Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 70(3): 2034-2048, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32160147

RESUMO

Francisella noatunensis is a fastidious facultative intracellular bacterial pathogen that causes 'piscine francisellosis', a serious disease affecting both marine and fresh water farmed and wild fish worldwide. Currently two F. noatunensis subspecies are recognized, i.e. F. noatunensis subsp. noatunensis and F. noatunensis subsp. orientalis. In the present study, the taxonomy of F. noatunensis was revisited using a polyphasic approach, including whole genome derived parameters such as digital DNA-DNA hybridization, whole genome average nucleotide identity (wg-ANIm), whole genome phylogenetic analysis, whole genome G+C content, metabolic fingerprinting and chemotaxonomic analyses. The results indicated that isolates belonging to F. noatunensis subsp. orientalis represent a phenotypically and genetically homogenous taxon, clearly distinguishable from F. noatunensis subsp. noatunensis that fulfils requirements for separate species status. We propose, therefore, elevation of F. noatunensis subsp. orientalis to the species rank as Francisella orientalis sp. nov. with the type strain remaining as Ehime-1T (DSM 21254T=LMG 24544T). Furthermore, we identified sufficient phenotypic and genetic differences between F. noatunensis subsp. noatunensis recovered from diseased farmed Atlantic salmon in Chile and those isolated from wild and farmed Atlantic cod in Northern Europe to warrant proposal of the Chilean as a novel F. noatunensis subspecies, i.e. Francisella noatunensis subsp. chilensis subsp. nov. with strain PQ1106T (CECT 9798T=NCTC14375T) as the type strain. Finally, we emend the description of F. noatunensis by including further metabolic information and the description of atypical strains.


Assuntos
Francisella/classificação , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Chile , DNA Bacteriano/genética , Europa (Continente) , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
J Fish Dis ; 42(8): 1191-1200, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31184398

RESUMO

Francisella noatunensis subsp. orientalis is a pathogen of tilapia and other warm-water fish for which no vaccines are commercially available. In this study, a whole cell formalin-inactivated vaccine was developed for the first time using the highly virulent isolate STIR-GUS-F2f7 and the oil-based adjuvant Montanide™ ISA 763A VG. The efficacy of the vaccine was assessed in red Nile tilapia via intraperitoneal (i.p.) injection using homologous experimental infection and correlates of protection such as seral antibody production and bacterial loads in the spleen. For immunization, fish were i.p. injected with 0.1 ml of the vaccine, the adjuvant alone or PBS. At 840 degree days post-vaccination, all fish were i.p. injected with 4.0 × 103 CFU/fish of pathogenic bacteria. The RPS at the end of the trial was 100% in the vaccinated group with significantly higher survival than in the adjuvant and control groups. The RPS in the adjuvant group was 42%, and no significant difference was seen in survival between this and the PBS group. Moreover, significantly higher antibody titres in the serum and significantly lower bacterial loads in the spleen were detected in the vaccinated fish by ELISA and qPCR, respectively. These findings highlight the potential of autogenous vaccines for controlling francisellosis in tilapia.


Assuntos
Autovacinas/administração & dosagem , Ciclídeos , Francisella/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Vacinação/veterinária , Animais , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Injeções Intraperitoneais/veterinária , Vacinas de Produtos Inativados/administração & dosagem
3.
Front Microbiol ; 8: 2324, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312155

RESUMO

Francisella noatunensis subsp. orientalis (Fno) is the causative agent of piscine francisellosis, an emerging infectious disease in Asia and Latin America. In this study two outbreaks of francisellosis were diagnosed in the UK on the basis of histopathology, electron microscopy, PCR, bacterial isolation and fulfillment of Koch's postulates. Furthermore, a phenotypic fingerprint based on biochemical analyses, metabolic activity, chemotaxonomic composition, and antimicrobial assays was generated for the novel isolates, the Fno type strain Ehime-1 from Asia and other Fno from Latin America. The genetic relatedness between the novel Fno and other Francisellaceae species was investigated by sequencing and comparing the 16SrRNA gene, 8 housekeeping genes (individually and concatenated) and the 16SrRNA-ITS-23SrRNA sequence. The phenotypic profiling indicated a high degree of similarity among the Fno strains as all were able to metabolize dextrin, N-acetyl-D glucosamine, D-fructose, α-D-glucose, D-mannose, methyl pyruvate, acetic acid, α-keto butyric acid, L-alaninamide, L-alanine, L-alanylglycine, L-asparagine, L-glutamic acid, L-proline, L-serine, L-threonine, inosine, uridine, glycerol, D L-α-glycerol phosphate, glucose-1-phosphate, and glucose-6-phosphate. The chemotaxonomic analyses indicated that 24:1 (20.3%), 18:1n-9 (16.9%), 24:0 (13.1%) 14:0 (10.9%), 22:0 (7.8%), 16:0 (7.6%), and 18:0 (5.5%) were the predominant structural fatty acids in Fno. The antimicrobial assays showed little variation between the isolates and high susceptibility to enrofloxacin, gentamicin, neomycin, streptomycin, amikacin, ciprofloxacin, gatifloxacin, nitrofurantoin, tobramycin, kanamycin, tetracycline, oxytetracycline, florfenicol, oxolinic acid, and streptomycin in all the Fno analyzed. In all the phylogenetic trees the Fno strains clustered together in independent branches confirming a high degree of homogeneity. Interestingly in five of the 11 trees i.e., mutS, putA, rpoB, 16SrRNA-ITS-23SrRNA, and concatenated sequence the two Francisella noatunensis ssp. diverged more from each other than from the closely related Francisella philomiragia (Fp). The phenotypic and genetic characterization confirmed the Fno isolates represent a solid phylo-phenetic taxon that in the current context of the genus seems to be misplaced within the species Fn. We propose the use of the present polyphasic approach in future studies to characterize strains of Fnn and Fp and verify their current taxonomic rank of Fno and other aquatic Francisella spp.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA