Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.509
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 33: 393-416, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25622194

RESUMO

Innate immune responses depend on timely recognition of pathogenic or danger signals by multiple cell surface or cytoplasmic receptors and transmission of signals for proper counteractions through adaptor and effector molecules. At the forefront of innate immunity are four major signaling pathways, including those elicited by Toll-like receptors, RIG-I-like receptors, inflammasomes, or cGAS, each with its own cellular localization, ligand specificity, and signal relay mechanism. They collectively engage a number of overlapping signaling outcomes, such as NF-κB activation, interferon response, cytokine maturation, and cell death. Several proteins often assemble into a supramolecular complex to enable signal transduction and amplification. In this article, we review the recent progress in mechanistic delineation of proteins in these pathways, their structural features, modes of ligand recognition, conformational changes, and homo- and hetero-oligomeric interactions within the supramolecular complexes. Regardless of seemingly distinct interactions and mechanisms, the recurring themes appear to consist of autoinhibited resting-state receptors, ligand-induced conformational changes, and higher-order assemblies of activated receptors, adaptors, and signaling enzymes through conserved protein-protein interactions.


Assuntos
Imunidade Inata/fisiologia , Animais , Humanos , Inflamassomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
2.
Cell ; 179(6): 1264-1275.e13, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31778653

RESUMO

TLR8 is among the highest-expressed pattern-recognition receptors in the human myeloid compartment, yet its mode of action is poorly understood. TLR8 engages two distinct ligand binding sites to sense RNA degradation products, although it remains unclear how these ligands are formed in cellulo in the context of complex RNA molecule sensing. Here, we identified the lysosomal endoribonuclease RNase T2 as a non-redundant upstream component of TLR8-dependent RNA recognition. RNase T2 activity is required for rendering complex single-stranded, exogenous RNA molecules detectable for TLR8. This is due to RNase T2's preferential cleavage of single-stranded RNA molecules between purine and uridine residues, which critically contributes to the supply of catabolic uridine and the generation of purine-2',3'-cyclophosphate-terminated oligoribonucleotides. Thus-generated molecules constitute agonistic ligands for the first and second binding pocket of TLR8. Together, these results establish the identity and origin of the RNA-derived molecular pattern sensed by TLR8.


Assuntos
Endorribonucleases/metabolismo , Proteólise , Receptor 8 Toll-Like/metabolismo , Motivos de Aminoácidos , Sequência de Bases , Linhagem Celular , Endorribonucleases/deficiência , Humanos , Modelos Moleculares , Monócitos/metabolismo , Células Mieloides/metabolismo , Isótopos de Nitrogênio , Oligonucleotídeos/metabolismo , Purinas/metabolismo , RNA/metabolismo , Staphylococcus aureus/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/química , Uridina/metabolismo
3.
Immunity ; 57(8): 1780-1795.e6, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38843835

RESUMO

Macrophages elicit immune responses to pathogens through induction of inflammatory genes. Here, we examined the role of three variants of the SWI/SNF nucleosome remodeling complex-cBAF, ncBAF, and PBAF-in the macrophage response to bacterial endotoxin (lipid A). All three SWI/SNF variants were prebound in macrophages and retargeted to genomic sites undergoing changes in chromatin accessibility following stimulation. Cooperative binding of all three variants associated with de novo chromatin opening and latent enhancer activation. Isolated binding of ncBAF and PBAF, in contrast, associated with activation and repression of active enhancers, respectively. Chemical and genetic perturbations of variant-specific subunits revealed pathway-specific regulation in the activation of lipid A response genes, corresponding to requirement for cBAF and ncBAF in inflammatory and interferon-stimulated gene (ISG) activation, respectively, consistent with differential engagement of SWI/SNF variants by signal-responsive transcription factors. Thus, functional diversity among SWI/SNF variants enables increased regulatory control of innate immune transcriptional programs, with potential for specific therapeutic targeting.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona , Elementos Facilitadores Genéticos , Inflamação , Macrófagos , Fatores de Transcrição , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Inflamação/imunologia , Inflamação/genética , Elementos Facilitadores Genéticos/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Imunidade Inata , Humanos
4.
Cell ; 174(2): 259-270.e11, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29937224

RESUMO

Many community- and hospital-acquired bacterial infections are caused by antibiotic-resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) predisposes humans to invasive infections that are difficult to eradicate. We designed a closed-loop gene network programming mammalian cells to autonomously detect and eliminate bacterial infections. The genetic circuit contains human Toll-like receptors as the bacterial sensor and a synthetic promoter driving reversible and adjustable expression of lysostaphin, a bacteriolytic enzyme highly lethal to S. aureus. Immunomimetic designer cells harboring this genetic circuit exhibited fast and robust sense-and-destroy kinetics against live staphylococci. When tested in a foreign-body infection model in mice, microencapsulated cell implants prevented planktonic MRSA infection and reduced MRSA biofilm formation by 91%. Notably, this system achieved a 100% cure rate of acute MRSA infections, whereas conventional vancomycin treatment failed. These results suggest that immunomimetic designer cells could offer a therapeutic approach for early detection, prevention, and cure of pathogenic infections in the post-antibiotic era.


Assuntos
Biomimética/métodos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Infecções Estafilocócicas/prevenção & controle , Fosfatase Alcalina/sangue , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Feminino , Células HEK293 , Humanos , Receptores de Lipopolissacarídeos/genética , Lisostafina/metabolismo , Lisostafina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética , Plasmídeos/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Receptor 1 Toll-Like/genética , Receptor 2 Toll-Like/genética , Receptor 6 Toll-Like/genética , Fator de Transcrição AP-1/metabolismo
5.
Cell ; 170(3): 548-563.e16, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28753429

RESUMO

Gut microbiota are linked to chronic inflammation and carcinogenesis. Chemotherapy failure is the major cause of recurrence and poor prognosis in colorectal cancer patients. Here, we investigated the contribution of gut microbiota to chemoresistance in patients with colorectal cancer. We found that Fusobacterium (F.) nucleatum was abundant in colorectal cancer tissues in patients with recurrence post chemotherapy, and was associated with patient clinicopathological characterisitcs. Furthermore, our bioinformatic and functional studies demonstrated that F. nucleatum promoted colorectal cancer resistance to chemotherapy. Mechanistically, F. nucleatum targeted TLR4 and MYD88 innate immune signaling and specific microRNAs to activate the autophagy pathway and alter colorectal cancer chemotherapeutic response. Thus, F. nucleatum orchestrates a molecular network of the Toll-like receptor, microRNAs, and autophagy to clinically, biologically, and mechanistically control colorectal cancer chemoresistance. Measuring and targeting F. nucleatum and its associated pathway will yield valuable insight into clinical management and may ameliorate colorectal cancer patient outcomes.


Assuntos
Autofagia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Fusobacterium nucleatum/fisiologia , Microbioma Gastrointestinal , Animais , Antineoplásicos/uso terapêutico , Capecitabina/uso terapêutico , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Xenoenxertos , Camundongos , MicroRNAs/metabolismo , Transplante de Neoplasias , Compostos de Platina/uso terapêutico , Recidiva , Receptores Toll-Like/metabolismo , Microambiente Tumoral
6.
Immunity ; 55(3): 423-441.e9, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139355

RESUMO

Cell death plays an important role during pathogen infections. Here, we report that interferon-γ (IFNγ) sensitizes macrophages to Toll-like receptor (TLR)-induced death that requires macrophage-intrinsic death ligands and caspase-8 enzymatic activity, which trigger the mitochondrial apoptotic effectors, BAX and BAK. The pro-apoptotic caspase-8 substrate BID was dispensable for BAX and BAK activation. Instead, caspase-8 reduced pro-survival BCL-2 transcription and increased inducible nitric oxide synthase (iNOS), thus facilitating BAX and BAK signaling. IFNγ-primed, TLR-induced macrophage killing required iNOS, which licensed apoptotic caspase-8 activity and reduced the BAX and BAK inhibitors, A1 and MCL-1. The deletion of iNOS or caspase-8 limited SARS-CoV-2-induced disease in mice, while caspase-8 caused lethality independent of iNOS in a model of hemophagocytic lymphohistiocytosis. These findings reveal that iNOS selectively licenses programmed cell death, which may explain how nitric oxide impacts disease severity in SARS-CoV-2 infection and other iNOS-associated inflammatory conditions.


Assuntos
COVID-19/imunologia , Caspase 8/metabolismo , Interferon gama/metabolismo , Linfo-Histiocitose Hemofagocítica/imunologia , Macrófagos/imunologia , Mitocôndrias/metabolismo , SARS-CoV-2/fisiologia , Animais , Caspase 8/genética , Células Cultivadas , Citotoxicidade Imunológica , Humanos , Interferon gama/genética , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Transdução de Sinais , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
7.
Cell ; 167(6): 1525-1539.e17, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912060

RESUMO

Poorly immunogenic tumor cells evade host immunity and grow even in the presence of an intact immune system, but the complex mechanisms regulating tumor immunogenicity have not been elucidated. Here, we discovered an unexpected role of the Hippo pathway in suppressing anti-tumor immunity. We demonstrate that, in three different murine syngeneic tumor models (B16, SCC7, and 4T1), loss of the Hippo pathway kinases LATS1/2 (large tumor suppressor 1 and 2) in tumor cells inhibits tumor growth. Tumor regression by LATS1/2 deletion requires adaptive immune responses, and LATS1/2 deficiency enhances tumor vaccine efficacy. Mechanistically, LATS1/2-null tumor cells secrete nucleic-acid-rich extracellular vesicles, which induce a type I interferon response via the Toll-like receptors-MYD88/TRIF pathway. LATS1/2 deletion in tumors thus improves tumor immunogenicity, leading to tumor destruction by enhancing anti-tumor immune responses. Our observations uncover a key role of the Hippo pathway in modulating tumor immunogenicity and demonstrate a proof of concept for targeting LATS1/2 in cancer immunotherapy.


Assuntos
Tolerância Imunológica , Neoplasias/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Vacinas Anticâncer/imunologia , Deleção de Genes , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Receptores Toll-Like/metabolismo , Proteínas Supressoras de Tumor/genética
8.
Immunity ; 52(1): 123-135.e6, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31859049

RESUMO

The immune system monitors the health of cells and is stimulated by necrosis. Here we examined the receptors and ligands driving this response. In a targeted screen of C-type lectin receptors, a Clec2d reporter responded to lysates from necrotic cells. Biochemical purification identified histones, both free and bound to nucleosomes or neutrophil extracellular traps, as Clec2d ligands. Clec2d recognized poly-basic sequences in histone tails and this recognition was sensitive to post-translational modifications of these sequences. As compared with WT mice, Clec2d-/- mice exhibited reduced proinflammatory responses to injected histones, and less tissue damage and improved survival in a hepatotoxic injury model. In macrophages, Clec2d localized to the plasma membrane and endosomes. Histone binding to Clec2d did not stimulate kinase activation or cytokine production. Rather, histone-bound DNA stimulated endosomal Tlr9-dependent responses in a Clec2d-dependent manner. Thus, Clec2d binds to histones released upon necrotic cell death, with functional consequences to inflammation and tissue damage.


Assuntos
Histonas/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Fígado/lesões , Necrose/patologia , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Animais , Apoptose/imunologia , Endossomos/metabolismo , Células HEK293 , Humanos , Células Jurkat , Lectinas Tipo C/genética , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Receptores de Superfície Celular/genética , Receptor Toll-Like 9/imunologia
9.
EMBO J ; 43(9): 1690-1721, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38378891

RESUMO

Mosquitoes transmit many disease-relevant flaviviruses. Efficient viral transmission to mammalian hosts requires mosquito salivary factors. However, the specific salivary components facilitating viral transmission and their mechanisms of action remain largely unknown. Here, we show that a female mosquito salivary gland-specific protein, here named A. aegypti Neutrophil Recruitment Protein (AaNRP), facilitates the transmission of Zika and dengue viruses. AaNRP promotes a rapid influx of neutrophils, followed by virus-susceptible myeloid cells toward mosquito bite sites, which facilitates establishment of local infection and systemic dissemination. Mechanistically, AaNRP engages TLR1 and TLR4 of skin-resident macrophages and activates MyD88-dependent NF-κB signaling to induce the expression of neutrophil chemoattractants. Inhibition of MyD88-NF-κB signaling with the dietary phytochemical resveratrol reduces AaNRP-mediated enhancement of flavivirus transmission by mosquitoes. These findings exemplify how salivary components can aid viral transmission, and suggest a potential prophylactic target.


Assuntos
Aedes , Zika virus , Animais , Aedes/virologia , Aedes/metabolismo , Feminino , Zika virus/fisiologia , Camundongos , Vírus da Dengue/fisiologia , Proteínas e Peptídeos Salivares/metabolismo , Mosquitos Vetores/virologia , Proteínas de Insetos/metabolismo , Células Mieloides/virologia , Células Mieloides/metabolismo , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Infecção por Zika virus/metabolismo , Dengue/transmissão , Dengue/virologia , Dengue/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética
10.
Immunity ; 48(1): 59-74.e5, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29343440

RESUMO

Toll-like receptors (TLRs) sense pathogen-associated molecular patterns to activate the production of inflammatory mediators. TLR4 recognizes lipopolysaccharide (LPS) and drives the secretion of inflammatory cytokines, often contributing to sepsis. We report that transient receptor potential melastatin-like 7 (TRPM7), a non-selective but Ca2+-conducting ion channel, mediates the cytosolic Ca2+ elevations essential for LPS-induced macrophage activation. LPS triggered TRPM7-dependent Ca2+ elevations essential for TLR4 endocytosis and the subsequent activation of the transcription factor IRF3. In a parallel pathway, the Ca2+ signaling initiated by TRPM7 was also essential for the nuclear translocation of NFκB. Consequently, TRPM7-deficient macrophages exhibited major deficits in the LPS-induced transcriptional programs in that they failed to produce IL-1ß and other key pro-inflammatory cytokines. In accord with these defects, mice with myeloid-specific deletion of Trpm7 are protected from LPS-induced peritonitis. Our study highlights the importance of Ca2+ signaling in macrophage activation and identifies the ion channel TRPM7 as a central component of TLR4 signaling.


Assuntos
Cálcio/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Técnicas de Cultura de Células , Endocitose/efeitos dos fármacos , Feminino , Citometria de Fluxo , Imunofluorescência , Regulação da Expressão Gênica , Técnicas de Genotipagem , Immunoblotting , Fator Regulador 3 de Interferon/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Canais de Cátion TRPM/genética
11.
Immunity ; 49(4): 725-739.e6, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30314758

RESUMO

Systemic Lupus Erythematosus (SLE) is characterized by B cells lacking IgD and CD27 (double negative; DN). We show that DN cell expansions reflected a subset of CXCR5- CD11c+ cells (DN2) representing pre-plasma cells (PC). DN2 cells predominated in African-American patients with active disease and nephritis, anti-Smith and anti-RNA autoantibodies. They expressed a T-bet transcriptional network; increased Toll-like receptor-7 (TLR7); lacked the negative TLR regulator TRAF5; and were hyper-responsive to TLR7. DN2 cells shared with activated naive cells (aNAV), phenotypic and functional features, and similar transcriptomes. Their PC differentiation and autoantibody production was driven by TLR7 in an interleukin-21 (IL-21)-mediated fashion. An in vivo developmental link between aNAV, DN2 cells, and PC was demonstrated by clonal sharing. This study defines a distinct differentiation fate of autoreactive naive B cells into PC precursors with hyper-responsiveness to innate stimuli, as well as establishes prominence of extra-follicular B cell activation in SLE, and identifies therapeutic targets.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Receptor 7 Toll-Like/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Subpopulações de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Feminino , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/imunologia , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Pessoa de Meia-Idade , Plasmócitos/imunologia , Plasmócitos/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia , Adulto Jovem
12.
Immunity ; 49(4): 695-708.e4, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30291027

RESUMO

B cells can present antigens to CD4+ T cells, but it is thought that dendritic cells (DCs) are the primary initiators of naive CD4+ T cell responses. Nanoparticles, including virus-like particles (VLPs), are attractive candidates as carriers for vaccines and drug delivery. Using RNA phage Qß-derived VLP (Qß-VLP) as a model antigen, we found that antigen-specific B cells were the dominant antigen-presenting cells that initiated naive CD4+ T cell activation. B cells were sufficient to induce T follicular helper cell development in the absence of DCs. Qß-specific B cells promoted CD4+ T cell proliferation and differentiation via cognate interactions and through Toll-like receptor signaling-mediated cytokine production. Antigen-specific B cells were also involved in initiating CD4+ T cell responses during immunization with inactivated influenza virus. These findings have implications for the rational design of nanoparticles as vaccine candidates, particularly for therapeutic vaccines that aim to break immune tolerance.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Imunização/métodos , Vacinas contra Influenza/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos Virais/química , Antígenos Virais/imunologia , Diferenciação Celular/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Nanopartículas/química , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Receptores Toll-Like/imunologia , Vacinas de Produtos Inativados/imunologia
13.
Trends Immunol ; 44(3): 153-155, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36740514

RESUMO

Activation of Toll-like receptor 7 (TLR7) can induce lupus in mice, whereas activation of TLR9 can prevent it, even though both receptors interact with myeloid differentiation primary response gene 88 (MyD88) for downstream signaling. How TLR9 triggers anti-inflammatory responses in autoimmunity is unclear. Leibler et al. recently reported that TLR9 initiates anti-inflammatory signaling and inhibits lupus pathogenesis in a MyD88-independent but ligand-dependent manner.


Assuntos
Fator 88 de Diferenciação Mieloide , Receptor Toll-Like 9 , Camundongos , Animais , Receptor Toll-Like 9/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos Knockout , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Anti-Inflamatórios
14.
Immunity ; 47(4): 697-709.e3, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045901

RESUMO

A heterogeneous mixture of lipids called oxPAPC, derived from dying cells, can hyperactivate dendritic cells (DCs) but not macrophages. Hyperactive DCs are defined by their ability to release interleukin-1 (IL-1) while maintaining cell viability, endowing these cells with potent aptitude to stimulate adaptive immunity. Herein, we found that the bacterial lipopolysaccharide receptor CD14 captured extracellular oxPAPC and delivered these lipids into the cell to promote inflammasome-dependent DC hyperactivation. Notably, we identified two specific components within the oxPAPC mixture that hyperactivated macrophages, allowing these cells to release IL-1 for several days, by a CD14-dependent process. In murine models of sepsis, conditions that promoted cell hyperactivation resulted in inflammation but not lethality. Thus, multiple phagocytes are capable of hyperactivation in response to oxPAPC, with CD14 acting as the earliest regulator in this process, serving to capture and transport these lipids to promote inflammatory cell fate decisions.


Assuntos
Células Dendríticas/imunologia , Inflamassomos/imunologia , Receptores de Lipopolissacarídeos/imunologia , Fagócitos/imunologia , Fosfatidilcolinas/imunologia , Imunidade Adaptativa/imunologia , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular/imunologia , Células Dendríticas/metabolismo , Endocitose/efeitos dos fármacos , Endocitose/imunologia , Feminino , Citometria de Fluxo , Células HEK293 , Humanos , Inflamassomos/metabolismo , Interleucina-1/imunologia , Interleucina-1/metabolismo , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagócitos/metabolismo , Fosfatidilcolinas/metabolismo
15.
Circ Res ; 134(8): 970-986, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38456277

RESUMO

BACKGROUND: While platelets have well-studied hemostatic functions, platelets are immune cells that circulate at the interface between the vascular wall and white blood cells. The physiological implications of these constant transient interactions are poorly understood. Activated platelets induce and amplify immune responses, but platelets may also maintain immune homeostasis in healthy conditions, including maintaining vascular integrity and T helper cell differentiation, meaning that platelets are central to both immune responses and immune quiescence. Clinical data have shown an association between low platelet counts (thrombocytopenia) and immune dysfunction in patients with sepsis and extracorporeal membrane oxygenation, further implicating platelets as more holistic immune regulators, but studies of platelet immune functions in nondisease contexts have had limited study. METHODS: We used in vivo models of thrombocytopenia and in vitro models of platelet and monocyte interactions, as well as RNA-seq and ATAC-seq (assay for transposase-accessible chromatin with sequencing), to mechanistically determine how resting platelet and monocyte interactions immune program monocytes. RESULTS: Circulating platelets and monocytes interact in a CD47-dependent manner to regulate monocyte metabolism, histone methylation, and gene expression. Resting platelet-monocyte interactions limit TLR (toll-like receptor) signaling responses in healthy conditions in an innate immune training-like manner. In both human patients with sepsis and mouse sepsis models, thrombocytopenia exacerbated monocyte immune dysfunction, including increased cytokine production. CONCLUSIONS: Thrombocytopenia immune programs monocytes in a manner that may lead to immune dysfunction in the context of sepsis. This is the first demonstration that sterile, endogenous cell interactions between resting platelets and monocytes regulate monocyte metabolism and pathogen responses, demonstrating platelets to be immune rheostats in both health and disease.


Assuntos
Sepse , Trombocitopenia , Camundongos , Animais , Humanos , Monócitos/metabolismo , Trombocitopenia/metabolismo , Plaquetas/metabolismo , Imunidade , Sepse/metabolismo , Ativação Plaquetária
16.
Circ Res ; 134(5): 505-525, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422177

RESUMO

BACKGROUND: Chronic overconsumption of lipids followed by their excessive accumulation in the heart leads to cardiomyopathy. The cause of lipid-induced cardiomyopathy involves a pivotal role for the proton-pump vacuolar-type H+-ATPase (v-ATPase), which acidifies endosomes, and for lipid-transporter CD36, which is stored in acidified endosomes. During lipid overexposure, an increased influx of lipids into cardiomyocytes is sensed by v-ATPase, which then disassembles, causing endosomal de-acidification and expulsion of stored CD36 from the endosomes toward the sarcolemma. Once at the sarcolemma, CD36 not only increases lipid uptake but also interacts with inflammatory receptor TLR4 (Toll-like receptor 4), together resulting in lipid-induced insulin resistance, inflammation, fibrosis, and cardiac dysfunction. Strategies inducing v-ATPase reassembly, that is, to achieve CD36 reinternalization, may correct these maladaptive alterations. For this, we used NAD+ (nicotinamide adenine dinucleotide)-precursor nicotinamide mononucleotide (NMN), inducing v-ATPase reassembly by stimulating glycolytic enzymes to bind to v-ATPase. METHODS: Rats/mice on cardiomyopathy-inducing high-fat diets were supplemented with NMN and for comparison with a cocktail of lysine/leucine/arginine (mTORC1 [mechanistic target of rapamycin complex 1]-mediated v-ATPase reassembly). We used the following methods: RNA sequencing, mRNA/protein expression analysis, immunofluorescence microscopy, (co)immunoprecipitation/proximity ligation assay (v-ATPase assembly), myocellular uptake of [3H]chloroquine (endosomal pH), and [14C]palmitate, targeted lipidomics, and echocardiography. To confirm the involvement of v-ATPase in the beneficial effects of both supplementations, mTORC1/v-ATPase inhibitors (rapamycin/bafilomycin A1) were administered. Additionally, 2 heart-specific v-ATPase-knockout mouse models (subunits V1G1/V0d2) were subjected to these measurements. Mechanisms were confirmed in pharmacologically/genetically manipulated cardiomyocyte models of lipid overload. RESULTS: NMN successfully preserved endosomal acidification during myocardial lipid overload by maintaining v-ATPase activity and subsequently prevented CD36-mediated lipid accumulation, CD36-TLR4 interaction toward inflammation, fibrosis, cardiac dysfunction, and whole-body insulin resistance. Lipidomics revealed C18:1-enriched diacylglycerols as lipid class prominently increased by high-fat diet and subsequently reversed/preserved by lysine/leucine/arginine/NMN treatment. Studies with mTORC1/v-ATPase inhibitors and heart-specific v-ATPase-knockout mice further confirmed the pivotal roles of v-ATPase in these beneficial actions. CONCLUSION: NMN preserves heart function during lipid overload by preventing v-ATPase disassembly.


Assuntos
Cardiomiopatias , Resistência à Insulina , Animais , Camundongos , Ratos , Adenosina Trifosfatases , Arginina , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Antígenos CD36/genética , Fibrose , Inflamação , Leucina , Lipídeos , Lisina , Alvo Mecanístico do Complexo 1 de Rapamicina , Miócitos Cardíacos , Mononucleotídeo de Nicotinamida , Receptor 4 Toll-Like/genética
17.
J Neurosci ; 44(6)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326029

RESUMO

Toll-like receptors (TLRs) play an important role in the innate immune response after CNS injury. Although TLR4 is one of the best characterized, its role in chronic stages after spinal cord injury (SCI) is not well understood. We examined the role of TLR4 signaling in injury-induced responses at 1 d, 7 d, and 8 weeks after spinal cord contusion injury in adult female TLR4 null and wild-type mice. Analyses include secondary damage, a range of transcriptome and protein analyses of inflammatory, cell death, and extracellular matrix (ECM) molecules, as well as immune cell infiltration and changes in axonal sprouting and locomotor recovery. Lack of TLR4 signaling results in reduced neuronal and myelin loss, reduced activation of NFκB, and decreased expression of inflammatory cytokines and necroptotic cell death pathway at a late time point (8 weeks) after injury. TLR4 null mice also showed reduction of scar-related ECM molecules at 8 weeks after SCI, accompanied by increase in ECM molecules associated with perineuronal nets, increased sprouting of serotonergic fibers, and improved locomotor recovery. These findings reveal novel effects of TLR4 signaling in chronic SCI. We show that TLR4 influences inflammation, cell death, and ECM deposition at late-stage post-injury when secondary injury processes are normally considered to be over. This highlights the potential for late-stage targeting of TLR4 as a potential therapy for chronic SCI.


Assuntos
Citocinas , Traumatismos da Medula Espinal , Camundongos , Feminino , Animais , Citocinas/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Neurônios/metabolismo , Inflamação/metabolismo , Camundongos Knockout , Medula Espinal/metabolismo , Recuperação de Função Fisiológica/fisiologia
18.
J Biol Chem ; 300(6): 107384, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762177

RESUMO

Antimicrobial resistance poses a serious threat to human health worldwide and its incidence continues to increase owing to the overuse of antibiotics and other factors. Macrolide antibiotics such as erythromycin (EM) have immunomodulatory effects in addition to their antibacterial activity. Long-term, low-dose administration of macrolides has shown clinical benefits in treating non-infectious inflammatory respiratory diseases. However, this practice may also increase the emergence of drug-resistant bacteria. In this study, we synthesized a series of EM derivatives, and screened them for two criteria: (i) lack of antibacterial activity and (ii) ability to suppress tumor necrosis factor-α (TNF-α) production in THP-1 cells stimulated with lipopolysaccharide. Among the 37 synthesized derivatives, we identified a novel 12-membered ring macrolide EM982 that lacked antibacterial activity against Staphylococcus aureus and suppressed the production of TNF-α and other cytokines. The effects of EM982 on Toll-like receptor 4 (TLR4) signaling were analyzed using a reporter assay and Western blotting. The reporter assay showed that EM982 suppressed the activation of transcription factors, NF-κB and/or activator protein 1 (AP-1), in HEK293 cells expressing human TLR4. Western blotting showed that EM982 inhibited the phosphorylation of both IκB kinase (IKK) ß and IκBα, which function upstream of NF-κB, whereas it did not affect the phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and c-Jun N-terminal kinase, which act upstream of AP-1. These results suggest that EM982 suppresses cytokine production by inhibiting phosphorylation of IKKß and IκBα, resulting in the inactivation of NF-κB.


Assuntos
Citocinas , Quinase I-kappa B , Inibidor de NF-kappaB alfa , Humanos , Quinase I-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Inibidor de NF-kappaB alfa/metabolismo , Citocinas/metabolismo , Eritromicina/farmacologia , Eritromicina/química , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Macrolídeos/farmacologia , Macrolídeos/química , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
19.
J Biol Chem ; 300(5): 107249, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556084

RESUMO

Tripartite-motif protein-56 (TRIM56) positively regulates the induction of type I interferon response via the TLR3 pathway by enhancing IRF3 activation and depends on its C-terminal residues 621-750 for interacting with the adaptor TRIF. However, the precise underlying mechanism and detailed TRIM56 determinants remain unclear. Herein, we show ectopic expression of murine TRIM56 also enhances TLR3-dependent interferon-ß promoter activation, suggesting functional conservation. We found that endogenous TRIM56 and TRIF formed a complex early (0.5-2 h) after poly-I:C stimulation and that TRIM56 overexpression also promoted activation of NF-κB by poly-I:C but not that by TNF-α or IL-1ß, consistent with a specific effect on TRIF prior to the bifurcation of NF-κB and IRF3. Using transient transfection and Tet-regulated cell lines expressing various TRIM56 mutants, we demonstrated the Coiled-coil domain and a segment spanning residues ∼434-610, but not the B-box or residues 355-433, were required for TRIM56 augmentation of TLR3 signaling. Moreover, alanine substitution at each putative phosphorylation site, Ser471, Ser475, and Ser710, abrogated TRIM56 function. Concordantly, mutants bearing Ser471Ala, Ser475Ala, or Ser710Ala, or lacking the Coiled-coil domain, all lost the capacity to enhance poly-I:C-induced establishment of an antiviral state. Furthermore, the Ser710Ala mutation disrupted the TRIM56-TRIF association. Using phospho-specific antibodies, we detected biphasic phosphorylation of TRIM56 at Ser471 and Ser475 following TLR3 stimulation, with the early phase occurring at ∼0.5 to 1 h, prior to IRF3 phosphorylation. Together, these data reveal novel molecular details critical for the TRIM56 augmentation of TLR3-dependent antiviral response and highlight important roles for TRIM56 scaffolding and phosphorylation.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Imunidade Inata , Receptor 3 Toll-Like , Proteínas com Motivo Tripartido , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Células HEK293 , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , NF-kappa B/metabolismo , Fosforilação , Poli I-C/farmacologia , Domínios Proteicos , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
20.
J Biol Chem ; 300(3): 105744, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354781

RESUMO

Synaptic plasticity is believed to be the cellular basis for experience-dependent learning and memory. Although long-term depression (LTD), a form of synaptic plasticity, is caused by the activity-dependent reduction of cell surface α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors (AMPA receptors) at postsynaptic sites, its regulation by neuronal activity is not completely understood. In this study, we showed that the inhibition of toll-like receptor-9 (TLR9), an innate immune receptor, suppresses N-methyl-d-aspartate (NMDA)-induced reduction of cell surface AMPA receptors in cultured hippocampal neurons. We found that inhibition of TLR9 also blocked NMDA-induced activation of caspase-3, which plays an essential role in the induction of LTD. siRNA-based knockdown of TLR9 also suppressed the NMDA-induced reduction of cell surface AMPA receptors, although the scrambled RNA had no effect on the NMDA-induced trafficking of AMPA receptors. Overexpression of the siRNA-resistant form of TLR9 rescued the AMPA receptor trafficking abolished by siRNA. Furthermore, NMDA stimulation induced rapid mitochondrial morphological changes, mitophagy, and the binding of mitochondrial DNA (mtDNA) to TLR9. Treatment with dideoxycytidine and mitochondrial division inhibitor-1, which block mtDNA replication and mitophagy, respectively, inhibited NMDA-dependent AMPA receptor internalization. These results suggest that mitophagy induced by NMDA receptor activation releases mtDNA and activates TLR9, which plays an essential role in the trafficking of AMPA receptors during the induction of LTD.


Assuntos
DNA Mitocondrial , Hipocampo , Depressão Sináptica de Longo Prazo , Receptor Toll-Like 9 , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Hipocampo/metabolismo , Imunidade Inata , N-Metilaspartato/farmacologia , N-Metilaspartato/metabolismo , Neurônios/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , RNA Interferente Pequeno/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Células HEK293
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA