Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytokine ; 177: 156556, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417214

RESUMO

BACKGROUND: Impaired wound healing in traumatic skin injuries remains a severe clinical challenge due to impaired re-vascularization, harmful bacteria infection, and inflammation dysregulation. Macrophages are recognized as prominent immune cells in tissue regeneration and wound healing. Consequently, the modulation of macrophages provides a promising therapeutic target for wound healing disorders. Here, we aimed to explore whether a novel constructed combination of thermosensitive hydrogel Pluronic F-127 (PF-127) and phillyrin (PH, the main active compound of forsythia suspensa) could improve skin wound healing. METHODS: Firstly, the biological effects of pH on the phenotype and inflammation of macrophages were assessed by flow cytometry and ELISA. The biocompatibility of the PF-127 plus PH combination was investigated on keratinocytes and red blood cells. The biological effect of PF-127/PH hydrogel on the migratory ability of keratinocytes in vitro was evaluated using the scratch and transwell migration assays. In addition,S. aureusandE. coliwere employed to test the antibacterial properties of the PF-127 plus PH combination. Finally, PF-127 plus PH scaffold was appliedto the full-thickness skin defect in mice. Histomorphological evaluation and immunochemistry were performed to explore the wound-healing activity of PF-127/PH hydrogel. RESULTS: PH can promote the polarization of macrophages from the M1 (pro-inflammatory) phenotype to the M2 (anti-inflammatory) phenotype. The PF-127/PH hydrogel was highly biocompatible and showed a potent stimulative effect on the migration of keratinocytesin vitro. The combination of PF-127 and PH exerted a pronounced antibacterial activity onS. aureusandE. coli in vitro.PF-127/PH hydrogel potently accelerates the healing of full-thickness skin defects by promoting skin cell proliferation, accelerating angiogenesis, and inhibiting inflammation. CONCLUSIONS: Our study suggests that PF-127/PH hydrogel has excellent potential for treating traumatic skin defects.


Assuntos
Glucosídeos , Hidrogéis , Cicatrização , Camundongos , Animais , Hidrogéis/farmacologia , Macrófagos , Poloxâmero/farmacologia , Antibacterianos/farmacologia , Inflamação
2.
Biotechnol Bioeng ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946677

RESUMO

Cold-induced vasoconstriction is a significant contributor that leads to chilblains and hypothermia in humans. However, current animal models have limitations in replicating cold-induced acral injury due to their low sensitivity to cold. Moreover, existing in vitro vascular chips composed of endothelial cells and perfusion systems lack temperature responsiveness, failing to simulate the vasoconstriction observed under cold stress. This study presents a novel approach where a microfluidic bioreactor of vessel-on-a-chip was developed by grafting the inner microchannel surface of polydimethylsiloxane with a thermosensitive hydrogel skin composed of N-isopropyl acrylamide and gelatin methacrylamide. With a lower critical solution temperature set at 30°C, the gel layer exhibited swelling at low temperatures, reducing the flow rate inside the channel by 10% when the temperature dropped from 37°C to 4°C. This well mimicked the blood stasis observed in capillary vessels in vivo. The vessel-on-a-chip was further constructed by culturing endothelial cells on the surface of the thermosensitive hydrogel layer, and a perfused medium was introduced to the cells to provide a physiological shear stress. Notably, cold stimulation of the vessel-on-a-chip led to cell necrosis, mitochondrial membrane potential (ΔΨm) collapse, cytoskeleton disaggregation, and increased levels of reactive oxygen species. In contrast, the static culture of endothelial cells showed limited response to cold exposure. By faithfully replicating cold-induced endothelial injury, this groundbreaking thermosensitive vessel-on-a-chip technology offers promising advancements in the study of cold-induced cardiovascular diseases, including pathogenesis and therapeutic drug screening.

3.
J Nanobiotechnology ; 22(1): 33, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238760

RESUMO

BACKGROUND: The complex etiology and pathogenesis underlying Chronic Non-Bacterial Prostatitis (CNP), coupled with the existence of a Blood Prostate Barrier (BPB), contribute to a lack of specificity and poor penetration of most drugs. Emodin (EMO), a potential natural compound for CNP treatment, exhibits commendable anti-inflammatory, anti-oxidant, and anti-fibrosis properties but suffers from the same problems as other drugs. METHODS: By exploiting the recognition properties of lactoferrin (LF) receptors that target intestinal epithelial cells (NCM-460) and prostate epithelial cells (RWPE-1), a pathway is established for the transrectal absorption of EMO to effectively reach the prostate. Additionally, hyaluronic acid (HA) is employed, recognizing CD44 receptors which target macrophages within the inflamed prostate. This interaction facilitates the intraprostatic delivery of EMO, leading to its pronounced anti-inflammatory effects. A thermosensitive hydrogel (CS-Gel) prepared from chitosan (CS) and ß-glycerophosphate disodium salt (ß-GP) was used for rectal drug delivery with strong adhesion to achieve effective drug retention and sustained slow release. Thus, we developed a triple-targeted nanoparticle (NPs)/thermosensitive hydrogel (Gel) rectal drug delivery system. In this process, LF, with its positive charge, was utilized to load EMO through dialysis, producing LF@EMO-NPs. Subsequently, HA was employed to encapsulate EMO-loaded LF nanoparticles via electrostatic adsorption, yielding HA/LF@EMO-NPs. Finally, HA/LF@EMO-NPs lyophilized powder was added to CS-Gel (HA/LF@EMO-NPs Gel). RESULTS: Cellular assays indicated that NCM-460 and RWPE-1 cells showed high uptake of both LF@EMO-NPs and HA/LF@EMO-NPs, while Raw 264.7 cells exhibited substantial uptake of HA/LF@EMO-NPs. For LPS-induced Raw 264.7 cells, HA/LF@EMO-NPs can reduce the inflammatory responses by modulating TLR4/NF-κB signaling pathways. Tissue imaging corroborated the capacity of HA/LF-modified formulations to breach the BPB, accumulating within the gland's lumen. Animal experiments showed that rectal administration of HA/LF@EMO-NPs Gel significantly reduced inflammatory cytokine expression, oxidative stress levels and fibrosis in the CNP rats, in addition to exerting anti-inflammatory effects by inhibiting the NF-κB signaling pathway without obvious toxicity. CONCLUSION: This triple-targeted NPs/Gel rectal delivery system with slow-release anti-inflammatory, anti-oxidant, and anti-fibrosis properties shows great potential for the effective treatment of CNP.


Assuntos
Quitosana , Emodina , Nanopartículas , Prostatite , Humanos , Masculino , Ratos , Animais , Hidrogéis , Emodina/farmacologia , Emodina/uso terapêutico , Prostatite/tratamento farmacológico , Antioxidantes , NF-kappa B , Sistemas de Liberação de Medicamentos/métodos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Portadores de Fármacos
4.
J Wound Care ; 33(Sup2): S10-S23, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38348864

RESUMO

OBJECTIVE: Keeping a wound moist can allow effective and rapid healing, and it can control the formation of scabs, thereby allowing cell proliferation and epithelial formation. When regularly changing a dressing, thermosensitive hydrogel as a moist dressing does not cause a secondary wound from adhesion. The main aim of this study was to evaluate the effect of a new sprayable thermosensitive hydrogel on wound healing. METHOD: The hydrophobic N-acetyl group of chitin was removed by microwave reaction with lye until the degree of acetylation was 60%, followed by reaction with propylene oxide to obtain hydroxypropyl chitin (HPCH) with a degree of substitution of 40%. After mixing HPCH with fish scale collagen (FSC), a thermosensitive hydrogel with a gel temperature of 26.5°C was obtained. Ampelopsis brevipedunculata extracts (ABE), which have been found to accelerate wound repair and improve healing, were added. HPCH/FSC is not toxic to the mouse L929 cell line and forms a hydrogel at body surface temperature. It can be easily sprayed on a wound. The HPCH/FSC has a three-dimensional network porous structure with a swelling ratio of 10.95:1 and a water vapour transmission rate of 2386.03±228.87g/m2/day; it can facilitate the penetration of water and air, and promote absorption of wound exudate. Wound repair was performed on five Sprague-Dawley rats. Each rat had three wounds, which were treated with medical gauze, HPCH/FSC and HPCH/FSC/ABE, respectively. RESULTS: The wounds in the HPCH/FSC/ABE group recovered the fastest in vivo, the mature wound site was smoother, the re-epithelialisation was even and thicker, and the angiogenesis developed rapidly to the mature stage. CONCLUSION: In this study, HPCH/FSC/ABE thermosensitive hydrogel was shown to effectively accelerate wound healing and was convenient for practical application.


Assuntos
Ampelopsis , Hidrogéis , Camundongos , Ratos , Animais , Hidrogéis/farmacologia , Quitina/química , Quitina/farmacologia , Ratos Sprague-Dawley , Cicatrização , Colágeno/farmacologia
5.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892176

RESUMO

Currently, an important group of biomaterials used in the research in the field of tissue engineering is thermosensitive chitosan hydrogels. Their main advantage is the possibility of introducing their precursors (sols) into the implantation site using a minimally invasive method-by injection. In this publication, the results of studies on the new chitosan structures in the form of thermosensitive hydrogels containing graphene oxide as a nanofiller are presented. These systems were prepared from chitosan lactate and chitosan chloride solutions with the use of a salt of pyrimidine nucleotide-uridine 5'-monophosphate disodium salt-as the cross-linking agent. In order to perform the characterization of the developed hydrogels, the sol-gel transition temperature of the colloidal systems was first determined based on rheological measurements. The hydrogels were also analyzed using FTIR spectroscopy and SEM. Biological studies assessed the cytotoxicity (resazurin assay) and genotoxicity (alkaline version of the comet assay) of the nanocomposite chitosan hydrogels against normal human BJ fibroblasts. The conducted research allowed us to conclude that the developed hydrogels containing graphene oxide are an attractive material for potential use as scaffolds for the regeneration of damaged tissues.


Assuntos
Quitosana , Grafite , Hidrogéis , Nanocompostos , Quitosana/química , Hidrogéis/química , Nanocompostos/química , Humanos , Grafite/química , Fibroblastos/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Temperatura , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Engenharia Tecidual/métodos , Reologia
6.
J Biomol NMR ; 77(5-6): 203-215, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688760

RESUMO

Introducing the flow through the bioreactor has revolutionized in-cell NMR spectroscopy by prolonging the measurement time available to acquire spectral information about biomacromolecules in metabolically active cells. Bioreactor technology relies on immobilizer matrices, which secure cells in the active volume of the NMR coil and enable uniform perfusion of the growth medium, supplying fresh nutrients to the cells while removing toxic byproducts of their metabolism. The main drawbacks of commonly used matrices include the inability to recover intact cells post-measurement for additional analyses and/or requirements for specific operating temperatures. Here, we report on the development and characterization of a set of thermosensitive and nontoxic triblock copolymers based on poly(D,L-lactide)-b-poly(ethylene glycol)-b-poly(D,L-lactide) (PLA-PEG-PLA). Here, we show for the first time that these copolymers are suitable as immobilizer matrices for the acquisition of in-cell NMR spectra of nucleic acids and proteins over a commonly used sample temperature range of 15-40 °C and, importantly, allow recovery of cells after completion of in-cell NMR spectra acquisition. We compared the performances of currently used matrices in terms of cell viability (dye exclusion assays), cellular metabolism (1D 31P NMR), and quality of in-cell NMR spectra of two model biomacromolecules (hybrid double-stranded/i-motif DNA and ubiquitin). Our results demonstrate the suitability and advantages of PLA-PEG-PLA copolymers for application in bioreactor-assisted in-cell NMR.


Assuntos
Ácidos Nucleicos , Ressonância Magnética Nuclear Biomolecular , Polímeros/química , Espectroscopia de Ressonância Magnética , DNA , Reatores Biológicos
7.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047340

RESUMO

Periodontitis is a long-term inflammatory illness and a leading contributor to tooth loss in humans. Due to the influence of the anatomic parameters of teeth, such as root bifurcation lesions and the depth of the periodontal pocket, basic periodontal treatment on its own often does not completely obliterate flora microorganisms. As a consequence, topical medication has become a significant supplement in the treatment of chronic periodontitis. Berberine (BBR) has various pharmacological effects, such as hypoglycemic, antitumor, antiarrhythmic, anti-inflammatory, etc. The target of our project is to develop a safe and non-toxic carrier that can effectively release berberine, which can significantly reduce periodontal tissue inflammation, and to investigate whether berberine thermosensitive hydrogel can exert anti-inflammatory and osteogenic effects by modulating phosphatifylinositol-3-kinase/Protein Kinase B (PI3K/AKT) signaling pathway. Consequently, firstly berberine temperature-sensitive hydrogel was prepared, and its characterizations showed that the mixed solution gelated within 3 min under 37 °C with a hole diameter of 10-130 µm, and the accumulation of berberine release amounted to 89.99% at 21 days. CCK-8 and live-dead cell staining results indicated that this hydrogel was not biotoxic, and it is also presumed that the optimum concentration of berberine is 5 µM, which was selected for subsequent experiments. Real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB)results demonstrated that inflammatory factors, as well as protein levels, were significantly reduced in the berberine-loaded hydrogel group, and LY294002 (PI3K inhibitor) could enhance this effect (p < 0.05). In the berberine-loaded hydrogel group, osteogenesis-related factor levels and protein profiles were visibly increased, along with an increase in alkaline phosphatase expression, which was inhibited by LY294002 (p < 0.05). Therefore, berberine thermosensitive hydrogel may be an effective treatment for periodontitis, and it may exert anti-inflammatory and osteogenic effects through the PI3K/AKT signaling pathway.


Assuntos
Berberina , Periodontite , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Berberina/farmacologia , Berberina/uso terapêutico , Hidrogéis , Periodontite/tratamento farmacológico
8.
AAPS PharmSciTech ; 24(8): 214, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848623

RESUMO

Benzydamine hydrochloride (BZD) having analgesic, anesthetic, and anti-inflammatory effects is used orally or topically in the treatment of disorders such as joint inflammation and muscle pain. Within the scope of this study, sprayable thermosensitive BZD hydrogels were developed using thermoresponsive poloxamers to avoid systemic side effects and to provide better compliance for topical administration. Also, hydroxypropyl methyl cellulose (HPMC) was employed to improve the mechanical strength and bioadhesive properties of the hydrogel. The addition of BZD generally decreased the viscosity of the formulations (p < 0.05), while increasing the gelation temperature (p < 0.05). The formulations that did not have any clogs or leaks in the nozzle of the bottle during the spraying process were considered lead formulations. To spray the formulations easily, it was found that the viscosity at RT should be less than 200 mPa·s, and their gelation temperature should be between 26 and 34°C. Increasing HPMC and poloxamer improved bioadhesion. The amount of HPMC and poloxamers did not cause a significant change in the release characteristics of the formulations (p > 0.05); the release profiles of BZD from the formulations were similar according to model-independent kinetic (f2 > 50). HPMC and poloxamers had important roles in the accumulation of BZD in the skin. In vitro biological activity studies demonstrated that the formulations presented their anti-inflammatory activity with TNF-α inhibition but did not have any effect on the inhibition of COX enzymes as expected. As a result, thermosensitive hydrogels containing BZD might be an appropriate alternative, providing an advantage in terms of easier application compared to conventional gels.


Assuntos
Benzidamina , Hidrogéis , Poloxâmero , Géis , Temperatura , Anti-Inflamatórios/farmacologia , Derivados da Hipromelose , Viscosidade
9.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498939

RESUMO

A recently developed inhibitor of retrograde transport, namely Retro-2.1, proved to be a potent and broad-spectrum lead in vitro against intracellular pathogens, such as toxins, parasites, intracellular bacteria and viruses. To circumvent its low aqueous solubility, a formulation in poly(ethylene glycol)-block-poly(D,L)lactide micelle nanoparticles was developed. This formulation enabled the study of the pharmacokinetic parameters of Retro-2.1 in mice following intravenous and intraperitoneal injections, revealing a short blood circulation time, with an elimination half-life of 5 and 6.7 h, respectively. To explain the poor pharmacokinetic parameters, the metabolic stability of Retro-2.1 was studied in vitro and in vivo, revealing fast cytochrome-P-450-mediated metabolism into a less potent hydroxylated analogue. Subcutaneous injection of Retro-2.1 formulated in a biocompatible and bioresorbable polymer-based thermosensitive hydrogel allowed for sustained release of the drug, with an elimination half-life of 19 h, and better control of its metabolism. This study provides a guideline on how to administer this promising lead in vivo in order to study its efficacy.


Assuntos
Hidrogéis , Nanopartículas , Camundongos , Animais , Preparações de Ação Retardada , Polietilenoglicóis , Polímeros , Temperatura
10.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055097

RESUMO

This work describes the development of an injectable nanocomposite system based on a chitosan thermosensitive hydrogel combined with liposomes for regenerative medicine applications. Liposomes with good physicochemical properties are prepared and embedded within the chitosan network. The resulting nanocomposite hydrogel is able to provide a controlled release of the content from liposomes, which are able to interact with cells and be internalized. The cellular uptake is enhanced by the presence of a chitosan coating, and cells incubated with liposomes embedded within thermosensitive hydrogels displayed a higher cell uptake compared to cells incubated with liposomes alone. Furthermore, the gelation temperature of the system resulted to be equal to 32.6 °C; thus, the system can be easily injected in the target site to form a hydrogel at physiological temperature. Given the peculiar performance of the selected systems, the resulting thermosensitive hydrogels are a versatile platform and display potential applications as controlled delivery systems of liposomes for tissue regeneration.


Assuntos
Quitosana , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Hidrogéis , Lipossomos , Medicina Regenerativa , Temperatura , Animais , Linhagem Celular , Fenômenos Químicos , Quitosana/química , Portadores de Fármacos/química , Humanos , Hidrogéis/química , Lipossomos/química , Camundongos , Medicina Regenerativa/métodos
11.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430410

RESUMO

Periodontitis is a chronic inflammatory disease that is considered to be the main cause of adult tooth loss. Diabetes mellitus (DM) has a bidirectional relationship with periodontitis. Interleukin-1ß (IL-1ß) is an important pre-inflammatory factor, which participates in the pathophysiological process of periodontitis and diabetes. The interleukin-1 receptor antagonist (IL-1ra) is a natural inhibitor of IL-1, and the balance between IL-1ra and IL-1ß is one of the main factors affecting chronic periodontitis (CP) and diabetes. The purpose of this study is to develop a drug carrier that is safe and nontoxic and can effectively release IL-1ra, which can effectively slow down the inflammation of periodontal tissues with diabetes, and explore the possibility of lowering the blood sugar of this drug carrier. Therefore, in this experiment, a temperature-sensitive hydrogel loaded with IL-1ra was prepared and characterized, and its anti-inflammatory effect in high-sugar environments in vivo and in vitro was evaluated. The results showed that the hydrogel could gel after 5 min at 37 °C, the pore size was 5-70 µm, and the cumulative release of IL-1ra reached 83.23% on the 21st day. Real-time polymerase chain reaction (qRT-PCR) showed that the expression of IL-1ß, Interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) inflammatory factors decreased after the treatment with IL-1ra-loaded thermosensitive hydrogel. Histological evaluation and micro-computed tomography (Micro-CT) showed that IL-1ra-loaded thermosensitive hydrogel could effectively inhibit periodontal inflammation and reduce alveolar bone absorption in rats with diabetic periodontitis. It is worth mentioning that this hydrogel also plays a role in relieving hyperglycemia. Therefore, the temperature-sensitive hydrogel loaded with IL-1ra may be an effective method to treat periodontitis with diabetes.


Assuntos
Diabetes Mellitus Experimental , Periodontite , Ratos , Animais , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Hidrogéis , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Microtomografia por Raio-X , Inflamação/tratamento farmacológico , Inflamação/etiologia , Periodontite/complicações , Periodontite/tratamento farmacológico , Interleucina-6 , Portadores de Fármacos
12.
J Nanobiotechnology ; 19(1): 130, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952251

RESUMO

Excessive expression of matrix metalloproteinase 9 (MMP-9) impedes healing of diabetic chronic wounds, thus wound dressing that could effectively inhibit the expression of MMP-9 offers significant clinical translation for diabetic wound healing. Herein, a hybrid hydrogel dressing was developed for localized and sustained delivery of MMP-9 siRNA (siMMP-9). siMMP-9 was complexed with Gly-TETA (GT), the GT/siMMP9 complex was then loaded into a thermosensitive hydrogel based on Pluronic F-127 (PF) and methylcellulose (MC). In vitro, this hybrid hydrogel dressing exhibited negligible cytotoxicity, prolonged the release of GT/siMMP-9 for up to 7 days, and significantly reduced MMP-9 expression. In vivo assessment in diabetic rats demonstrated that hydrogel provided localized and sustained delivery via the thermosensitive controlled release of entrapped GT/siMMP-9 into wound tissues for 7 days, resulting in dramatic MMP-9 silencing which significantly improved diabetic wound closure. This hybrid hydrogel dressing exhibited excellent biocompatibility, with no observed systemic toxicity in rats. Taken together, the hybrid hydrogel dressing may constitute an effective and biocompatible means of enhancing diabetic wound healing through effective silencing of the MMP-9 gene, and this hydrogel delivery system also offers a platform for in vivo delivery of siRNA for the treatment of other diseases.


Assuntos
Hidrogéis/química , Metaloproteinase 9 da Matriz/metabolismo , RNA Interferente Pequeno/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Bandagens , Morte Celular/efeitos dos fármacos , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Inativação Gênica , Queratinócitos , Masculino , Metaloproteinase 9 da Matriz/química , Metaloproteinase 9 da Matriz/genética , Ratos , Pele
13.
Pharm Dev Technol ; 26(4): 412-421, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33538616

RESUMO

In the current study erythropoietin (EPO) loaded trimethyl chitosan/tripolyphosphate nanoparticles-embedded in a thermosensitive hydrogel was prepared. The influence of the main experimental factors on the properties of EPO-loaded nanoparticles were evaluated using a two-factors central composite design and the optimized formulation was then freeze dried. Sodium dodecyl sulfate-page and circular dichroismspectroscopy were used to confirm the structural stability of EPO following encapsulation and freeze drying. Rheological properties, and the release rate of EPO from the hydrogel were examined. Mean particle size, zeta potential, and entrapment efficiency of the optimized EPO-loaded nanoparticles were confirmed 151.5 ± 16 nm, 11.5 ± 1.8 mV, and 78.5 ± 5.9%, respectively. The hydrogel containing nanoparticles existed as a solution at room temperature converted to a semisolid upon increasing the temperature to 35 ± 1.2 °C and demonstrated controlled release of EPO for more than 10 days. The stability of EPO in the hydrogel system was further investigated using in vivo biological activity assay and the result revealed relative potency of 0.85 as calibrated with standard EPO. Finally, a single injection of the EPO-loaded nanoparticles-embedded in the hydrogel administered to Sprague-Dawley rats resulted in elevated reticulocytes for about 20 days compared to control group received blank hydrogel.


Assuntos
Quitosana/análogos & derivados , Portadores de Fármacos/química , Eritropoetina/administração & dosagem , Nanopartículas , Animais , Quitosana/química , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Eritropoetina/farmacologia , Liofilização , Hidrogéis , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Reticulócitos/metabolismo , Reologia , Temperatura
14.
Molecules ; 25(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397328

RESUMO

(1) Background: doxorubicin is a potent chemotherapeutic agent, but it has limitations regarding its side effects and therapy resistance. Hydrogels potentially deal with these problems, but several characterizations need to be optimized to better understand how hydrogel assisted chemotherapy works. Poloxamer 407 (P407) hydrogels were mixed with doxorubicin and physico-chemical, biological, and pharmacological characterizations were considered. (2) Methods: hydrogels were prepared by mixing P407 in PBS at 4 °C. Doxorubicin was added upon solutions became clear. Time-to-gelation, hydrogel morphology, and micelles were studied first. The effects of P407-doxorubicin were evaluated on MC-38 colon cancer cells. Furthermore, doxorubicin release was assessed and contrasted with non-invasive in vivo whole body fluorescence imaging. (3) Results: 25% P407 had favorable gelation properties with pore sizes of 30-180 µm. P407 micelles were approximately 5 nm in size. Doxorubicin was fully released in vitro from 25% P407 hydrogel within 120 h. Furthermore, P407 micelles strongly enhanced the anti-neoplastic effects of doxorubicin on MC-38 cells. In vivo fluorescence imaging revealed that hydrogels retained fluorescence signals at the injection site for 168 h. (4) Conclusions: non-invasive imaging showed how P407 gels retained drug at the injection site. Doxorubicin P407 micelles strongly enhanced the anti-tumor effects.


Assuntos
Antineoplásicos , Neoplasias do Colo , Doxorrubicina , Portadores de Fármacos , Hidrogéis , Imagem Óptica , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Micelas
15.
AAPS PharmSciTech ; 21(2): 71, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953574

RESUMO

This study developed a thermosensitive hydrogel based on poly(2-ethyl-2-oxazoline)-poly(D,L-lactide)-poly(2-ethyl-2-oxazoline) (PPP) for the delivery of salmon calcitonin to improve the hypocalcemic effect. The tube inversion and rheological tests revealed that the copolymer solution underwent temperature-dependent sol-gel-sol transitions. Observation by scanning electron microscopy (SEM) showed that the hydrogel exhibited a porous three-dimensional network. The swelling test demonstrated that there was a maximum swelling ratio at low temperature (25°C) as compared with the high temperature (37°C). In vitro release revealed that the PPP hydrogel were capable of sustained release of salmon calcitonin (sCT). The in vivo biodegradability study indicated the good degradability of PPP hydrogel. More importantly, the in vivo retention time of the hydrogel in situ was significantly prolonged after subcutaneous injection of the PPP hydrogel compared to the F127 hydrogel. In vivo pharmacodynamics analysis showed that the hypocalcemic effect of both PPP and F127 hydrogel was significantly greater than that of sCT solution, and the mean serum Ca reduction effect could be maintained for 24 h of PPP hydrogel, indicating that PPP hydrogel could achieve a significant enhanced hypocalcemic effect. In conclusion, the PPP hydrogel has been shown to be prospective as a controlled release carrier for injection delivery of protein drugs.


Assuntos
Conservadores da Densidade Óssea/administração & dosagem , Calcitonina/administração & dosagem , Hidrogéis/química , Animais , Conservadores da Densidade Óssea/farmacocinética , Calcitonina/farmacocinética , Cálcio/sangue , Preparações de Ação Retardada , Composição de Medicamentos , Masculino , Camundongos , Microscopia Eletrônica de Varredura , Oxazóis , Poliaminas , Poliésteres , Polímeros , Ratos , Ratos Sprague-Dawley , Reologia , Temperatura
16.
BMC Cancer ; 19(1): 614, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234819

RESUMO

BACKGROUND: Malignant pleural effusion (MPE) is a devastating sequela associated with cancer. Talc pleurodesis is a common treatment strategy for MPE but has been estimated to be unsuccessful in up to 20-50% of patients. Clinical failure of talc pleurodesis is thought to be due to poor dispersion. This monograph reports the development of a foam delivery system designed to more effectively coat the pleural cavity. METHODS: C57BL/6 mice were injected with Lewis lung carcinoma (LL/2) cells intrapleurally to induce MPE. The mice then received either normal saline (NS) control, foam control (F), talc slurry (TS, 2 mg/g) or talc foam (TF, 2 mg/g). Airspace volume was evaluated by CT, lungs/pleura were collected, and percent fibrosis was determined. RESULTS: The TF group had significantly better survival than the TS group (21 vs 13.5 days, p < 0.0001). The average effusion volume was less in the talc groups compared to the control group (140 vs 628 µL, p < 0.001). TF induced significant lung fibrosis (p < 0.01), similar to TS. On CT, TF significantly (p < 0.05) reduced loss of right lung volume (by 30-40%) compared to the control group. This was not seen with TS (p > 0.05). CONCLUSIONS: This report describes using a novel talc foam delivery system for the treatment of MPE. In the LL/2 model, mice treated with the TF had better survival outcomes and less reduction of lung volume than mice treated with the standard of care TS. These data provide support for translational efforts to move talc foam from animal models into clinical trials.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Derrame Pleural Maligno/terapia , Pleurodese/métodos , Soluções Esclerosantes/uso terapêutico , Talco/uso terapêutico , Animais , Carcinoma Pulmonar de Lewis/complicações , Modelos Animais de Doenças , Feminino , Fibrose/diagnóstico , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Pulmão/patologia , Medidas de Volume Pulmonar , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pleura/patologia , Derrame Pleural Maligno/etiologia , Soluções Esclerosantes/administração & dosagem , Talco/administração & dosagem , Temperatura de Transição , Resultado do Tratamento
17.
Pharm Dev Technol ; 24(3): 357-367, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29863957

RESUMO

Rosuvastatin (RSV) has been shown to have significant impact on the simulation of bone regeneration after local injection. The current study aimed to develop a localized controlled delivery system from RSV by incorporating RSV-loaded chitosan/chondroitin sulfate (CTS/CS) nanoparticles into thermosensitive Pluronic F127/hyaluronic acid (PF127/HA) hydrogel. RSV-loaded CTS/CS nanoparticles were prepared by ionic gelation, and the impact of various formulation variables was assessed using the Box-Behnken design. Consequently, optimized RSV-loaded nanoparticles were incorporated into the PF127/HA hydrogel. Rheological properties, degradation rates of hydrogels, and the release rate of RSV from hydrogel were examined. Mean particle size, zeta potential, entrapment efficiency, and mean release time of the optimized RSV-loaded nanoparticles were confirmed as 283.2 ± 16 nm, -31.2 ± 6.8 mV, 63.1 ± 4.2%, and 6.14 ± 0.3 h, respectively. The hydrogel containing 3% w/v CTS/CS nanoparticles existed as a solution with low viscosity at room temperature converted to a semisolid upon increasing the temperature to 35 °C. Hydrogel engrafted with CTS/CS showed controlled release of RSV during 48 h with superior in vitro gel stability. As revealed by cytotoxicity and mineralization assays, incorporation of RSV-loaded particles into PF127/HA hydrogel led to improvement in osteoblast viability and proliferation.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Rosuvastatina Cálcica/administração & dosagem , Engenharia Tecidual/métodos , Osso e Ossos/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Sulfatos de Condroitina/química , Portadores de Fármacos/química , Humanos , Ácido Hialurônico/química , Hidrogéis , Osteoblastos/citologia , Tamanho da Partícula , Poloxâmero/química , Reologia , Rosuvastatina Cálcica/química , Rosuvastatina Cálcica/farmacologia , Temperatura , Viscosidade
18.
Pharm Dev Technol ; 23(1): 106-115, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29019266

RESUMO

Main challenges of the clinical use of 7-ethyl-10-hydroxycamptothecin (SN-38) are its facile transition between the active lactone form (SN-38 A) and the inactive carboxylate form (SN-38I) under physiological conditions and its low solubility. The purpose of this study was to develop a thermo-sensitive hydrogel system with acidic SN-38 liposomes (SN-38-Lip-Gel) for local chemotherapy to solve these problems and to evaluate its antitumor activity and tissue distribution in tumor-bearing mice. A study of structural conversion between SN-38I and SN-38 A under various pH conditions indicated that acidic solution could inhibit the conversion. Namely, a preparation with low pH was essential to stabilize lactone form of SN-38. SN-38-Lip-Gel had an appropriate gelation time (GT) at 25/37 °C. The particle size of SN-38-Lip-Gel was similar to that of SN-38-Lip. SN-38-Lip-Gel showed a slower release than SN-38-Lip in vitro. SN-38-Lip-Gel suggested pH-dependent stability, the percentage of SN-38 A remaining decreased along with the increasing pH. In vivo studies SN-38-Lip-Gel showed better antitumor efficacy and lower systemic toxicity compared with other groups at the same drug dose. In conclusion, SN-38-Lip-Gel could improve the effective use of SN-38 by stabilizing the lactone form, extending the drug release, providing a high local drug concentration, and reducing systemic toxicity.


Assuntos
Antineoplásicos Fitogênicos/química , Camptotecina/análogos & derivados , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Lipossomos/química , Animais , Camptotecina/administração & dosagem , Camptotecina/química , Linhagem Celular Tumoral , Injeções Intralesionais/métodos , Irinotecano , Masculino , Camundongos , Tamanho da Partícula , Solubilidade/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
AAPS PharmSciTech ; 19(5): 2103-2117, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29696613

RESUMO

Thermosensitive hydrogels are of great interest for in situ gelling drug delivery. The thermosensitive vehicle with a gelation temperature in a range of 30-36°C would be convenient to be injected as liquid and transform into gel after injection. To prepare novel hydrogels gelling near body temperature, the gelation temperature of poloxamer 407 (PX) were tailored by mixing PX with poly(acrylic acid) (PAA). The gelation behaviors of PX/PAA systems as well as the interaction mechanism were investigated by tube inversion, viscoelastic, shear viscosity, DSC, SEM, and FTIR studies. The gelation temperature of the plain PX solutions at high concentration of 18, 20, and 22% (w/w) gelled at temperature below 28°C, which is out of the suitable temperature range. Mixing PX with PAA to obtain 18 and 20% (w/w) PX with 1% (w/w) PAA increased the gelation temperature to the desired temperature range of 30-36°C. The intermolecular entanglements and hydrogen bonds between PX and PAA may be responsible for the modulation of the gelation features of PX. The mixtures behaved low viscosity liquid at room temperature with shear thinning behavior enabling their injectability and rapidly gelled at body temperature. The gel strength increased, while the pore size decreased with increasing PX concentration. Metronidazole, an antibiotic used for periodontitis, was incorporated into the matrices, and the drug did not hinder their gelling ability. The gels showed the sustained drug release characteristic. The thermosensitive PX/PAA hydrogel could be a promising injectable in situ gelling system for periodontal drug delivery.


Assuntos
Resinas Acrílicas/química , Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Hidrogéis/química , Poloxâmero/química , Antineoplásicos/química , Preparações de Ação Retardada/química , Injeções , Temperatura , Viscosidade
20.
Drug Dev Ind Pharm ; 43(6): 972-979, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28121206

RESUMO

Combination delivery systems composed of injectable hydrogels and drug-incorporated nanoparticles are urgently in regional cancer chemotherapy to facilitate efficient delivery of chemotherapeutic agents, enhance antitumor efficiency, and decrease side effects. Here, we developed a novel thermosensitive amphiphilic triblock copolymer consisting of methoxy poly(ethylene glycol), poly(octadecanedioic anhydride), and d,l-lactic acid oligomer (PEOALA), built a combination system of thermosensitive injectable hydrogel PTX/PEOALAGel based on paclitaxel (PTX)-loaded PEOALA nanoparticles (NPs). PTX/PEOALAGel could be stored as freeze-dried powders of paclitaxel-loaded PEOALA NPs, which could be easily redispersed into the water at ambient temperature, and form a hydrogel at the injected site in vivo. The in vitro cytotoxicity of PTX/PEOALAGel showed no obvious cytotoxicity in comparison with Taxol® against MCF-7 and HeLa cells. However, the in vivo antitumor activity showed that a single intratumoral injection of the PTX/PEOALAGel formulation was more effective than four intravenous (i.v.) injections of Taxol® at a total dosage of 20 mg/kg in inhibiting the growth of MCF-7 tumor-bearing Balb/c mice, and the inhibition could be sustained for more than 17 d. The pharmacokinetic study demonstrated that the intratumoral injection of PTX/PEOALAGel could greatly decrease the systemic exposure of PTX, as confirmed by the rather low plasma concentration, and prolonged circulation time and enhanced tumor PTX accumulation, implying fewer off-target side effects. In summary, the PTX/PEOALAGel combination local delivery system could enhance tumor inhibition effect and tumor accumulation of PTX, and lower the systemic exposure. So, the reconstituted PTX/PEOALAGel system could potentially be a useful vehicle for regional cancer chemotherapy.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Administração Intravenosa , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Composição de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Liofilização , Células HeLa , Humanos , Hidrogéis , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas , Paclitaxel/uso terapêutico , Polímeros , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA