Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38792160

RESUMO

An interconnected sponge structure and porous surface poly (acrylonitrile-co-methyl acrylate) (P(AN-MA)) microfiltration membranes (MF) were fabricated via thermally induced phase separation (TIPS) by using caprolactam (CPL), and acetamide (AC) as the mixed diluent. When the ternary system was composed of 15 wt.% P(AN-MA), 90 wt.% CPL, and 10 wt.% AC and formed in a 25 °C air bath, the membrane exhibited the highest water flux of 8107 L/m2·h. The P(AN-MA) membrane contained hydrophobic groups (-COOCH3) and hydrophilic groups (-CN), leading it to exhibit oleophobic properties underwater and hydrophobic properties in oil. The membrane demonstrates efficient separation of immiscible oil/water mixtures. The pure water flux of the petroleum ether/water mixture measured 870 L/m2·h, and the pure oil flux of the petroleum tetrachloride/water mixture measured 1230 L/m2·h under the influence of gravity. Additionally, the recovery efficiency of diluents through recrystallization was 85.3%, significantly reducing potential pollution and production costs.

2.
Macromol Rapid Commun ; 44(20): e2300177, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37461210

RESUMO

This study investigates the effect of the macromolecular architecture of poly(vinylidene fluoride) (PVDF) on its thermally induced phase separation (TIPS) behavior and polymorphic crystallization in the PVDF/γ-butyrolactone (PVDF/γ-BL) system. Preparative PVDF fractions with specific macromolecular architecture and phase constitution are generated. The results show that PVDF's macromolecular architecture, particularly the degree of branching and regio-defects, plays a significant role in its temperature-dependent crystallization and resulting polymorphic phases. While regio-defects dominate crystallization in the temperature range between 30 and 25 °C, the degree of branching becomes decisive in the 25-20 °C interval. The developed fractions of PVDF are further analyzed in terms of their molecular weight distribution, revealing that the PVDF fractions crystallized out of solution have similar molecular weight distributions with lower dispersity compared with the feed polymer. These findings are crucial for macromolecular separation and adjustment of PVDF polymorphic properties and hence for the development of tailor-made PVDF matrix materials for composites and membranes. The findings suggest the possibility of polymorphous phase tailoring of PVDF based on macromolecular architecture due to temperature-controlled crystallization out of solution and strongly motivate further research to reveal deeper knowledge of regio-defect and branching influence of PVDF solution crystallization.


Assuntos
4-Butirolactona , Polivinil , Cristalização/métodos , Polivinil/química , Substâncias Macromoleculares/química
3.
Proc Natl Acad Sci U S A ; 117(35): 21155-21161, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817417

RESUMO

Ultrathick battery electrodes are appealing as they reduce the fraction of inactive battery parts such as current collectors and separators. However, thick electrodes are difficult to dry and tend to crack or flake during production. Moreover, the electrochemical performance of thick electrodes is constrained by ion and electron transport as well as fast capacity degradation. Here, we report a thermally induced phase separation (TIPS) process for fabricating thick Li-ion battery electrodes, which incorporates the electrolyte directly in the electrode and alleviates the need to dry the electrode. The proposed TIPS process creates a bicontinuous electrolyte and electrode network with excellent ion and electron transport, respectively, and consequently achieves better rate performance. Using this process, electrodes with areal capacities of more than 30 mAh/cm2 are demonstrated. Capacity retentions of 87% are attained over 500 cycles in full cells with 1-mm-thick anodes and cathodes. Finally, we verified the scalability of the TIPS process by coating thick electrodes continuously on a pilot-scale roll-to-roll coating tool.

4.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162958

RESUMO

The development of nerve conduits with a three-dimensional porous structure has attracted great attention as they closely mimic the major features of the natural extracellular matrix of the nerve tissue. As low levels of reactive oxygen species (ROS) function as signaling molecules to promote cell proliferation and growth, this study aimed to fabricate protoporphyrin IX (PpIX)-immobilized cellulose (CEPP) monoliths as a means to both guide and stimulate nerve regeneration. CEPP monoliths can be fabricated via a simple thermally induced phase separation method and surface modification. The improved nerve tissue regeneration of CEPP monoliths was achieved by the activation of mitogen-activated protein kinases, such as extracellular signal-regulated kinases (ERKs). The resulting CEPP monoliths exhibited interconnected microporous structures and uniform morphology. The results of in vitro bioactivity assays demonstrated that the CEPP monoliths with under 0.54 ± 0.07 µmol/g PpIX exhibited enhanced photodynamic activity on Schwann cells via the generation of low levels of ROS. This photodynamic activation of the CEPP monoliths is a cell-safe process to stimulate cell proliferation without cytotoxic side effects. In addition, the protein expression of phospho-ERK increased considerably after the laser irradiation on the CEPP monoliths with low content of PpIX. Therefore, the CEPP monoliths have a potential application in nerve tissue regeneration as new nerve conduits.


Assuntos
Celulose/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Protoporfirinas/farmacologia , Células de Schwann/citologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Regeneração Nervosa , Tecido Nervoso/química , Fosforilação , Protoporfirinas/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Células de Schwann/efeitos da radiação
5.
Coord Chem Rev ; 426: 213544, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32981945

RESUMO

Progress in metal-organic frameworks (MOFs) has advanced from fundamental chemistry to engineering processes and applications, resulting in new industrial opportunities. The unique features of MOFs, such as their permanent porosity, high surface area, and structural flexibility, continue to draw industrial interest outside the traditional MOF field, both to solve existing challenges and to create new businesses. In this context, diverse research has been directed toward commercializing MOFs, but such studies have been performed according to a variety of individual goals. Therefore, there have been limited opportunities to share the challenges, goals, and findings with most of the MOF field. In this review, we examine the issues and demands for MOF commercialization and investigate recent advances in MOF process engineering and applications. Specifically, we discuss the criteria for MOF commercialization from the views of stability, producibility, regulations, and production cost. This review covers progress in the mass production and formation of MOFs along with future applications that are not currently well known but have high potential for new areas of MOF commercialization.

6.
Int J Mol Sci ; 22(7)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800709

RESUMO

Porous biodegradable scaffolds provide a physical substrate for cells allowing them to attach, proliferate and guide the formation of new tissues. A variety of techniques have been developed to fabricate tissue engineering (TE) scaffolds, among them the most relevant is the thermally-induced phase separation (TIPS). This technique has been widely used in recent years to fabricate three-dimensional (3D) TE scaffolds. Low production cost, simple experimental procedure and easy processability together with the capability to produce highly porous scaffolds with controllable architecture justify the popularity of TIPS. This paper provides a general overview of the TIPS methodology applied for the preparation of 3D porous TE scaffolds. The recent advances in the fabrication of porous scaffolds through this technique, in terms of technology and material selection, have been reviewed. In addition, how properties can be effectively modified to serve as ideal substrates for specific target cells has been specifically addressed. Additionally, examples are offered with respect to changes of TIPS procedure parameters, the combination of TIPS with other techniques and innovations in polymer or filler selection.


Assuntos
Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Poliésteres/química , Polímeros/química , Porosidade , Solventes/química , Temperatura
7.
J Sci Food Agric ; 101(10): 4173-4182, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33420726

RESUMO

BACKGROUND: α-lactalbumin (α-La) is of great interest to the industry as a result of its excellent functional properties and nutritional value. Aqueous two-phase flotation (ATPF) of thermo-sensitive polymer poly (ethylene glycol-ran-propylene glycol) monobutyl ether (UCON) and KH2 PO4 was applied to directly separate and purify α-La from milk whey, which was purposed to simplify the production process and reduced cost of production. RESULTS: The effect of ATPF composition and operating parameters on the flotation efficiency (E) and purity of α-La were investigated. The optimal conditions included 2 min of premixing time, 30 mL min-1 flow velocity and 20 min of flotation time, whereas the composition conditions comprised 35.0 mL 0.18 g mL-1 phosphate solution (containing 10% (cow milk whey/salt solution, v/v) cow milk whey, 50 ppm defoamer and 2 g NaCl) and 5.0 mL of 40% (w/w) UCON solution. Under the optimal conditions, E of α-La was 95.67 ± 1.04% and purity of α-La was 98.78 ± 1.19%. UCON was recovered by a thermally-induced phase separation and reused in next ATPF process without reducing E of α-La. Purified α-La was characterized by several key technologies. The results indicated that α-La in cow milk whey could be directly separated and purified by the ATPF and the purity was satisfactory. Moreover, it was suggested there was no obvious structure difference between the α-La separated by ATPF and the α-La standard. CONCLUSION: The present study enabled the recycling of UCON, providing an effective, economically viable and environmentally friendly approach for the separation and purification of protein. © 2021 Society of Chemical Industry.


Assuntos
Fracionamento Químico/métodos , Lactalbumina/isolamento & purificação , Soro do Leite/química , Animais , Bovinos , Fracionamento Químico/instrumentação , Temperatura Alta , Concentração de Íons de Hidrogênio , Lactalbumina/análise , Fosfatos/química , Polímeros/química
8.
Polym Eng Sci ; 59(6): 1146-1157, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31937978

RESUMO

In bone tissue engineering, 3D scaffolds are often designed to have adequate modulus while taking into consideration the requirement for a highly porous network for cell seeding and tissue growth. This paper presents the design optimization of 3D scaffolds made of poly(lactic-co-glycolic) acid (PLGA) and nanohydroxyapatite (nHA), produced by thermally induced phase separation (TIPS). Slow cooling at a rate of 1°C/min enabled a uniform temperature and produced porous scaffolds with a relatively uniform pore size. An I-optimal design of experiments (DoE) with 18 experimental runs was used to relate four responses (scaffold thickness, density, porosity, and modulus) to three experimental factors, namely the TIPS temperature (-20°C, -10°C, and 0°C), PLGA concentration (7%, 10%, and 13% w/v), and nHA content (0%, 15%, and 30% w/w). The response surface analysis using JMP® software predicted a temperature of -18.3°C, a PLGA concentration of 10.3% w/v, and a nHA content of 30% w/w to achieve a thickness of 3 mm, a porosity of 83%, and a modulus of ~4 MPa. The set of validation scaffolds prepared using the predicted factor levels had a thickness of 3.05 ± 0.37 mm, a porosity of 86.8 ± 0.9 %, and a modulus of 3.57 ± 2.28 MPa.

9.
Macromol Rapid Commun ; 36(21): 1902-1909, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26205149

RESUMO

A novel method for the simultaneous preparation of a large number of porous polymeric structures with highly differing physical properties is developed. Low molecular weight methacrylate end-functionalized polymers (macromers) are dissolved in ethylene carbonate, cooled to below the melting temperature of the solvent, and subsequently photocrosslinked. The crystallized and phase-separated ethylene carbonate is extracted with water, upon which a porous crosslinked polymer network is obtained. The method is applied to combinatorial mixtures of methacrylate end-functionalized polymers that are relevant in the biomedical field: poly(trimethylene carbonate-dimethacrylate), poly(D,L-lactide-dimethacrylate), and poly(ethylene glycol-dimethacrylate) dissolved in ethylene carbonate at concentrations of approximately 25 wt%. In this manner, 63 different porous polymeric structures with a very wide range of physical properties are prepared simultaneously. In the hydrated state the compressive moduli of the prepared structures range from 0.01 to 60 MPa, as water uptake ranges between 3 and 1500 wt%.

10.
Methods Mol Biol ; 2835: 325-337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39105928

RESUMO

Gelatin, a protein derivative from collagen, is a versatile material with promising applications in tissue engineering. Among the various forms of gelatin scaffolds, nanofibrous gelatin microspheres (NFGMs) are attracting research efforts due to their fibrous nature and injectability. However, current methods for synthesizing nanofibrous gelatin microspheres (NFGMs) have limitations, such as wide size distributions and the use of toxic solvents. To address these challenges, the article introduces a novel approach. First, it describes the creation of a microfluidic device using readily available supplies. Subsequently, it outlines a unique process for producing monodispersed NFGMs through a combination of the microfluidic device and thermally induced phase separation (TIPS). This innovative method eliminates the need for sieving and the use of toxic solvents, making it a more ecofriendly and efficient alternative.


Assuntos
Gelatina , Microesferas , Nanofibras , Gelatina/química , Nanofibras/química , Engenharia Tecidual/métodos , Microfluídica/métodos , Microfluídica/instrumentação , Alicerces Teciduais/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
11.
Polymers (Basel) ; 16(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38794575

RESUMO

Polypropylene-based aerogels with high surface area have been developed for the first time. By chemical crosslinking of polypropylene with oligomeric capped-end amino compounds, followed by dissolution, thermally induced phase separation, and the supercritical CO2 drying process or freeze-drying method, the aerogels exhibit high specific surface areas up to 200 m2/g. Moreover, the silica-cage multi-amino compound was utilized in a similar vein for forming hybrid polypropylene aerogels. According to the SEM, the developed polypropylene-based aerogels exhibit highly porous morphology with micro-nanoscale structural features that can be controlled by processing conditions. Our simple and inexpensive synthetic strategy results in a low-cost, chemically resistant, and highly porous material that can be tailored according to end-use applications.

12.
Polymers (Basel) ; 16(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38932024

RESUMO

This study aims to demonstrate the possibility of incorporating a natural antioxidant biomolecule into polymeric porous scaffolds. To this end, Poly-l-Lactic Acid (PLLA) scaffolds were produced using the Thermally Induced Phase Separation (TIPS) technique and additivated with different amounts of rosmarinic acid (RA). The scaffolds, with a diameter of 4 mm and a thickness of 2 mm, were characterized with a multi-analytical approach. Specifically, Scanning Electron Microscopy analyses demonstrated the presence of an interconnected porous network, characterized by a layer of RA at the level of the pore's surfaces. Moreover, the presence of RA biomolecules increased the hydrophilic nature of the sample, as evidenced by the decrease in the contact angle with water from 128° to 76°. The structure of PLLA and PLLA containing RA molecules has been investigated through DSC and XRD analyses, and the obtained results suggest that the crystallinity decreases when increasing the RA content. This approach is cost-effective, and it can be customized with different biomolecules, offering the possibility of producing porous polymeric structures containing antioxidant molecules. These scaffolds meet the requirements of tissue engineering and could offer a potential solution to reduce inflammation associated with scaffold implantation, thus improving tissue regeneration.

13.
Mater Today (Kidlington) ; 16(11): 418-423, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24688283

RESUMO

Key features of bone tissue structure and composition are capable of directing cellular behavior towards the generation of new bone tissue. Bone tissue, as well as materials derived from bone, have a long and successful history of use as bone grafting materials. Recent developments in design and processing of synthetic scaffolding systems has allowed the replication of the bone's desirable biological activity in easy to fabricate polymeric materials with nano-scale features exposed on the surface. The biological response to these new tissue-engineering scaffold materials oftentimes exceeds that seen on scaffolds produced using biological materials.

14.
Polymers (Basel) ; 15(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37631531

RESUMO

The physical properties of a polymer solution that are composition- and/or temperature-dependent are among the most influential parameters to impact the dynamics and thermodynamics of the phase separation process and, as a result, the morphology formation. In this study, the impact of composition- and temperature-dependent density, heat capacity, and heat conductivity on the membrane structure formation during the thermally induced phase separation process of a high-viscosity polymer solution was investigated via coupling the Cahn-Hilliard equation for phase separation with the Fourier heat transfer equation. The variations of each physical property were also investigated in terms of different boundary conditions and initial solvent volume fractions. It was determined that the physical properties of the polymer solution have a noteworthy impact on the membrane morphology in terms of shorter phase separation time and droplet size. In addition, the influence of enthalpy of demixing in this case is critical because each physical property showed a nonhomogeneous pattern owing to the heat generation during phase separation, which in turn influenced the membrane morphology. Accordingly, it was determined that investigating spinodal decomposition without including heat transfer and the impact of physical properties on the morphology formation would lead to an inadequate understanding of the process, specifically in high-viscosity polymer solutions.

15.
Membranes (Basel) ; 13(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505032

RESUMO

A high-performance polypropylene hollow fiber membrane (PP-HFM) was prepared by using a binary environmentally friendly solvent of polypropylene as the raw material, adopting the thermally induced phase separation (TIPS) method, and adjusting the raw material ratio. The binary diluents were soybean oil (SO) and acetyl tributyl citrate (ATBC). The suitable SO/ATBC ratio of 7/3 was based on the size change of the L-L phase separation region in PP-SO/ATBC thermodynamic phase diagram. Through the characterization and comparison of the basic performance of PP-HFMs, it was found that with the increase of the diluent content in the raw materials, the micropores of outer surface of the PP-HFM became larger, and the cross section showed a sponge-like pore structure. The fluoropolymer, Hyflon ADx, was deposited on the outer surface of the hollow fiber membrane using a physical modification method of solution dipping. After modification, the surface pore size of the Hyflon AD40L modified membranes decreased; the contact angle increased to around 107°; the surface energy decreased to 17 mN·m-1; and the surface roughness decreased to 17 nm. Hyflon AD40L/PP-HFMs also had more water resistance properties from the variation of wetting curve. For biocompatibility of the membrane, the adsorption capacity of the modified PP membrane for albumin decreased from approximately 1.2 mg·cm-2 to 1.0 mg·cm-2, and the adsorption of platelets decreased under fluorescence microscopy. The decrease in blood cells and protein adsorption in the blood prolonged the clotting time. In addition, the hemolysis rate of modified PP membrane was reduced to within the standard of 5%, and the cell survival rate of its precipitate was above 100%, which also indicated the excellent biocompatibility of fluoropolymer modified membrane. The improvement of hydrophobicity and blood compatibility makes Hyflon AD/PP-HFMs have the potential for application in membrane oxygenators.

16.
Materials (Basel) ; 16(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241407

RESUMO

Constructing and maintaining a three-dimensional network structure with high porosity is critical to the preparation of silica aerogel materials because this structure provides excellent properties. However, due to the pearl-necklace-like structure and narrow interparticle necks, aerogels have poor mechanical strength and a brittle nature. Developing and designing lightweight silica aerogels with distinct mechanical properties is significant to extend their practical applications. In this work, thermally induced phase separation (TIPS) of poly(methyl methacrylate) (PMMA) from a mixture of ethanol and water was used to strengthen the skeletal network of aerogels. Strong and lightweight PMMA-modified silica aerogels were synthesized via the TIPS method and supercritically dried with carbon dioxide. The cloud point temperature of PMMA solutions, physical characteristics, morphological properties, microstructure, thermal conductivities, and mechanical properties were investigated. The resultant composited aerogels not only exhibit a homogenous mesoporous structure but also achieve a significant improvement in mechanical properties. The addition of PMMA increased the flexural strength and compressive strength by as much as 120% and 1400%, respectively, with the greatest amount of PMMA (Mw = 35,000 g/mole), while the density just increased by 28%. Overall, this research suggests that the TIPS method has great efficiency in reinforcing silica aerogels with less sacrifice of low density and large porosity.

17.
Membranes (Basel) ; 13(4)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37103849

RESUMO

A new method of fabricating porous membranes based on ultra-high molecular weight polyethylene (UHMWPE) by controlled swelling of the dense film was proposed and successfully utilized. The principle of this method is based on the swelling of non-porous UHMWPE film in organic solvent at elevated temperatures, followed by its cooling and further extraction of organic solvent, resulting in the formation of the porous membrane. In this work, we used commercial UHMWPE film (thickness 155 µm) and o-xylene as a solvent. Either homogeneous mixtures of the polymer melt and solvent or thermoreversible gels with crystallites acting as crosslinks of the inter-macromolecular network (swollen semicrystalline polymer) can be obtained at different soaking times. It was shown that the porous structure and filtration performance of the membranes depended on the swelling degree of the polymer, which can be controlled by the time of polymer soaking in organic solvent at elevated temperature (106 °C was found to be the optimal temperature for UHMWPE). In the case of homogeneous mixtures, the resulting membranes possessed both large and small pores. They were characterized by quite high porosity (45-65% vol.), liquid permeance of 46-134 L m-2 h-1 bar-1, a mean flow pore size of 30-75 nm, and a very high crystallinity degree of 86-89% at a decent tensile strength of 3-9 MPa. For these membranes, rejection of blue dextran dye with a molecular weight of 70 kg/mol was 22-76%. In the case of thermoreversible gels, the resulting membranes had only small pores located in the interlamellar spaces. They were characterized by a lower crystallinity degree of 70-74%, a moderate porosity of 12-28%, liquid permeability of up to 12-26 L m-2 h-1 bar-1, a mean flow pore size of up to 12-17 nm, and a higher tensile strength of 11-20 MPa. These membranes demonstrated blue dextran retention of nearly 100%.

18.
Adv Mater ; : e2307881, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009658

RESUMO

Additive manufacturing (AM) of aerogels increases the achievable geometric complexity, and affords fabrication of hierarchically porous structures. In this work, a custom heated material extrusion (MEX) device prints aerogels of poly(phenylene sulfide) (PPS), an engineering thermoplastic, via in situ thermally induced phase separation (TIPS). First, pre-prepared solid gel inks are dissolved at high temperatures in the heated extruder barrel to form a homogeneous polymer solution. Solutions are then extruded onto a room-temperature substrate, where printed roads maintain their bead shape and rapidly solidify via TIPS, thus enabling layer-wise MEX AM. Printed gels are converted to aerogels via postprocessing solvent exchange and freeze-drying. This work explores the effect of ink composition on printed aerogel morphology and thermomechanical properties. Scanning electron microscopy micrographs reveal complex hierarchical microstructures that are compositionally dependent. Printed aerogels demonstrate tailorable porosities (50.0-74.8%) and densities (0.345-0.684 g cm-3 ), which align well with cast aerogel analogs. Differential scanning calorimetry thermograms indicate printed aerogels are highly crystalline (≈43%), suggesting that printing does not inhibit the solidification process occurring during TIPS (polymer crystallization). Uniaxial compression testing reveals that compositionally dependent microstructure governs aerogel mechanical behavior, with compressive moduli ranging from 33.0 to 106.5 MPa.

19.
J Colloid Interface Sci ; 634: 769-781, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565619

RESUMO

PNIPAM as a stimuli-responsive polymer has generated extreme interests due to its versatile applications. However, there is no research report on whether PNIPAM micro/nano-particles can be extracted from its suspension after phase separation. In the present work, LCST-type phase separation in self-synthesized PNIPAM/water system was investigated in depth by dividing the DLS testing process into four stages. In addition to quenching duration, temperature rise process, quenching temperature and PNIPAM concentration all have a great influence on particle size of the suspension. Meanwhile, the steady-state rheology and dynamic viscoelasticity results show that PNIPAM micro/nano-particles in the suspension are "soft" that can deform. Finally, FE-SEM was used to observe the morphology of dehydrated PNIPAM extracted by sessile droplet evaporation under different conditions. The results indicate that these "soft" particles are easier to fuse together, do not have sufficient mechanical strength to maintain their spherical morphology after dehydration. But the above fusion can be suppressed by adjusting evaporation conditions to acquire smaller PNIPAM particles which have sufficient mechanical properties to keep their basic particle morphology. Further, by changing evaporation pressure to positive or negative pressure, dehydrated PNIPAM micro/nano-particles with excellent uniformity and separation can be obtained. This work will provide guidance for extracting micro/nano-particles from polymer/diluent systems with LCST.


Assuntos
Resinas Acrílicas , Água , Temperatura , Polímeros
20.
Membranes (Basel) ; 13(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36676882

RESUMO

Polyvinylidene fluoride (PVDF) dual-layer hollow fiber membranes were simultaneously fabricated by thermally induced phase separation (TIPS) and non-solvent induced phase separation (NIPS) methods using a triple orifice spinneret (TOS) for water treatment application. The support layer was prepared from a TIPS dope solution, which was composed of PVDF, gamma-butyrolactone (GBL), and N-methyl-2-pyrrolidone (NMP). The coating layer was prepared from a NIPS dope solution, which was composed of PVDF, N,N-dimethylacetamide (DMAc), and polyvinylpyrrolidone (PVP). In order to improve the mechanical strength of the dual-layer hollow fiber, a nucleating agent, sodium 2,2'-methylene bis-(4,6-di-tert-butylphenyl) phosphate (NA11), was added to the TIPS dope solution. The performance of the membrane was evaluated by surface and cross-sectional morphology, water flux, mechanical strength, and thermal property. Our results demonstrate that NA11 improved the mechanical strength of the PVDF dual-layer hollow fiber membranes by up to 42%. In addition, the thickness of the coating layer affected the porosity of the membrane and mechanical performance to have high durability in enduring harsh processing conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA