Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 43(5): 1212-1229, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31994740

RESUMO

VIPP proteins aid thylakoid biogenesis and membrane maintenance in cyanobacteria, algae, and plants. Some members of the Chlorophyceae contain two VIPP paralogs termed VIPP1 and VIPP2, which originate from an early gene duplication event during the evolution of green algae. VIPP2 is barely expressed under nonstress conditions but accumulates in cells exposed to high light intensities or H2 O2 , during recovery from heat stress, and in mutants with defective integration (alb3.1) or translocation (secA) of thylakoid membrane proteins. Recombinant VIPP2 forms rod-like structures in vitro and shows a strong affinity for phosphatidylinositol phosphate. Under stress conditions, >70% of VIPP2 is present in membrane fractions and localizes to chloroplast membranes. A vipp2 knock-out mutant displays no growth phenotypes and no defects in the biogenesis or repair of photosystem II. However, after exposure to high light intensities, the vipp2 mutant accumulates less HSP22E/F and more LHCSR3 protein and transcript. This suggests that VIPP2 modulates a retrograde signal for the expression of nuclear genes HSP22E/F and LHCSR3. Immunoprecipitation of VIPP2 from solubilized cells and membrane-enriched fractions revealed major interactions with VIPP1 and minor interactions with HSP22E/F. Our data support a distinct role of VIPP2 in sensing and coping with chloroplast membrane stress.


Assuntos
Clorofíceas/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/fisiologia , Proteínas de Plantas/fisiologia , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/fisiologia , Chlamydomonas reinhardtii/ultraestrutura , Clorofíceas/genética , Clorofíceas/fisiologia , Clorofíceas/ultraestrutura , Cloroplastos/fisiologia , Cloroplastos/ultraestrutura , Clonagem Molecular , Imunoprecipitação , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Filogenia , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Tilacoides/metabolismo
2.
Biochim Biophys Acta Biomembr ; 1859(4): 537-549, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27693914

RESUMO

The photosynthetic light reaction takes place within the thylakoid membrane system in cyanobacteria and chloroplasts. Besides its global importance, the biogenesis, maintenance and dynamics of this membrane system are still a mystery. In the last two decades, strong evidence supported the idea that these processes involve IM30, the inner membrane-associated protein of 30kDa, a protein also known as the vesicle-inducing protein in plastids 1 (Vipp1). Even though we just only begin to understand the precise physiological function of this protein, it is clear that interaction of IM30 with membranes is crucial for biogenesis of thylakoid membranes. Here we summarize and discuss forces guiding IM30-membrane interactions, as the membrane properties as well as the oligomeric state of IM30 appear to affect proper interaction of IM30 with membrane surfaces. Interaction of IM30 with membranes results in an altered membrane structure and can finally trigger fusion of adjacent membranes, when Mg2+ is present. Based on recent results, we finally present a model summarizing individual steps involved in IM30-mediated membrane fusion. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Bactérias/química , Proteínas de Membrana/química , Fosfolipídeos/química , Synechocystis/química , Tilacoides/química , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Cátions Bivalentes , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Magnésio/química , Magnésio/metabolismo , Fusão de Membrana , Proteínas de Membrana/metabolismo , Biogênese de Organelas , Fosfolipídeos/metabolismo , Fotossíntese/fisiologia , Células Vegetais/química , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Multimerização Proteica , Synechocystis/metabolismo , Synechocystis/ultraestrutura , Tilacoides/metabolismo , Tilacoides/ultraestrutura
3.
Front Plant Sci ; 12: 781857, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003166

RESUMO

Members of the Oxa1/YidC/Alb3 protein family are involved in the insertion, folding, and assembly of membrane proteins in mitochondria, bacteria, and chloroplasts. The thylakoid membrane protein Alb3 mediates the chloroplast signal recognition particle (cpSRP)-dependent posttranslational insertion of nuclear-encoded light harvesting chlorophyll a/b-binding proteins and participates in the biogenesis of plastid-encoded subunits of the photosynthetic complexes. These subunits are cotranslationally inserted into the thylakoid membrane, yet very little is known about the molecular mechanisms underlying docking of the ribosome-nascent chain complexes to the chloroplast SecY/Alb3 insertion machinery. Here, we show that nanodisc-embedded Alb3 interacts with ribosomes, while the homolog Alb4, also located in the thylakoid membrane, shows no ribosome binding. Alb3 contacts the ribosome with its C-terminal region and at least one additional binding site within its hydrophobic core region. Within the C-terminal region, two conserved motifs (motifs III and IV) are cooperatively required to enable the ribosome contact. Furthermore, our data suggest that the negatively charged C-terminus of the ribosomal subunit uL4c is involved in Alb3 binding. Phylogenetic analyses of uL4 demonstrate that this region newly evolved in the green lineage during the transition from aquatic to terrestrial life.

4.
Life (Basel) ; 10(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366017

RESUMO

DnaK3, a highly conserved cyanobacterial chaperone of the Hsp70 family, binds to cyanobacterial thylakoid membranes, and an involvement of DnaK3 in the biogenesis of thylakoid membranes has been suggested. As shown here, light triggers synthesis of DnaK3 in the cyanobacterium Synechocystis sp. PCC 6803, which links DnaK3 to the biogenesis of thylakoid membranes and to photosynthetic processes. In a DnaK3 depleted strain, the photosystem content is reduced and the photosystem II activity is impaired, whereas photosystem I is regular active. An impact of DnaK3 on the activity of other thylakoid membrane complexes involved in electron transfer is indicated. In conclusion, DnaK3 is a versatile chaperone required for biogenesis and/or maintenance of thylakoid membrane-localized protein complexes involved in electron transfer reactions. As mentioned above, Hsp70 proteins are involved in photoprotection and repair of PS II in chloroplasts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA