for the dyad complexes of the monomeric and dimeric telomeric G4. The bi-functional ligand structure of the dyads is a fundamental requisite for binding at the G4 interface as only the dyads engage in complexes with 1 : 1 stoichiometry, lodging in the pocket at the interface and establishing multiple interactions with the DNA skeleton. In the absence of NMR and crystallographic data, our study affords important proofs of binding at the interface pocket and clues on the role played by the ligand structure.


Assuntos
Quadruplex G , Dicroísmo Circular , DNA , Humanos , Ligantes , Telômero
3.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205000

RESUMO

Recently, the 1H-detected in-cell NMR spectroscopy has emerged as a unique tool allowing the characterization of interactions between nucleic acid-based targets and drug-like molecules in living human cells. Here, we assess the application potential of 1H and 19F-detected in-cell NMR spectroscopy to profile drugs/ligands targeting DNA G-quadruplexes, arguably the most studied class of anti-cancer drugs targeting nucleic acids. We show that the extension of the original in-cell NMR approach is not straightforward. The severe signal broadening and overlap of 1H in-cell NMR spectra of polymorphic G-quadruplexes and their complexes complicate their quantitative interpretation. Nevertheless, the 1H in-cell NMR can be used to identify drugs that, despite strong interaction in vitro, lose their ability to bind G-quadruplexes in the native environment. The in-cell NMR approach is adjusted to a recently developed 3,5-bis(trifluoromethyl)phenyl probe to monitor the intracellular interaction with ligands using 19F-detected in-cell NMR. The probe allows dissecting polymorphic mixture in terms of number and relative populations of individual G-quadruplex species, including ligand-bound and unbound forms in vitro and in cellulo. Despite the probe's discussed limitations, the 19F-detected in-cell NMR appears to be a promising strategy to profile G-quadruplex-ligand interactions in the complex environment of living cells.


Assuntos
DNA/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos dos fármacos , Preparações Farmacêuticas/química , Sítios de Ligação/efeitos dos fármacos , DNA/química , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Prótons
4.
Bioorg Med Chem ; 28(23): 115761, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32992248

RESUMO

Anthracycline anticancer drugs show multiple strategies of action on gene functioning by regulation of telomerase enzyme by apoptotic factors, e.g. ceramide level, p53 activity, bcl-2 protein levels, besides inhibiting DNA/RNA synthesis and topoisomerase-II action. We report binding of epirubicin with G-quadruplex (G4) DNA, [d-(TTAGGGT)]4, comprising human telomeric DNA sequence TTAGGG, using 1H and 31P NMR spectroscopy. Diffusion ordered spectroscopy, sequence selective changes in chemical shift (~0.33 ppm) and line broadening in DNA signals suggest formation of a well-defined complex. Presence of sequential nuclear Overhauser enhancements at all base quartet steps and absence of large downfield shifts in 31P resonances preclude intercalative mode of interaction. Restrained molecular dynamics simulations using AMBER force field incorporating intermolecular drug to DNA interproton distances, involving ring D protons of epirubicin depict external binding close to T1-T2-A3 and G6pT7 sites. Binding induced thermal stabilization of G4 DNA (~36 °C), obtained from imino protons and differential scanning calorimetry, is likely to come in the way of telomerase association with telomeres. The findings pave the way for drug-designing with modifications at ring D and daunosamine sugar.


Assuntos
Antineoplásicos/farmacologia , Epirubicina/farmacologia , Quadruplex G/efeitos dos fármacos , Telômero/genética , Antineoplásicos/química , Antineoplásicos/metabolismo , Sequência de Bases , Epirubicina/química , Epirubicina/metabolismo , Humanos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Espectroscopia de Prótons por Ressonância Magnética , Temperatura de Transição
5.
Bioorg Chem ; 100: 103862, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32428744

RESUMO

Herein we present the synthesis of a l-diaminobutanoic acid (DABA)-based nucleopeptide (3), with an oligocationic backbone, realized by solid phase peptide synthesis using thymine-bearing DABA moieties alternating in the sequence with free ones. CD studies evidenced the ability of this oligothymine nucleopeptide, well soluble in aqueous solution, to alter the secondary structure particularly of complementary RNA (poly rA vs poly rU) and inosine-rich RNAs, like poly rI and poly rIC, and showed its preference in binding double vs single-stranded DNAs. Furthermore, ESI mass spectrometry revealed that 3 bound also G-quadruplex (G4) DNAs, with either parallel or antiparallel topologies (adopted in our experimental conditions by c-myc and tel22, respectively). However, it caused detectable changes only in the CD of c-myc (whose parallel G4 structure was also thermally stabilized by ~3 °C), while leaving unaltered the antiparallel structure of tel22. Interestingly, CD and UV analyses suggested that 3 induced a hybrid mixed parallel/antiparallel G4 DNA structure in a random-coil tel22 DNA obtained under salt-free buffer conditions. Titration of the random-coil telomeric DNA with 3 gave quantitative information on the stoichiometry of the obtained complex. Overall, the findings of this work suggest that DABA-based nucleopeptides are synthetic nucleic acid analogues potentially useful in antigene and antisense strategies. Nevertheless, the hexathymine DABA-nucleopeptide shows an interesting behaviour as molecular tool per se thanks to its efficacy in provoking G4 induction in random coil G-rich DNA, as well as for the possibility to bind and stabilize c-myc oncogene in a G4 structure.


Assuntos
Aminobutiratos/química , Aminobutiratos/farmacologia , DNA/metabolismo , RNA/metabolismo , Timina/análogos & derivados , Timina/farmacologia , Aminobutiratos/síntese química , DNA/química , Quadruplex G/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA/química , Técnicas de Síntese em Fase Sólida , Timina/síntese química
6.
Mol Biol (Mosk) ; 54(4): 616-625, 2020.
Artigo em Russo | MEDLINE | ID: mdl-32799224

RESUMO

Age-related changes in telomere length (TL) in somatic tissues are not limited only to shortening. It is known that many organisms show different TL dynamics. Such species specificity indicates the complexity of the mechanisms involved in the regulation of TL. Owing to their morphological, physiological, and ecological features, Baikal planarians are an interesting model for studying the TL dynamics and the factors influencing it in comparison with species living outside Baikal. In this work, we investigated telomerase activity and age-related changes in TL in three endemic species of planarians from the Dendrocoelidae family. Two species are giant deep-water species (7-12 cm long, Sorocelis hepatizon and Rimacephalus arecepta), and one is a coastal shallow species (1 cm long, Baikalobia guttata). In addition, we investigated the telomere biology in another small Siberian species from the Planariidae family (2 cm in length, Phagocata sibirica), which is not found in Baikal. TL and telomerase activity were determined using real-time PCR and the TRAP method. Three types of age-related TL dynamics were detected with active telomerase: (1) TL shortening at the juvenile stage of development and subsequent maintenance (R. arecepta, Ph. sibirica), (2) gradual TL shortening during ontogeny (S. hepatizon) and (3) cyclic dynamics of TL (B. guttata). Thus, the changes of TL in the studied planarians does not have an obvious connection with body size, habitat depth, phylogenetic relationship and is probably a consequence of species features in the regulation of telomerase activity.


Assuntos
Planárias , Telomerase , Telômero/fisiologia , Animais , Lagos , Filogenia , Planárias/genética , Planárias/fisiologia , Federação Russa , Especificidade da Espécie , Telomerase/metabolismo , Encurtamento do Telômero
7.
Cytogenet Genome Res ; 154(1): 37-44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29510395

RESUMO

In the present paper, karyotypes of 7 Japanese Podismini species, Anapodisma beybienkoi, Fruhstorferiola okinawaensis, Parapodisma caelestis, P. mikado, P. setouchiensis, P. tenryuensis, and Sinopodisma punctata (2n♂ = 21, all acrocentric), are described and compared on the basis of conventional (C-banding, DAPI/CMA3-staining, Ag-NOR) and molecular (FISH with 18S rDNA and telomeric probes) cytogenetic staining methods. This is the first study to report karyotypes of A. beybienkoi and P. caelestis. Differential staining techniques showed karyotypic diversity in these species. The number of 18S rDNA signals ranged from 2 to 6, and the signals were located on the autosomes or sex chromosomes. In all species, clusters of rDNA coincided with Ag-NORs. Telomeric signals occurred at the chromosome ends at the pachytene stage and seldom at other stages of meiosis. Paracentromeric and some distal and interstitial blocks of constitutive heterochromatin were detected in the chromosomes of Anapodisma, Fruhstorferiola, and Parapodisma species. Staining with DAPI and CMA3 revealed 2 groups of heterochromatin composition. In addition, intraspecific differences in the number of rDNA clusters and C-bands were observed within Parapodisma species. Based on the evidence of cytogenetic characteristics, the monophyly of Tonkinacridina cannot be supported.


Assuntos
Mapeamento Cromossômico/métodos , Gafanhotos/genética , Cariotipagem/métodos , Animais , Bandeamento Cromossômico , DNA Ribossômico/genética , Variação Genética , Gafanhotos/classificação , Hibridização in Situ Fluorescente , Masculino , Filogenia , RNA Ribossômico 16S/genética
8.
Chemistry ; 24(2): 471-477, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29096420

RESUMO

The possible role of DNA i-motif structures in telomere biology and in the transcriptional regulation of oncogene promoter regions is supported by several recent studies. Herein we investigate the effect of four cytidine nucleosides (and combinations thereof) on i-motif structure and stability, namely 2'-deoxycytidine (dC), 2'-deoxy-5-methyl-cytidine (5-Me-dC), 2'-deoxy-2'-fluoro-arabinocytidine (2'F-araC), and 2'-deoxy-2'-fluoro-5-methyl-arabinocytidine (5-Me-2'F-araC). The base pair 5-Me-2'F-araC:2'F-araC produced i-motifs with a pH1/2 ("pKa ") value that closely matches physiological pH (7.34±0.3). NMR analysis of the most stable telomeric sequence (HJ-2) at pH 7.0 indicated that the structure is stabilized by hybrid 5-Me-dC:2'F-araC hemiprotonated base pairs and therefore highlights the significance of the interplay between base and sugar modifications on the stability of i-motif structures.


Assuntos
Citarabina/análogos & derivados , Citarabina/química , Citidina/análogos & derivados , Citidina/química , Metilação de DNA , DNA/química , Motivos de Nucleotídeos , Citarabina/síntese química , Citidina/síntese química , Halogenação , Concentração de Íons de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Telômero/química
9.
Chemistry ; 24(18): 4680-4688, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29359819

RESUMO

During cancer radiation therapy high-energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low-energy (<20 eV) electrons, which are able to damage DNA very efficiently by dissociative electron attachment. Recently, it was suggested that low-energy electron-induced DNA strand breaks strongly depend on the specific DNA sequence with a high sensitivity of G-rich sequences. Here, we use DNA origami platforms to expose G-rich telomere sequences to low-energy (8.8 eV) electrons to determine absolute cross sections for strand breakage and to study the influence of sequence modifications and topology of telomeric DNA on the strand breakage. We find that the telomeric DNA 5'-(TTA GGG)2 is more sensitive to low-energy electrons than an intermixed sequence 5'-(TGT GTG A)2 confirming the unique electronic properties resulting from G-stacking. With increasing length of the oligonucleotide (i.e., going from 5'-(GGG ATT)2 to 5'-(GGG ATT)4 ), both the variety of topology and the electron-induced strand break cross sections increase. Addition of K+ ions decreases the strand break cross section for all sequences that are able to fold G-quadruplexes or G-intermediates, whereas the strand break cross section for the intermixed sequence remains unchanged. These results indicate that telomeric DNA is rather sensitive towards low-energy electron-induced strand breakage suggesting significant telomere shortening that can also occur during cancer radiation therapy.


Assuntos
DNA/efeitos da radiação , Telômero/metabolismo , Dano ao DNA , Elétrons , Quadruplex G , Neoplasias/radioterapia , Fototerapia
10.
Methods ; 114: 74-84, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27595911

RESUMO

The C-Circle Assay has satisfied the need for a rapid, robust and quantitative ALT assay that responds quickly to changes in ALT activity. The C-Circle Assay involves (i) extraction or simple preparation (Quick C-Circle Preparation) of the cell's DNA, which includes C-Circles (ii) amplification of the self-primed C-Circles with a rolling circle amplification reaction and (iii) sequence specific detection of the amplification products by native telomeric DNA dot blot or telomeric qPCR. Here we detail the protocols and considerations required to perform the C-Circle Assay and its controls, which include exonuclease removal of linear telomeric DNA, production of the synthetic C-Circle C96 and modulation of ALT activity by γ-irradiation.


Assuntos
Biomarcadores Tumorais/genética , DNA Circular/análise , DNA de Neoplasias/genética , Neoplasias/diagnóstico , Telômero , Humanos , Neoplasias/genética
11.
Am J Respir Cell Mol Biol ; 56(1): 38-49, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27559927

RESUMO

Lung cellular senescence and inflammatory response are the key events in the pathogenesis of chronic obstructive pulmonary disease (COPD) when cigarette smoke (CS) is the main etiological factor. Telomere dysfunction is induced by either critical shortening or disruption of the shelterin complex, leading to cellular senescence. However, it remains unknown whether disruption of the shelterin complex is responsible for CS-induced lung cellular senescence. Here we show that telomere protection protein 1 (TPP1) levels are reduced on telomeres in lungs from mice with emphysema, as well as in lungs from smokers and from patients with COPD. This is associated with persistent telomeric DNA damage, leading to cellular senescence. CS disrupts the interaction of TPP1 with the Sirtuin 1 (Sirt1) complex, leading to increased TPP1 acetylation and degradation. Lung fibroblasts deficient in Sirt1 or treated with a selective Sirt1 inhibitor exhibit increased cellular senescence and decreased TPP1 levels, whereas Sirt1 overexpression and pharmacological activation protect against CS-induced TPP1 reduction and telomeric DNA damage. Our findings support an essential role of TPP1 in protecting CS-induced telomeric DNA damage and cellular senescence, and therefore provide a rationale for a potential therapy for COPD, on the basis of the shelterin complex, in attenuating cellular senescence.


Assuntos
Senescência Celular , Proteínas de Ligação a DNA/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Complexo Shelterina/metabolismo , Sirtuína 1/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Acetilação , Animais , Células Cultivadas , Dano ao DNA , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Fumar/efeitos adversos
12.
Angew Chem Int Ed Engl ; 56(38): 11640-11644, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28661023

RESUMO

The topological diversity of DNA G-quadruplexes may play a crucial role in its biological function. Reversible control over a specific folding topology was achieved by the synthesis of a chiral, glycol-based pyridine ligand and its fourfold incorporation into human telomeric DNA by solid-phase synthesis. Square-planar coordination to a CuII ion led to the formation of a highly stabilizing intramolecular metal-base tetrad, substituting one G-tetrad in the parent unimolecular G-quadruplex. For the Tetrahymena telomeric repeat, CuII -triggered switching from a hybrid-dominated conformer mixture to an antiparallel topology was observed. CuII -dependent control over a protein-G-quadruplex interaction was shown for the thrombin-tba pair (tba=thrombin-binding aptamer).


Assuntos
Cobre/farmacologia , DNA de Protozoário/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Inibidores de Serina Proteinase/farmacologia , Telômero/efeitos dos fármacos , Trombina/antagonistas & inibidores , Cobre/química , Fibrinogênio/metabolismo , Hidrólise , Estrutura Molecular , Inibidores de Serina Proteinase/química , Tetrahymena , Trombina/metabolismo
13.
J Biol Inorg Chem ; 21(2): 227-39, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26748794

RESUMO

G-quadruplexes are non-canonical DNA structures formed by guanine-rich DNA sequences that are implicated in cancer and aging. Understanding how small molecule ligands interact with quadruplexes is essential both to the development of novel anticancer therapeutics and to the design of new quadruplex-selective probes needed for elucidation of quadruplex biological functions. In this work, UV-visible, fluorescence, and circular dichroism spectroscopies, fluorescence resonance energy transfer (FRET) melting assays, and resonance light scattering were used to investigate how the Pt(II) and Pd(II) derivatives of the well-studied 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) interact with quadruplexes formed by the human telomeric DNA, Tel22, and by the G-rich sequences from oncogene promoters. Our results suggest that Pt- and PdTMPyP4 interact with Tel22 via efficient π-π stacking with a binding affinity of 10(6)-10(7) M(-1). Under porphyrin excess, PtTMPyP4 aggregates using Tel22 as a template; the aggregates reach maximum size at [PtTMPyP4]/[Tel22] ~8 and dissolve at [PtTMPyP4]/[Tel22] ≤ 2. FRET assays reveal that both porphyrins are excellent stabilizers of human telomeric DNA, with stabilization temperature of 30.7 ± 0.6 °C for PtTMPyP4 and 30.9 ± 0.4 °C for PdTMPyP4 at [PtTMPyP4]/[Tel22] = 2 in K(+) buffer, values significantly higher as compared to those for TMPyP4. The porphyrins display modest selectivity for quadruplex vs. duplex DNA, with selectivity ratios of 150 and 330 for Pt- and PdTMPyP4, respectively. This selectivity was confirmed by observed 'light switch' effect: fluorescence of PtTMPyP4 increases significantly in the presence of a variety of DNA secondary structures, yet the strongest effect is produced by quadruplex DNA.


Assuntos
Quadruplex G , Paládio/química , Platina/química , Porfirinas/química , Espalhamento de Radiação , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
14.
Chembiochem ; 16(11): 1647-56, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26032298

RESUMO

Cytosine-rich single-stranded DNA oligonucleotides are able to adopt an i-motif conformation, a four-stranded structure, near a pH of 6. This unique pH-dependent conformational switch is reversible and hence can be controlled by changing the pH. Here, we show that the pH response range of the human telomeric i-motif can be shifted towards more basic pH values by introducing 5-methylcytidines (5-MeC) and towards more acidic pH values by introducing 5-bromocytidines (5-BrC). No thermal destabilisation was observed in these chemically modified i-motif sequences. The time required to attain the new conformation in response to sudden pH changes was slow for all investigated sequences but was found to be ten times faster in the 5-BrC derivative of the i-motif.


Assuntos
DNA de Cadeia Simples/química , Motivos de Nucleotídeos , Oligodesoxirribonucleotídeos/química , 5-Metilcitosina/química , Sequência de Bases , Citosina/análogos & derivados , Citosina/química , DNA de Cadeia Simples/genética , Humanos , Concentração de Íons de Hidrogênio , Cinética , Oligodesoxirribonucleotídeos/genética , Telômero/genética , Temperatura
15.
Chembiochem ; 16(4): 618-24, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25676722

RESUMO

Short human telomeric (HT) DNA sequences form single G-quadruplex (G4 ) units and exhibit structure-based stereocontrol for a series of reactions. However, for more biologically relevant higher-order HT G4 -DNAs (beyond a single G4 unit), the catalytic performances are unknown. Here, we found that higher-order HT G4 -DNA copper metalloenzymes (two or three G4 units) afford remarkably higher enantioselectivity (>90 % ee) and a five- to sixfold rate increase, compared to a single G4 unit, for the Diels-Alder reaction. Electron paramagnetic resonance (EPR) and enzymatic kinetic studies revealed that the distinct catalytic function between single and higher-order G4 -DNA copper metalloenzymes can be attributed to different Cu(II) coordination environments and substrate specificity. Our finding suggests that, like protein enzymes and ribozymes, higher-order structural organization is crucial for G4 -DNA-based catalysis.


Assuntos
DNA/química , DNA/metabolismo , Quadruplex G , Sequência de Bases , Catálise , Cobre/metabolismo , Reação de Cicloadição , Humanos , Cinética , Metaloproteínas/metabolismo , Estereoisomerismo , Especificidade por Substrato
16.
Bioorg Med Chem ; 23(13): 3819-30, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25935290

RESUMO

The synthesis, biological and molecular modeling evaluation of a series of macrocyclic naphthalene diimides is reported. The present investigation expands on the study of structure-activity relationships of prototype compound 2 by constraining the molecule into a macrocyclic structure with the aim of improving its G-quadruplex binding activity and selectivity. The new derivatives, compounds 4-7 carry spermidine- and spermine-like linkers while in compound 8 the inner basic nitrogen atoms of spermine have been replaced with oxygen atoms. The design strategy has led to potent compounds stabilizing both human telomeric (F21T) and c-KIT2 quadruplex sequences, and high selectivity for quadruplex in comparison to duplex DNA. Antiproliferative effects of the new derivatives 4-8 have been evaluated in a panel of cancer cell lines and all the tested compounds showed activity in the low micromolar or sub-micromolar range of concentrations. In order to rationalize the molecular basis of the DNA G-quadruplex versus duplex recognition preference, docking and molecular dynamics studies have been performed. The computational results support the observation that the main driving force in the recognition is due to electrostatic factors.


Assuntos
Antineoplásicos/síntese química , DNA de Neoplasias/antagonistas & inibidores , Quadruplex G , Imidas/síntese química , Naftalenos/síntese química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA de Neoplasias/química , Desenho de Fármacos , Humanos , Imidas/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Naftalenos/farmacologia , Espermidina/química , Espermina/química , Eletricidade Estática , Relação Estrutura-Atividade
17.
Molecules ; 20(6): 10963-79, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26076114

RESUMO

A cyclic naphthalene diimide (cyclic NDI, 1), carrying a benzene moiety as linker chain, was synthesized and its interaction with G-quadruplex DNAs of a-core and a-coreTT as a human telomeric DNA, c-kit and c-myc as DNA sequence at promoter region, or thrombin-binding aptamer (TBA) studied based on UV-VIS and circular dichroism (CD) spectroscopic techniques, thermal melting temperature measurement, and FRET-melting assay. The circular dichroism spectra showed that 1 induced the formation of different types of G-quadruplex DNA structure. Compound 1 bound to these G-quadruplexes with affinities in the range of 106-107 M-1 order and a 2:1 stoichiometry. Compound 1 showed 270-fold higher selectivity for a-core than dsDNA with a preferable a-core binding than a-coreTT, c-kit, c-myc and TBA in the presence of K+, which is supported by thermal melting studies. The FRET-melting assay also showed that 1 bound preferentially to human telomeric DNA. Compound 1 showed potent inhibition against telomerase activity with an IC50 value of 0.9 µM and preferable binding to G-quadruplexes DNA than our previously published cyclic NDI derivative 3 carrying a benzene moiety as longer linker chain.


Assuntos
Quadruplex G/efeitos dos fármacos , Imidas/química , Imidas/farmacologia , Ligantes , Naftalenos/química , Naftalenos/farmacologia , Dicroísmo Circular , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Temperatura de Transição
18.
Biochem Biophys Res Commun ; 451(4): 599-602, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25128826

RESUMO

Coccidiosis is considered to be a major problem for the poultry industry, and coccidiosis control is yet urgent. Due to the roles in telomere length regulation and end protection, telomere-binding proteins have been considered as a good target for drug design. In this work, a putative Gbp1p that is similar to telomeric DNA-binding protein Gbp (G-strand binding protein) of Cryptosporidium parvum, was searched in the database of Eimeria tenella. Sequence analysis indicated E.tenella Gbp1p (EtGbp1p) has significant sequence similarity to other eukaryotic Gbps in their RNA recognition motif (RRM) domains. Electrophoretic mobility shift assays (EMSAs) demonstrated recombinant EtGbp1p bound G-rich telomeric DNA, but not C-rich or double-stranded telomeric DNA sequences. Competition and antibody supershift assays confirmed the interaction of DNA-protein complex. Chromatin immunoprecipitation assays confirmed that EtGbp1p interacted with telomeric DNA in vivo. Collectively, these evidences suggest that EtGbp1p represents a G-rich single-stranded telomeric DNA-binding protein in E.tenella.


Assuntos
Eimeria tenella/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas de Ligação a Telômeros/isolamento & purificação , Sequência de Aminoácidos , Dados de Sequência Molecular , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência , Proteínas de Ligação a Telômeros/química
19.
Bioorg Med Chem ; 22(9): 2593-601, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24726302

RESUMO

Recently, strategy based on stabilization of G-quadruplex telomeric DNA by small organic molecule has been realized by naphthalene diimide derivatives (NDIs). At the same time NDIs bind to DNA duplex as threading intercalators. Here we present cyclic derivative of naphthalene diimide (ligand 1) as DNA-binding ligand with ability to recognition of different structures of telomeric G-quadruplexes and ability to bis-intercalate to double-stranded helixes. The results have been compared to non-cyclic derivative (ligand 2) and revealed that preferential binding of ligands to nucleic acids strongly depends on their topology and structural features of ligands.


Assuntos
DNA/metabolismo , Quadruplex G , Imidas/química , Naftalenos/química , Oligonucleotídeos/química , Dicroísmo Circular , DNA/química , Imidas/metabolismo , Substâncias Intercalantes/química , Substâncias Intercalantes/metabolismo , Ligantes , Naftalenos/metabolismo , Oligonucleotídeos/metabolismo , Telomerase/metabolismo , Temperatura de Transição
20.
Sci Total Environ ; 912: 169049, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38052388

RESUMO

Chronic exposure to arsenic causes adverse health effects in children. Aberrant epigenetic modifications including altered DNA methylation pattern are one of the major steps towards malignant transformation of cells. Our group has previously identified significant alteration in DNA methylation mark in arsenic exposed adults, affecting major biological pathways. Till date, no information is available exploring the altered DNA methylation mark in telomere regulation and altered mitochondrial functionality in association with DNA damage in arsenic-exposed children. Our study aims in identifying signature epigenetic pattern associated with telomere lengthening, mitochondrial functionality and DNA damage repair in children with special emphasis on DNA methylation. Biological samples (blood and urine) and drinking water were collected from the children aged between 5 and 16 years of arsenic exposed areas (N = 52) of Murshidabad district and unexposed areas (N = 50) of East Midnapur districts, West Bengal, India. Methylation-specific PCR was performed to analyse subtelomeric methylation status and promoter methylation status of target genes. Results revealed altered DNA methylation profile in the exposed children compared to unexposed. Promoter hypermethylation was observed in MLH1 and MSH2 (p < 0.05 and p < 0.001) indicating inefficiency in DNA damage repair. Hypomethylation in mitochondrial D-loop (p < 0.05) and TFAM promoter region (p < 0.05) along with increased mitochondrial DNA copy number among exposed children was also observed. Significant increase in telomere length and region specific subtelomeric hypermethylation (XpYp, p < 0.05) was found. Analysis of S-Adenosyl Methionine (SAM) and 8-oxoDG level revealed significant depletion of SAM (p < 0.001) and elevated oxidative DNA damage (p < 0.001) respectively in arsenic toxicity. Our study identified key methylation patterns in arsenic-exposed children which may act as an early predictive biomarker in the near future. Further in-depth studies involving large sample size and transcriptomic analysis are required for understanding the mechanistic details.


Assuntos
Intoxicação por Arsênico , Arsênio , Adolescente , Criança , Pré-Escolar , Humanos , Arsênio/toxicidade , Arsênio/análise , Intoxicação por Arsênico/genética , Transformação Celular Neoplásica/induzido quimicamente , Metilação de DNA , Epigênese Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA