RESUMO
It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.
RESUMO
A significant proportion of brains with Alzheimer's disease pathology are obtained from patients that were cognitively normal, suggesting that differences within the brains of these individuals made them resilient to the disease. Here, we describe recent approaches that specifically increase synaptic resilience, as loss of synapses is considered to be the first change in the brains of Alzheimer's patients. We start by discussing studies showing benefit from increased expression of neurotrophic factors and protective genes. Methods that effectively make dendritic spines stronger, specifically by acting through actin network proteins, scaffolding proteins and inhibition of phosphatases are described next. Importantly, the therapeutic strategies presented in this review tackle Alzheimer's disease not by targeting plaques and tangles, but instead by making synapses resilient to the pathology associated with Alzheimer's disease, which has tremendous potential.
Assuntos
Doença de Alzheimer , Humanos , Animais , Camundongos , Doença de Alzheimer/genética , Encéfalo/metabolismo , Sinapses/metabolismo , Actinas/metabolismo , Modelos Animais de Doenças , Camundongos TransgênicosRESUMO
Hematopoietic stem cells (HSCs) possess the capacity for self-renewal and the sustained production of all mature blood cell lineages. It has been well established that a metabolic rewiring controls the switch of HSCs from a self-renewal state to a more differentiated state but it is only recently that we have appreciated the importance of metabolic pathways in regulating the commitment of progenitors to distinct hematopoietic lineages. In the context of erythroid differentiation, an extensive network of metabolites - including amino acids, sugars, nucleotides, fatty acids, vitamins, and iron - is required for red blood cell (RBC) maturation. In this review, we will highlight the multi-faceted roles via which metabolites regulate physiological erythropoiesis as well as the effects of metabolic perturbations on erythroid lineage commitment and differentiation. Of note, the erythroid differentiation process is associated with an exceptional breadth of SLC metabolite transporter upregulation. Finally, we will discuss how recent research, revealing the critical impact of metabolic reprogramming in diseases of disordered and ineffective erythropoiesis, has created opportunities for the development of novel metabolic-centered therapeutic strategies.
RESUMO
In orchestrating cell signaling, facilitating plasma membrane repair, supervising protein secretion, managing waste elimination, and regulating energy consumption, lysosomes are indispensable guardians that play a crucial role in preserving intracellular homeostasis. Neurons are terminally differentiated post-mitotic cells. Neuronal function and waste elimination depend on normal lysosomal function. Converging data suggest that lysosomal dysfunction is a critical event in the etiology of Parkinson's disease (PD). Mutations in Glucosylceramidase Beta 1 (GBA1) and leucine-rich repeat kinase 2 (LRRK2) confer an increased risk for the development of parkinsonism. Furthermore, lysosomal dysfunction has been observed in the affected neurons of sporadic PD (sPD) patients. Given that lysosomal hydrolases actively contribute to the breakdown of impaired organelles and misfolded proteins, any compromise in lysosomal integrity could incite abnormal accumulation of proteins, including α-synuclein, the major component of Lewy bodies in PD. Clinical observations have shown that lysosomal protein levels in cerebrospinal fluid may serve as potential biomarkers for PD diagnosis and as signs of lysosomal dysfunction. In this review, we summarize the current evidence regarding lysosomal dysfunction in PD and discuss the intimate relationship between lysosomal dysfunction and pathological α-synuclein. In addition, we discuss therapeutic strategies that target lysosomes to treat PD.
Assuntos
Lisossomos , Doença de Parkinson , alfa-Sinucleína , Humanos , Lisossomos/metabolismo , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Doença de Parkinson/genética , Animais , MutaçãoRESUMO
Small cell lung cancer (SCLC) is characterized by a high mortality rate, rapid growth, and early metastasis, which lead to a poor prognosis. Moreover, limited clinical treatment options further lower the survival rate of patients. Therefore, novel technology and agents are urgently required to enhance clinical efficacy. In this review, from a holistic perspective, we summarized the therapeutic targets, agents and strategies with the most potential for treating SCLC, including chimeric antigen receptor (CAR) T therapy, immunomodulating antibodies, traditional Chinese medicines (TCMs), and the microbiota, which have been found recently to improve the clinical outcomes and prognosis of SCLC. Multiomics technologies can be integrated to develop effective diagnostic methods and identify new targets for new drug discovery in SCLC. We discussed in depth the feasibility, potential, and challenges of these new strategies, as well as their combinational treatments, which may provide promising alternatives for enhancing the clinical efficacy of SCLC in the future.
Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Imunoterapia , Imunomodulação , PrognósticoRESUMO
Cathepsin B (CTSB) is a member of the cysteine protease family, primarily responsible for degrading unnecessary organelles and proteins within the acidic milieu of lysosomes to facilitate recycling. Recent research has revealed that CTSB plays a multifaceted role beyond its function as a proteolytic enzyme in lysosomes. Importantly, recent data suggest that CTSB has significant impacts on different cardiac pathological conditions, such as atherosclerosis (AS), myocardial infarction, hypertension, heart failure and cardiomyopathy. Especially in the context of AS, preclinical models and clinical sample imaging data indicate that the cathepsin activity-based probe can reliably image CTSB activity in foam cells and atherosclerotic plaques; concurrently, it allows synchronous diagnostic and therapeutic interventions. However, our knowledge of CTSB in cardiovascular disease is still in the early stage. This paper aims to provide a comprehensive review of the significance of CTSB in cardiovascular physiology and pathology, with the objective of laying a theoretical groundwork for the development of drugs targeting CTSB.
Assuntos
Doenças Cardiovasculares , Catepsina B , Humanos , Catepsina B/metabolismo , Doenças Cardiovasculares/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologiaRESUMO
As a vital component of blood vessels, endothelial cells play a key role in maintaining overall physiological function by residing between circulating blood and semi-solid tissue. Various stress stimuli can induce endothelial injury, leading to the onset of corresponding diseases in the body. In recent years, the importance of mitochondria in vascular endothelial injury has become increasingly apparent. Mitochondria, as the primary site of cellular aerobic respiration and the organelle for "energy information transfer," can detect endothelial cell damage by integrating and receiving various external stress signals. The generation of reactive oxygen species (ROS) and mitochondrial dysfunction often determine the evolution of endothelial cell injury towards necrosis or apoptosis. Therefore, mitochondria are closely associated with endothelial cell function, helping to determine the progression of clinical diseases. This article comprehensively reviews the interconnection and pathogenesis of mitochondrial-induced vascular endothelial cell injury in cardiovascular diseases, renal diseases, pulmonary-related diseases, cerebrovascular diseases, and microvascular diseases associated with diabetes. Corresponding therapeutic approaches are also provided. Additionally, strategies for using clinical drugs to treat vascular endothelial injury-based diseases are discussed, aiming to offer new insights and treatment options for the clinical diagnosis of related vascular injuries.
RESUMO
The accumulation of unfolded or misfolded proteins within the endoplasmic reticulum (ER), due to genetic determinants and extrinsic environmental factors, leads to endoplasmic reticulum stress (ER stress). As ER stress ensues, the unfolded protein response (UPR), comprising three signaling pathways-inositol-requiring enzyme 1, protein kinase R-like endoplasmic reticulum kinase, and activating transcription factor 6 promptly activates to enhance the ER's protein-folding capacity and restore ER homeostasis. However, prolonged ER stress levels propels the UPR towards cellular demise and the subsequent inflammatory cascade, contributing to the development of human diseases, including cancer, neurodegenerative disorders, and diabetes. Notably, increased expression of all three UPR signaling pathways has been observed in these pathologies, and reduction in signaling molecule expression correlates with decreased proliferation of disease-associated target cells. Consequently, therapeutic strategies targeting ER stress-related interventions have attracted significant research interest. In this review, we elucidate the critical role of ER stress in cancer, metabolic, and neurodegenerative diseases, offering novel therapeutic approaches for these conditions.
Assuntos
Neoplasias , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/terapia , Estresse do Retículo Endoplasmático/genética , Resposta a Proteínas não Dobradas , Transdução de Sinais , Neoplasias/terapiaRESUMO
Diabetic retinopathy (DR), a well-known microvascular complication of diabetes mellitus, remains the main cause of vision loss in working-age adults worldwide. Up to now, there is a shortage of information in the study regarding the contributing factors of DR in diabetes. Accumulating evidence has identified glycemic variability (GV), referred to fluctuations of blood glucose levels, as a risk factor for diabetes-related complications. Recent reports demonstrate that GV plays an important role in accounting for the susceptibility to DR development. However, its exact role in the pathogenesis of DR is still not fully understood. In this review, we highlight the current landscape and relevant mechanisms of GV in DR, as well as address the mechanism-based therapeutic strategies, aiming at better improving the quality of DR management in clinical practice.
Assuntos
Glicemia , Retinopatia Diabética , Humanos , Retinopatia Diabética/terapia , Retinopatia Diabética/sangue , Glicemia/metabolismo , Fatores de RiscoRESUMO
Phosphomannomutase 2 deficiency (PMM2-CDG), the most frequent congenital disorder of glycosylation, is an autosomal recessive disease caused by biallelic pathogenic variants in the PMM2 gene. There is no cure for this multisystemic syndrome. Some of the therapeutic approaches that are currently in development include mannose-1-phosphate replacement therapy, drug repurposing, and the use of small chemical molecules to correct folding defects. Preclinical models are needed to evaluate the efficacy of treatments to overcome the high lethality of the available animal model. In addition, the number of variants with unknown significance is increasing in clinical settings. This study presents the generation of a cellular disease model by knocking out the PMM2 gene in the hepatoma HepG2 cell line using CRISPR-Cas9 gene editing. The HepG2 knockout model accurately replicates the PMM2-CDG phenotype, exhibiting a complete absence of PMM2 protein and mRNA, a 90% decrease in PMM enzymatic activity, and altered ICAM-1, LAMP1 and A1AT glycoprotein patterns. The evaluation of PMM2 disease-causing variants validates the model's utility for studying new PMM2 clinical variants, providing insights for diagnosis and potentially for evaluating therapies. A CRISPR-Cas9-generated HepG2 knockout model accurately recapitulates the PMM2-CDG phenotype, providing a valuable tool for assessing disease-causing variants and advancing therapeutic strategies.
Assuntos
Sistemas CRISPR-Cas , Defeitos Congênitos da Glicosilação , Edição de Genes , Fosfotransferases (Fosfomutases) , Humanos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Defeitos Congênitos da Glicosilação/terapia , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/deficiência , Células Hep G2 , Técnicas de Inativação de Genes , FenótipoRESUMO
Graft-versus-host disease (GVHD) is a significant complication following allogeneic hematopoietic cell transplantation (allo-HCT), posing substantial risks to patient survival. In the late follow-up phase of transplanted patients, GVHD is also a major cause of morbidity and disability, mostly due to low response to first-line steroids and the lack of effective standard therapies in the second line. This review provides a description of GVHD pathogenesis, with a focus on the central role of Interleukin-2 (IL-2). IL-2 is one of the critical mediators in the complex pathogenesis of GVHD, contributing to the intricate balance between regulatory T cells (Tregs) and effector T cells (Teffs). Due to this pivotal role, several studies investigate the potential of IL-2 as a therapeutic option for GVHD management. We discuss the outcomes of low-dose IL-2 therapies and their impact on Treg proliferation and steroid dependency reduction. Additionally, the effects of combining IL-2 with other treatments, such as extracorporeal photopheresis (ECP) and Treg-enriched lymphocyte infusions, are highlighted. Novel approaches, including modified IL-2 complexes and IL-2 receptor blockade, are explored for their potential in selectively enhancing Treg function and limiting Teff activation. The evolving understanding of IL-2's pivotal role in immune regulation presents promising prospects for applying treatment and prevention strategies for GVHD.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Interleucina-2 , Linfócitos T Reguladores , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/terapia , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Linfócitos T Reguladores/imunologia , Animais , Fotoferese/métodos , Transplante Homólogo/efeitos adversosRESUMO
BACKGROUND: Semaglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is a widely used drug for the treatment of type 2 diabetes that offers significant cardiovascular benefits. RESULTS: This review systematically examines the proteomic and metabolomic indicators associated with the cardiovascular effects of semaglutide. A comprehensive literature search was conducted to identify relevant studies. The review utilizes advanced analytical technologies such as mass spectrometry and nuclear magnetic resonance (NMR) to investigate the molecular mechanisms underlying the effects of semaglutide on insulin secretion, weight control, anti-inflammatory activities and lipid metabolism. These "omics" approaches offer critical insights into metabolic changes associated with cardiovascular health. However, challenges remain such as individual variability in expression, the need for comprehensive validation and the integration of these data with clinical parameters. These issues need to be addressed through further research to refine these indicators and increase their clinical utility. CONCLUSION: Future integration of proteomic and metabolomic data with artificial intelligence (AI) promises to improve prediction and monitoring of cardiovascular outcomes and may enable more accurate and effective management of cardiovascular health in patients with type 2 diabetes. This review highlights the transformative potential of integrating proteomics, metabolomics and AI to advance cardiovascular medicine and improve patient outcomes.
RESUMO
Mitochondria are the energy supply sites of cells and are crucial for eukaryotic life. Mitochondrial dysfunction is involved in the pathogenesis of abdominal aortic aneurysm (AAA). Multiple mitochondrial quality control (MQC) mechanisms, including mitochondrial DNA repair, biogenesis, antioxidant defense, dynamics, and autophagy, play vital roles in maintaining mitochondrial homeostasis under physiological and pathological conditions. Abnormalities in these mechanisms may induce mitochondrial damage and dysfunction leading to cell death and tissue remodeling. Recently, many clues suggest that dysregulation of MQC is closely related to the pathogenesis of AAA. Therefore, specific interventions targeting MQC mechanisms to maintain and restore mitochondrial function have become promising therapeutic methods for the prevention and treatment of AAA.
Assuntos
Aneurisma da Aorta Abdominal , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , AutofagiaRESUMO
Peroxisomes are dynamic organelles involved in various cellular processes, including lipid metabolism, redox homeostasis, and intracellular metabolite transfer. Accumulating evidence suggests that peroxisomal homeostasis plays a crucial role in human health and disease, particularly in metabolic disorders and ferroptosis. The abundance and function of peroxisomes are regulated by a complex interplay between biogenesis and degradation pathways, involving peroxins, membrane proteins, and pexophagy. Peroxisome-dependent lipid metabolism, especially the synthesis of ether-linked phospholipids, has been implicated in modulating cellular susceptibility to ferroptosis, a newly discovered form of iron-dependent cell death. This review discusses the current understanding of peroxisome homeostasis, its roles in redox regulation and lipid metabolism, and its implications in human diseases. We also summarize the main mechanisms of ferroptosis and highlight recent discoveries on how peroxisome-dependent metabolism and signaling influence ferroptosis sensitivity. A better understanding of the interplay between peroxisomal homeostasis and ferroptosis may provide new insights into disease pathogenesis and reveal novel therapeutic strategies for peroxisome-related metabolic disorders and ferroptosis-associated diseases.
Assuntos
Ferroptose , Homeostase , Doenças Metabólicas , Peroxissomos , Peroxissomos/metabolismo , Humanos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Animais , Metabolismo dos LipídeosRESUMO
Acute ischemic stroke (AIS) is the most prevalent type of stroke, and due to its high incidence, disability rate, and mortality rate, it imposes a significant burden on the health care system. Amino acids constitute one of the most crucial metabolic products within the human body, and alterations in their metabolic pathways have been identified in the microenvironment of AIS, thereby influencing the pathogenesis, severity, and prognosis of AIS. The amino acid metabolism characteristics in AIS are complex. On one hand, the dynamic progression of AIS continuously reshapes the amino acid metabolism pattern. Conversely, changes in the amino acid metabolism pattern also exert a double-edged effect on AIS. This interaction is bidirectional, dynamic, heterogeneous, and dose-specific. Therefore, the distinctive metabolic reprogramming features surrounding amino acids during the AIS process are systematically summarized in this paper, aiming to provide potential investigative strategies for the early diagnosis, treatment approaches, and prognostic enhancement of AIS.
Assuntos
Aminoácidos , AVC Isquêmico , Humanos , Aminoácidos/metabolismo , AVC Isquêmico/metabolismo , AnimaisRESUMO
Frailty syndrome denotes a decreased capacity of the body to maintain the homeostasis and stress of the internal environment, which simultaneously increases the risk of adverse health outcomes in older adults, including disability, hospitalization, falls, and death. To promote healthy aging, we should find strategies to cope with frailty. However, the pathogenesis of frailty syndrome is not yet clear. Recent studies have shown that the diversity, composition, and metabolites of gut microbiota significantly changed in older adults with frailty. In addition, several frailty symptoms were alleviated by adjusting gut microbiota with prebiotics, probiotics, and symbiosis. Therefore, we attempt to explore the pathogenesis of frailty syndrome in older people from gut microbiota and summarize the existing interventions for frailty syndrome targeting gut microbiota, with the aim of providing timely and necessary interventions and assistance for older adults with frailty.
Assuntos
Fragilidade , Microbioma Gastrointestinal , Probióticos , Humanos , Idoso , Fragilidade/terapia , Idoso Fragilizado , Probióticos/uso terapêutico , PrebióticosRESUMO
Hepatocellular carcinoma (HCC) is the most common type of liver cancer with a high death rate in the world. The molecular mechanisms related to the pathogenesis of HCC have not been precisely defined so far. Hence, this review aimed to address the potential cross-talk between noncoding RNAs (ncRNAs) and programmed cell death in HCC. All related papers in the English language up to June 2023 were collected and screened. The searched keywords in scientific databases, including Scopus, PubMed, and Google Scholar, were HCC, ncRNAs, Epigenetic, Programmed cell death, Autophagy, Apoptosis, Ferroptosis, Chemoresistance, Tumor recurrence, Prognosis, and Prediction. According to the reports, ncRNAs, comprising long ncRNAs, microRNAs, circular RNAs, and small nucleolar RNAs can affect cell proliferation, migration, invasion, and metastasis, as well as cell death-related processes, such as autophagy, ferroptosis, necroptosis, and apoptosis in HCC by regulating cancer-associated genes and signaling pathways, for example, phosphoinositide 3-kinase/Akt, extracellular signal-regulated kinase/MAPK, and Wnt/ß-catenin signaling pathways. It seems that ncRNAs, as epigenetic regulators, can be utilized as biomarkers in diagnosis, prognosis, survival and recurrence rates prediction, chemoresistance, and evaluation of therapeutic response in HCC patients. However, more scientific evidence is suggested to be accomplished to confirm these results.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Recidiva Local de Neoplasia/genética , Fosfatidilinositol 3-Quinases/metabolismo , Epigênese Genética , Via de Sinalização Wnt , Apoptose/genéticaRESUMO
Cadmium (Cd) is a multitarget, carcinogenic, nonessential environmental pollutant. Due to its toxic effects at very low concentrations, lengthy biological half-life, and low excretion rate, exposure to Cd carries a concern. Prolonged exposure to Cd causes severe injury to the nervous system of both humans and animals. Nevertheless, the precise mechanisms responsible for the neurotoxic effects of Cd have yet to be fully elucidated. The accurate chemical mechanism potentially entails the destruction of metal-ion homeostasis, inducing oxidative stress, apoptosis, and autophagy. Here we review the evidence of the neurotoxic effects of Cd and corresponding strategies to protect against Cd-induced central nervous system injury.
Assuntos
Cádmio , Síndromes Neurotóxicas , Animais , Humanos , Cádmio/toxicidade , Síndromes Neurotóxicas/etiologia , Apoptose , Autofagia , CarcinogêneseRESUMO
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-ß (TGF-ß) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-ß receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Assuntos
Antifibróticos , Fibrose , Humanos , Fibrose/tratamento farmacológico , Antifibróticos/uso terapêutico , Antifibróticos/farmacologia , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Animais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
Recently, there has been an increased focus on cancer stem cells (CSCs) due to their resilience, making them difficult to eradicate. This resilience often leads to tumor recurrence and metastasis. CSCs adeptly manipulate their surroundings to create an environment conducive to their survival. In this environment, myeloid-derived suppressor cells (MDSCs) play a crucial role in promoting epithelial-mesenchymal transition and bolstering CSCs' stemness. In response, CSCs attract MDSCs, enhancing their infiltration, expansion and immunosuppressive capabilities. This interaction between CSCs and MDSCs increases the difficulty of antitumor therapy. In this paper, we discuss the interplay between CSCs and MDSCs based on current research and highlight recent therapeutic strategies targeting either CSCs or MDSCs that show promise in achieving effective antitumor outcomes.
Cancer stem cells (CSCs) are a kind of tumor cell. These cells are hard to kill but contribute to tumor progression and metastasis. Myeloid-derived suppressor cells (MDSCs) exist in the tumor tissue and are unfriendly to the antitumor immune response. The interaction between CSCs and MDSCs has a protective effect on tumor progression. Therapeutic strategies targeting CSCs or MDSCs present potential to weaken the complex interaction between the two cell types. This review summarizes the current knowledge of CSCsMDSCs interaction and offers fresh perspectives on the future development of antitumor therapies targeting CSCs or MDSCs.