Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; : 1-10, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546975

RESUMO

To create tissue-engineered vascular grafts (TEVGs) in vitro, vascular smooth muscle cells (VSMCs) must function effectively and produce sufficient extracellular matrix (ECM) in a three-dimensional space. In this study, we investigated whether the addition of insulin-transferrin-selenium (ITS), a medium supplement, could enhance TEVG formation. PGA fabric was used as the scaffold, and 1% ITS was added to the medium. After two weeks, the tissues were examined using electron microscopy and staining. The ITS group exhibited a denser structure and increased collagen production. VSMCs were cultured in two dimensions with ITS and assessed for collagen production, cell growth, and glucose metabolism. The results showed that ITS supplementation increased collagen production, cell growth, glucose utilization, lactate production, and ATP levels. Furthermore, reducing the amount of fetal bovine serum (FBS) in the medium did not affect the TEVGs or VSMCs when ITS was present. In conclusion, ITS improves TEVG construction by promoting VSMCs growth and reducing the need for FBS.

2.
J Mol Cell Cardiol ; 165: 40-53, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34971664

RESUMO

Cardiovascular diseases (CVDs) are life-threatening diseases with high morbidity and mortality worldwide. Vascular bypass surgery is still the ultimate strategy for CVD treatment. Autografts are the gold standard for graft transplantation, but insufficient sources limit their widespread application. Therefore, alternative tissue engineered vascular grafts (TEVGs) are urgently needed. In this review, we summarize the major strategies for the preparation of vascular grafts, as well as the factors affecting their patency and tissue regeneration. Finally, the underlying mechanisms of vascular regeneration that are mediated by host cells are discussed.


Assuntos
Prótese Vascular , Doenças Cardiovasculares , Humanos , Engenharia Tecidual
3.
J Transl Med ; 15(1): 54, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28257636

RESUMO

BACKGROUND: Endothelial and smooth muscle cells are considered promising resources for regenerative medicine and cell replacement therapy. It has been shown that both types of cells are heterogeneous depending on the type of vessels and organs in which they are located. Therefore, isolation of endothelial and smooth muscle cells from tissues relevant to the area of research is necessary for the adequate study of specific pathologies. However, sources of specialized human endothelial and smooth muscle cells are limited, and the search for new sources is still relevant. The main goal of our study is to demonstrate that functional endothelial and smooth muscle cells can be obtained from an available source-post-surgically discarded cardiac tissue from the right atrial appendage and right ventricular myocardium. METHODS: Heterogeneous primary cell cultures were enzymatically isolated from cardiac explants and then grown in specific endothelial and smooth muscle growth media on collagen IV-coated surfaces. The population of endothelial cells was further enriched by immunomagnetic sorting for CD31, and the culture thus obtained was characterized by immunocytochemistry, ultrastructural analysis and in vitro functional tests. The angiogenic potency of the cells was examined by injecting them, along with Matrigel, into immunodeficient mice. Cells were also seeded on characterized polycaprolactone/chitosan membranes with subsequent analysis of cell proliferation and function. RESULTS: Endothelial cells isolated from cardiac explants expressed CD31, VE-cadherin and VEGFR2 and showed typical properties, namely, cytoplasmic Weibel-Palade bodies, metabolism of acetylated low-density lipoproteins, formation of capillary-like structures in Matrigel, and production of extracellular matrix and angiogenic cytokines. Isolated smooth muscle cells expressed extracellular matrix components as well as α-actin and myosin heavy chain. Vascular cells derived from cardiac explants demonstrated the ability to stimulate angiogenesis in vivo. Endothelial cells proliferated most effectively on membranes made of polycaprolactone and chitosan blended in a 25:75 ratio, neutralized by a mixture of alkaline and ethanol. Endothelial and smooth muscle cells retained their functional properties when seeded on the blended membranes. CONCLUSIONS: We established endothelial and smooth muscle cell cultures from human right atrial appendage and right ventricle post-operative explants. The isolated cells revealed angiogenic potential and may be a promising source of patient-specific cells for regenerative medicine.


Assuntos
Prótese Vascular , Células Endoteliais/citologia , Miocárdio/citologia , Miócitos de Músculo Liso/citologia , Neovascularização Fisiológica , Desenho de Prótese , Animais , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quitosana/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Humanos , Camundongos SCID , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/ultraestrutura , Neovascularização Fisiológica/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Poliésteres/farmacologia , Corpos de Weibel-Palade/metabolismo
4.
J Biomed Mater Res B Appl Biomater ; 112(1): e35317, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584376

RESUMO

Tissue-engineered blood vessel substitutes have been developed due to the lack of suitable small-diameter vascular grafts. Xenogeneic extracellular matrix (ECM) scaffolds have the potential to provide an ideal source for off-the-shelf vascular grafts. In this study, porcine carotid arteries were used to develop ECM scaffolds by decellularization and coating with heparin and hepatocyte growth factor (HGF). After decellularization, cellular and nucleic materials were successfully removed with preservation of the main compositions (collagen, elastin, and basement membrane) of the native ECM. The ultimate tensile strength, suture strength, and burst pressure were significantly increased after cross-linking. Pore size distribution analysis revealed a porous structure within ECM scaffolds with a high distribution of pores larger than 10 µm. Heparinized scaffolds exhibited sustained release of heparin in vitro and showed potent anticoagulant activity by prolonging activated partial thromboplastin time. The scaffolds showed an enhanced HGF binding capacity as well as a constant release of HGF as a result of heparin modification. When implanted subcutaneously in rats, the modified scaffolds revealed good biocompatibility with enzyme degradation resistance, mitigated immune response, and anti-calcification. In conclusion, heparinized and HGF-coated acellular porcine carotid arteries may be a promising biological scaffold for tissue-engineered vascular grafts.


Assuntos
Fator de Crescimento de Hepatócito , Alicerces Teciduais , Suínos , Ratos , Animais , Alicerces Teciduais/química , Fator de Crescimento de Hepatócito/farmacologia , Fator de Crescimento de Hepatócito/análise , Engenharia Tecidual , Artérias Carótidas/química , Prótese Vascular , Heparina/farmacologia , Heparina/química , Matriz Extracelular/química
5.
Adv Healthc Mater ; 13(19): e2400426, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38607966

RESUMO

Melt Electrowriting (MEW) is a continuously growing manufacturing platform. Its advantage is the consistent production of micro- to nanometer fibers, that stack intricately, forming complex geometrical shapes. MEW allows tuning of the mechanical properties of constructs via the geometry of deposited fibers. Due to this, MEW can create complex mechanics only seen in multi-material compounds and serve as guiding structures for cellular alignment. The advantage of MEW is also shown in combination with other biotechnological manufacturing methods to create multilayered constructs that increase mechanical approximation to native tissues, biocompatibility, and cellular response. These features make MEW constructs a perfect candidate for small-diameter vascular graft structures. Recently, studies have presented fascinating results in this regard, but is this truly the direction that tubular MEW will follow or are there also other options on the horizon? This perspective will explore the origins and developments of tubular MEW and present its growing importance in the field of artificial small-diameter vascular grafts with mechanical modulation and improved biomimicry and the impact of it in convergence with other manufacturing methods and how future technologies like AI may influence its progress.


Assuntos
Prótese Vascular , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Vasos Sanguíneos/fisiologia , Materiais Biocompatíveis/química , Animais , Alicerces Teciduais/química
6.
Tissue Eng Part A ; 30(15-16): 473-484, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38318797

RESUMO

Successful in vitro culture of small-diameter tissue-engineered vascular grafts (TEVGs) requires rapid deposition of biomacromolecules secreted by vascular smooth muscle cells in a polyglycolic acid mesh scaffold's three-dimensional (3D) porous environment. However, common media have lower crowding conditions than in vivo tissue fluids. In addition, during the early stages of construction, most of the biomolecules secreted by the cells into the medium are lost, which negatively affects the TEVG culture process. In this study, we propose the use of macromolecular crowding (MMC) to enhance medium crowding to improve the deposition and self-assembly efficiency of major biomolecules in the early stages of TEVG culture. The addition of carrageenan significantly increased the degree of MMC in the culture medium without affecting cell viability, proliferation, and metabolic activity. Protein analysis demonstrated that the deposition of collagen types I and III and fibronectin increased significantly in the cell layers of two-dimensional and 3D smooth muscle cell cultures after the addition of a MMC agent. Collagen type I in the culture medium decreased significantly compared with that in the medium without a MMC agent. Scanning electron microscopy demonstrated that MMC agents considerably enhanced the formation of matrix protein structures during the early stages of 3D culture. Hence, MMC modifies the crowding degree of the culture medium, resulting in the rapid formation of numerous matrix proteins and fiber structures. Impact Statement Small-diameter tissue-engineered vascular grafts (TEVGs) are one of the most promising means of treating cardiovascular diseases; however, the in vitro construction of TEVGs has some limitations, such as slow deposition of extracellular matrix (ECM), long culture period, and poor mechanical properties. We hypothesized that macromolecular crowding can increase the crowding of the culture medium to construct a more bionic microenvironment, which enhances ECM deposition in the medium to the cell layer and reduces collagen loss, accelerating and enhancing TEVG culture and construction in vitro.


Assuntos
Prótese Vascular , Miócitos de Músculo Liso , Engenharia Tecidual , Engenharia Tecidual/métodos , Animais , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/citologia , Proteínas da Matriz Extracelular/metabolismo , Substâncias Macromoleculares/metabolismo , Alicerces Teciduais/química , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos
7.
Bioact Mater ; 34: 221-236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38235307

RESUMO

Small-diameter tissue-engineered vascular grafts (sdTEVGs) have garnered significant attention as a potential treatment modality for vascular bypass grafting and replacement therapy. However, the intimal hyperplasia and thrombosis are two major complications that impair graft patency during transplantation. To address this issue, we fabricated the covalent-organic framework (COF)-based carbon monoxide (CO) nanogenerator-and co-immobilized with LXW-7 peptide and heparin to establish a multifunctional surface on TEVGs constructed from acellular blood vessels for preventing thrombosis and stenosis. The cell-adhesive peptide LXW-7 could capture endothelial-forming cells (EFCs) to promote endothelialization, while the antithrombotic molecule heparin prevented thrombus formation. The reactive oxygen species (ROS)-triggered CO release suppressed the adhesion and activation of macrophages, leading to the reduction of ROS and inflammatory factors. As a result, the endothelial-to-mesenchymal transition (EndMT) triggered by inflammation was restricted, facilitating the maintenance of the homeostasis of the neo-endothelium and preventing pathological remodeling in TEVGs. When transplanted in vivo, these vascular grafts exhibited negligible intimal hyperplasia and remained patent for 3 months. This achievement provided a novel approach for constructing antithrombotic and anti-hyperplastic TEVGs.

8.
Front Bioeng Biotechnol ; 12: 1411680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988863

RESUMO

Introduction: The development of next-generation tissue-engineered medical devices such as tissue-engineered vascular grafts (TEVGs) is a leading trend in translational medicine. Microscopic examination is an indispensable part of animal experimentation, and histopathological analysis of regenerated tissue is crucial for assessing the outcomes of implanted medical devices. However, the objective quantification of regenerated tissues can be challenging due to their unusual and complex architecture. To address these challenges, research and development of advanced ML-driven tools for performing adequate histological analysis appears to be an extremely promising direction. Methods: We compiled a dataset of 104 representative whole slide images (WSIs) of TEVGs which were collected after a 6-month implantation into the sheep carotid artery. The histological examination aimed to analyze the patterns of vascular tissue regeneration in TEVGs in situ. Having performed an automated slicing of these WSIs by the Entropy Masker algorithm, we filtered and then manually annotated 1,401 patches to identify 9 histological features: arteriole lumen, arteriole media, arteriole adventitia, venule lumen, venule wall, capillary lumen, capillary wall, immune cells, and nerve trunks. To segment and quantify these features, we rigorously tuned and evaluated the performance of six deep learning models (U-Net, LinkNet, FPN, PSPNet, DeepLabV3, and MA-Net). Results: After rigorous hyperparameter optimization, all six deep learning models achieved mean Dice Similarity Coefficients (DSC) exceeding 0.823. Notably, FPN and PSPNet exhibited the fastest convergence rates. MA-Net stood out with the highest mean DSC of 0.875, demonstrating superior performance in arteriole segmentation. DeepLabV3 performed well in segmenting venous and capillary structures, while FPN exhibited proficiency in identifying immune cells and nerve trunks. An ensemble of these three models attained an average DSC of 0.889, surpassing their individual performances. Conclusion: This study showcases the potential of ML-driven segmentation in the analysis of histological images of tissue-engineered vascular grafts. Through the creation of a unique dataset and the optimization of deep neural network hyperparameters, we developed and validated an ensemble model, establishing an effective tool for detecting key histological features essential for understanding vascular tissue regeneration. These advances herald a significant improvement in ML-assisted workflows for tissue engineering research and development.

9.
Biomater Adv ; 165: 214018, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39226677

RESUMO

A high vascular patency was realized in the bulk or surface heparinized small-diameter in situ tissue-engineered vascular grafts (TEVGs) via a rabbit carotid artery replacement model in our previous studies. Those surface heparinized TEVGs could reduce the occurrence of aneurysms, but with a low level of the remodeled elastin, whereas those bulk heparinized TEVGs displayed a faster degradation and an increasing occurrence of aneurysms, but with a high level of the regenerated elastin. To combine the advantages of the bulk and surface graft heparinization to boost the remodeling of elastin and defer the occurrence of aneurysms, a coaxial electro-spinning technique was used to fabricate a kind of small-diameter core/shell fibrous structural in situ TEVGs with a faster degradable poly(lactic-co-glycolic acid) (PLGA) as a core layer and a relatively lower degradable poly(ε-caprolactone) (PCL) as a shell layer followed by the surface heparinization. The in vitro mechanical performance and enzymatic degradation tests revealed the resulting PLGA@PCL-Hep in situ TEVGs possessing not only a faster degradation rate, but also the mechanical properties comparable to those of human saphenous veins. After implanted in the rat abdominal aorta for 12 months, the good endothelialization, low inflammation, and no calcification were evidenced. Furthermore, the neointima layer of regenerated new blood vessels was basically constructed with a well-organized arrangement of elastin and collagen proteins. The results showed the great potential of these in situ TEVGs to be used as a novel type of long-term small-diameter vascular grafts.

10.
JTCVS Open ; 18: 209-220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38690440

RESUMO

Objectives: The complexity of aortic arch reconstruction due to diverse 3-dimensional geometrical abnormalities is a major challenge. This study introduces 3-dimensional printed tissue-engineered vascular grafts, which can fit patient-specific dimensions, optimize hemodynamics, exhibit antithrombotic and anti-infective properties, and accommodate growth. Methods: We procured cardiac magnetic resonance imaging with 4-dimensional flow for native porcine anatomy (n = 10), from which we designed tissue-engineered vascular grafts for the distal aortic arch, 4 weeks before surgery. An optimal shape of the curved vascular graft was designed using computer-aided design informed by computational fluid dynamics analysis. Grafts were manufactured and implanted into the distal aortic arch of porcine models, and postoperative cardiac magnetic resonance imaging data were collected. Pre- and postimplant hemodynamic data and histology were analyzed. Results: Postoperative magnetic resonance imaging of all pigs with 1:1 ratio of polycaprolactone and poly-L-lactide-co-ε-caprolactone demonstrated no specific dilatation or stenosis of the graft, revealing a positive growth trend in the graft area from the day after surgery to 3 months later, with maintaining a similar shape. The peak wall shear stress of the polycaprolactone/poly-L-lactide-co-ε-caprolactone graft portion did not change significantly between the day after surgery and 3 months later. Immunohistochemistry showed endothelization and smooth muscle layer formation without calcification of the polycaprolactone/poly-L-lactide-co-ε-caprolactone graft. Conclusions: Our patient-specific polycaprolactone/poly-L-lactide-co-ε-caprolactone tissue-engineered vascular grafts demonstrated optimal anatomical fit maintaining ideal hemodynamics and neotissue formation in a porcine model. This study provides a proof of concept of patient-specific tissue-engineered vascular grafts for aortic arch reconstruction.

11.
Front Bioeng Biotechnol ; 12: 1410863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903186

RESUMO

Tissue-engineered vascular grafts (TEVGs) poised for regenerative applications are central to effective vascular repair, with their efficacy being significantly influenced by scaffold architecture and the strategic distribution of bioactive molecules either embedded within the scaffold or elicited from responsive tissues. Despite substantial advancements over recent decades, a thorough understanding of the critical cellular dynamics for clinical success remains to be fully elucidated. Graft failure, often ascribed to thrombogenesis, intimal hyperplasia, or calcification, is predominantly linked to improperly modulated inflammatory reactions. The orchestrated behavior of repopulating cells is crucial for both initial endothelialization and the subsequent differentiation of vascular wall stem cells into functional phenotypes. This necessitates the TEVG to provide an optimal milieu wherein immune cells can promote early angiogenesis and cell recruitment, all while averting persistent inflammation. In this study, we present an innovative TEVG designed to enhance cellular responses by integrating a physicochemical gradient through a multilayered structure utilizing synthetic (poly (ester urethane urea), PEUU) and natural polymers (Gelatin B), thereby modulating inflammatory reactions. The luminal surface is functionalized with a four-arm polyethylene glycol (P4A) to mitigate thrombogenesis, while the incorporation of adhesive peptides (RGD/SV) fosters the adhesion and maturation of functional endothelial cells. The resultant multilayered TEVG, with a diameter of 3.0 cm and a length of 11 cm, exhibits differential porosity along its layers and mechanical properties commensurate with those of native porcine carotid arteries. Analyses indicate high biocompatibility and low thrombogenicity while enabling luminal endothelialization and functional phenotypic behavior, thus limiting inflammation in in-vitro models. The vascular wall demonstrated low immunogenicity with an initial acute inflammatory phase, transitioning towards a pro-regenerative M2 macrophage-predominant phase. These findings underscore the potential of the designed TEVG in inducing favorable immunomodulatory and pro-regenerative environments, thus holding promise for future clinical applications in vascular tissue engineering.

12.
Biomolecules ; 13(9)2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37759789

RESUMO

The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use. In this review, the progress made in tissue-engineered vascular graft production is discussed. We highlight, in particular, the use of natural materials as scaffolds for vascular tissue engineering.


Assuntos
Prótese Vascular , Engenharia Tecidual , Engenharia Tecidual/métodos , Materiais Biocompatíveis
13.
Ann Biomed Eng ; 51(4): 660-678, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36774426

RESUMO

Implantable tissue-engineered vascular grafts (TEVGs) usually trigger the host reaction which is inextricably linked with the immune system, including blood-material interaction, protein absorption, inflammation, foreign body reaction, and so on. With remarkable progress, the immune response is no longer considered to be entirely harmful to TEVGs, but its therapeutic and impaired effects on angiogenesis and tissue regeneration are parallel. Although the implicated immune mechanisms remain elusive, it is certainly worthwhile to gain detailed knowledge about the function of the individual immune components during angiogenesis and vascular remodeling. This review provides a general overview of immune cells with an emphasis on macrophages in light of the current literature. To the extent possible, we summarize state-of-the-art approaches to immune cell regulation of the vasculature and suggest that future studies are needed to better define the timing of the activity of each cell subpopulation and to further reveal key regulatory switches.


Assuntos
Prótese Vascular , Engenharia Tecidual
14.
Tissue Eng Part C Methods ; 29(2): 72-84, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36719780

RESUMO

The advent of single-cell RNA sequencing (scRNA-Seq) has brought with it the ability to gain greater insights into the cellular composition of tissues and heterogeneity in gene expression within specific cell types. For tissue-engineered blood vessels, this is particularly impactful to better understand how neotissue forms and remodels into tissue resembling a native vessel. A notable challenge, however, is the ability to separate cells from synthetic biomaterials to generate high-quality single-cell suspensions to interrogate the cellular composition of our tissue-engineered vascular grafts (TEVGs) during active remodeling in situ. We present here a simple, commercially available approach to separate cells within our TEVG from the residual scaffold for downstream use in a scRNA-Seq workflow. Utilizing this method, we identified the cell populations comprising explanted TEVGs and compared these with results from immunohistochemical analysis. The process began with explanted TEVGs undergoing traditional mechanical and enzymatic dissociation to separate cells from scaffold and extracellular matrix proteins. Magnetically labeled antibodies targeting murine origin cells were incubated with enzymatic digests of TEVGs containing cells and scaffold debris in suspension allowing for separation by utilizing a magnetic separator column. Single-cell suspensions were processed through 10 × Genomics and data were analyzed utilizing R to generate cell clusters. Expression data provided new insights into a diverse composition of phenotypically unique subclusters within the fibroblast, macrophage, smooth muscle cell, and endothelial cell populations contributing to the early neotissue remodeling stages of TEVGs. These populations were correlated qualitatively and quantitatively with immunohistochemistry highlighting for the first time the potential of scRNA-Seq to provide exquisite detail into the host cellular response to an implanted TEVG. These results additionally demonstrate magnetic cell isolation is an effective method for generating high-quality cell suspensions for scRNA-Seq. While this method was utilized for our group's TEVGs, it has broader applications to other implantable materials that use biodegradable synthetic materials as part of scaffold composition. Impact statement Single-cell RNA sequencing is an evolving technology with the ability to provide detailed information on the cellular composition of remodeling biomaterials in vivo. This present work details an effective approach for separating nondegraded biomaterials from cells for downstream RNA-sequencing analysis. We applied this method to implanted tissue-engineered vascular grafts and for the first time describe the cellular composition of the remodeling graft at a single-cell gene expression level. While this method was effective in our scaffold, it has broad applicability to other implanted biomaterials that necessitate separation of cell from residual scaffold materials for single-cell RNA sequencing.


Assuntos
Prótese Vascular , Engenharia Tecidual , Animais , Camundongos , Engenharia Tecidual/métodos , Suspensões , Materiais Biocompatíveis , Análise de Sequência de RNA , Alicerces Teciduais/química
15.
Adv Healthc Mater ; 12(23): e2300340, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37154485

RESUMO

Small-diameter tissue-engineered vascular grafts (sdTEVGs) are essential materials used in bypass or replacement surgery for cardiovascular diseases; however, their application efficacy is limited because of patency rates, especially under hyperlipidemia, which is also clinically observed in patients with cardiovascular diseases. In such cases, improving sdTEVG patency is challenging because cholesterol crystals easily cause thrombosis and impede endothelialization. Herein, the development of a biomimetic antithrombotic sdTEVG incorporating cholesterol oxidase and arginine into biomineralized collagen-gold hydrogels on a sdTEVG surface is described. Biomimetic antithrombotic sdTEVGs represent a multifunctional substrate for the green utilization of hazardous substances and can convert cholesterol into hydrogen peroxide, which can react with arginine to generate nitric oxide (NO). NO is a vasodilator that can simulate the antithrombotic action of endothelial cells under hyperlipidemic conditions. In vivo studies show that sdTEVGs can rapidly produce large amounts of NO via a cholesterol catalytic cascade to inhibit platelet aggregation, thereby improving the blood flow velocity and patency rates 60 days after sdTEVG transplantation. A practical and reliable strategy for transforming "harmful" substances into "beneficial" factors at early transplantation stages is presented, which can also promote vascular transplantation in patients with hyperlipidemia.


Assuntos
Prótese Vascular , Doenças Cardiovasculares , Humanos , Óxido Nítrico , Fibrinolíticos/química , Fibrinolíticos/uso terapêutico , Células Endoteliais , Doenças Cardiovasculares/tratamento farmacológico , Biomimética , Arginina
16.
JTCVS Open ; 15: 433-445, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37808023

RESUMO

Objectives: Palliative treatment of cyanotic congenital heart disease (CCHD) uses systemic-to-pulmonary conduits, often a modified Blalock-Taussig-Thomas shunt (mBTTs). Expanded polytetrafluoroethylene (ePTFE) mBTTs have associated risks for thrombosis and infection. The Human Acellular Vessel (HAV) (Humacyte, Inc) is a decellularized tissue-engineered blood vessel currently in clinical trials in adults for vascular trauma, peripheral artery disease, and end-stage renal disease requiring hemodialysis. In addition to restoring blood flow, the engineered HAV demonstrates the capacity for host cellular remodeling into native-like vasculature. Here we report preclinical evaluation of a small-diameter (3.5 mm) HAV as a mBTTs in a non-human primate model. Methods: We implanted 3.5 mm HAVs as right subclavian artery to pulmonary artery mBTTs in non-immunosuppressed juvenile rhesus macaques (n = 5). HAV patency, structure, and blood flow were assessed by postoperative imaging from 1 week to 6 months. Histology of HAVs and surrounding tissues was performed. Results: Surgical procedures were well tolerated, with satisfactory anastomoses, showing feasibility of using the 3.5 mm HAV as a mBTTs. All macaques had some immunological reactivity to the human extracellular matrix, as expected in this xenogeneic model. HAV mBTTs remained patent for up to 6 months in animals, exhibiting mild immunoreactivity. Two macaques displaying more severe immunoreactivity to the human HAV material developed midgraft dilatation without bleeding or rupture. HAV repopulation by host cells expressing smooth muscle and endothelial markers was observed in all animals. Conclusions: These findings may support use of 3.5 mm HAVs as mBTTs in CCHD and potentially other pediatric vascular indications.

17.
Int J Bioprint ; 9(4): 740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323481

RESUMO

The coronary artery bypass grafting is a main treatment for restoring the blood supply to the ischemic site by bypassing the narrow part, thereby improving the heart function of the patients. Autologous blood vessels are preferred in coronary artery bypass grafting, but their availability is often limited by due to the underlying disease. Thus, tissue-engineered vascular grafts that are devoid of thrombosis and have mechanical properties comparable to those of natural vessels are urgently required for clinical applications. Most of the commercially available artificial implants are made from polymers, which are prone to thrombosis and restenosis. The biomimetic artificial blood vessel containing vascular tissue cells is the most ideal implant material. Due to its precision control ability, three-dimensional (3D) bioprinting is a promising method to prepare biomimetic system. In the 3D bioprinting process, the bioink is at the core state for building the topological structure and keeping the cell viable. Therefore, in this review, the basic properties and viable materials of the bioink are discussed, and the research of natural polymers in bioink, including decellularized extracellular matrix, hyaluronic acid, and collagen, is emphasized. Besides, the advantages of alginate and Pluronic F127, which are the mainstream sacrificial material during the preparation of artificial vascular graft, are also reviewed. Finally, an overview of the applications in the field of artificial blood vessel is also presented.

18.
Yale J Biol Med ; 85(2): 229-38, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22737051

RESUMO

Tissue-engineered vascular grafts (TEVGs) hold great promise for the improvement of outcomes in pediatric patients with congenital cardiac anomalies. Currently used synthetic grafts have several limitations, including thrombogenicity, increased risk of infection, and lack of growth potential. The first pilot clinical trial of TEVGs demonstrated the feasibility of this new technology and revealed an excellent safety profile. However, long-term follow-up from this trial revealed the primary graft-related complication to be stenosis, affecting 16 percent of grafts within 7 years post-implantation. In order to determine the mechanism behind TEVG stenosis and ultimately to create improved second generation TEVGs, our group has returned to the bench to study vascular neotissue formation in a variety of large and small animal models. The purpose of this report is to review the recent advances in the understanding of neotissue formation and vascular tissue engineering.


Assuntos
Prótese Vascular , Cardiopatias Congênitas/cirurgia , Engenharia Tecidual/métodos , Pesquisa Translacional Biomédica/métodos , Animais , Implante de Prótese Vascular/métodos , Implante de Prótese Vascular/tendências , Criança , Humanos , Modelos Animais , Engenharia Tecidual/tendências , Alicerces Teciduais , Pesquisa Translacional Biomédica/tendências
19.
Tissue Eng Regen Med ; 19(6): 1169-1184, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36201158

RESUMO

BACKGROUND: The production of tissue-engineered vascular graft (TEVG) usually involves a prolonged bioreactor cultivation period of up to several weeks to achieve maturation of extracellular matrix and sufficient mechanical strength. Therefore, we aimed to substantially shorten this conditioning time by combining a TEVG textile scaffold with a recently developed copolymer reinforced fibrin gel as a cell carrier. We further implemented our grafts with magnetic resonance imaging (MRI) contrast agents to allow the in-vitro monitoring of the TEVG's remodeling process. METHODS: Biodegradable polylactic-co-glycolic acid (PLGA) was electrospun onto a non-degradable polyvinylidene fluoride scaffold and molded along with copolymer-reinforced fibrin hydrogel and human arterial cells. Mechanical tests on the TEVGs were performed both instantly after molding and 4 days of bioreactor conditioning. The non-invasive in vitro monitoring of the PLGA degradation and the novel imaging of fluorinated thermoplastic polyurethane (19F-TPU) were performed using 7T MRI. RESULTS: After 4 days of close loop bioreactor conditioning, 617 ± 85 mmHg of burst pressure was achieved, and advanced maturation of extracellular matrix (ECM) was observed by immunohistology, especially in regards to collagen and smooth muscle actin. The suture retention strength (2.24 ± 0.3 N) and axial tensile strength (2.45 ± 0.58 MPa) of the TEVGs achieved higher values than the native arteries used as control. The contrast agents labeling of the TEVGs allowed the monitorability of the PLGA degradation and enabled the visibility of the non-degradable textile component. CONCLUSION: Here, we present a concept for a novel textile-reinforced TEVG, which is successfully produced in 4 days of bioreactor conditioning, characterized by increased ECM maturation and sufficient mechanical strength. Additionally, the combination of our approach with non-invasive imaging provides further insights into TEVG's clinical application.


Assuntos
Meios de Contraste , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Prótese Vascular , Fibrina , Têxteis
20.
Polymers (Basel) ; 14(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36432950

RESUMO

Extensive and permanent damage to the vasculature leading to different pathogenesis calls for developing innovative therapeutics, including drugs, medical devices, and cell therapies. Innovative strategies to engineer bioartificial/biomimetic vessels have been extensively exploited as an effective replacement for vessels that have seriously malfunctioned. However, further studies in polymer chemistry, additive manufacturing, and rapid prototyping are required to generate highly engineered vascular segments that can be effectively integrated into the existing vasculature of patients. One recently developed approach involves designing and fabricating acellular vessel equivalents from novel polymeric materials. This review aims to assess the design criteria, engineering factors, and innovative approaches for the fabrication and characterization of biomimetic macro- and micro-scale vessels. At the same time, the engineering correlation between the physical properties of the polymer and biological functionalities of multiscale acellular vascular segments are thoroughly elucidated. Moreover, several emerging characterization techniques for probing the mechanical properties of tissue-engineered vascular grafts are revealed. Finally, significant challenges to the clinical transformation of the highly promising engineered vessels derived from polymers are identified, and unique perspectives on future research directions are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA