Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Commun ; 5(4): 100814, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38213026

RESUMO

Ambient temperature affects flowering time in plants, and the MADS-box transcription factor SHORT VEGETATIVE PHASE (SVP) plays a crucial role in the response to changes in ambient temperature. SVP protein stability is regulated by the 26S proteasome pathway and decreases at high ambient temperature, but the details of SVP degradation are unclear. Here, we show that SVP degradation at high ambient temperature is mediated by the CULLIN3-RING E3 ubiquitin ligase (CRL3) complex in Arabidopsis thaliana. We identified a previously uncharacterized protein that interacts with SVP at high ambient temperature and contains a BTB/POZ domain. We named this protein LATE FLOWERING AT HIGH TEMPERATURE 1 (LFH1). Single mutants of LFH1 or CULLIN3A (CUL3A) showed late flowering specifically at 27°C. LFH1 protein levels increased at high ambient temperature. We found that LFH1 interacts with CUL3A in the cytoplasm and is important for SVP-CUL3A complex formation. Mutations in CUL3A and/or LFH1 led to increased SVP protein stability at high ambient temperature, suggesting that the CUL3-LFH1 complex functions in SVP degradation. Screening E2 ubiquitin-conjugating enzymes (UBCs) using RING-BOX PROTEIN 1 (RBX1), a component of the CRL3 complex, as bait identified UBC15. ubc15 mutants also showed late flowering at high ambient temperature. In vitro and in vivo ubiquitination assays using recombinant CUL3A, LFH1, RBX1, and UBC15 showed that SVP is highly ubiquitinated in an ATP-dependent manner. Collectively, these results indicate that the degradation of SVP at high ambient temperature is mediated by a CRL3 complex comprising CUL3A, LFH1, and UBC15.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ubiquitina-Proteína Ligases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ligases/metabolismo , Temperatura , Ubiquitinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Front Plant Sci ; 11: 596354, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335535

RESUMO

Small changes in temperature affect plant ecological and physiological factors that impact agricultural production. Hence, understanding how temperature affects flowering is crucial for decreasing the effects of climate change on crop yields. Recent reports have shown that FLM-ß, the major spliced isoform of FLOWERING LOCUS M (FLM)-a flowering time gene, contributes to temperature-responsive flowering in Arabidopsis thaliana. However, the molecular mechanism linking pre-mRNA processing and temperature-responsive flowering is not well understood. Genetic and molecular analyses identified the role of an Arabidopsis splicing factor SF1 homolog, AtSF1, in regulating temperature-responsive flowering. The loss-of-function AtSF1 mutant shows temperature insensitivity at different temperatures and very low levels of FLM-ß transcript, but a significantly increased transcript level of the alternative splicing (AS) isoform, FLM-δ. An RNA immunoprecipitation (RIP) assay revealed that AtSF1 is responsible for ambient temperature-dependent AS of FLM pre-mRNA, resulting in the temperature-dependent production of functional FLM-ß transcripts. Moreover, alterations in other splicing factors such as ABA HYPERSENSITIVE1/CBP80 (ABH1/CBP80) and STABILIZED1 (STA1) did not impact the FLM-ß/FLM-δ ratio at different temperatures. Taken together, our data suggest that a temperature-dependent interaction between AtSF1 and FLM pre-mRNA controls flowering time in response to temperature fluctuations.

3.
Plant Signal Behav ; 9(4): e28193, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24614351

RESUMO

In contrast to our extensive knowledge of vernalization, we know relatively little about the regulation of ambient temperature-responsive flowering. Recent reports revealed that flowering locus M (FLM) and short vegetative phase (SVP) regulate high ambient temperature-responsive flowering through two different mechanisms: degradation of SVP protein and formation of a non-functional SVP-FLM-δ complex. To investigate further the mechanism of thermoregulation of flowering, we performed real-time quantitative polymerase chain reaction (RT-qPCR) and in vitro pull-down assays. We found that FLM-ß and FLM-δ transcripts show similar absolute levels at different temperatures. Also, His-SVP protein bound to the GST-FLM-ß or -δ proteins with similar binding intensities. These results suggest that functional SVP-FLM-ß and non-functional SVP-FLM-δ complexes form similarly at warmer temperatures, thus indicating that post-translational regulation of SVP functions as a major mechanism for thermoregulation in flowering.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/fisiologia , Fatores de Transcrição/metabolismo , Processamento de Proteína Pós-Traducional , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA