Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; : e14430, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952071

RESUMO

PURPOSE: The purpose of this work was to detail our center's experience in transitioning from a Co-60 treatment technique to an intensity modulated radiation therapy (IMRT) based lateral-field extended source-to-axis distance (e-SAD) technique for total body irradiation (TBI). MATERIALS AND METHODS: An existing beam model in RayStation v.10A was validated for the use of e-SAD TBI treatments. Data were acquired with an Elekta Synergy linear accelerator (LINAC) at an extended source-to-surface distance of 365 cm with an 18 MV beam. Beam model validation measurements included percentage depth dose (PDD), profile data, surface dose, build-up region and transmission measurements. End-to-end testing was carried out using an anthropomorphic phantom. Treatments were performed in a supine position in a whole-body Vac-Lok at an e-SAD of 400 cm with a beam spoiler 10 cm from the couch. Planning was achieved using IMRT, where multi-leaf collimators were used to modulate the beam and shield the organs at risk. Beam's eye view projection images were used for in-room patient positioning and in-vivo dosimetry was performed for every treatment. RESULTS: The percent difference between the measured and calculated PDD and profiles was less than 2% at all locations. Surface dose was 83.8% of the maximum dose with the beam spoiler at a 10 cm distance from the phantom. The largest percent difference between the treatment planning system (TPS) and measured data within the anthropomorphic phantom was approximately 2%. In-vivo dosimetry measurements yielded results within the 5% institutional threshold. CONCLUSION: In 2022, 17 patients were successfully treated using the new IMRT-based lateral-field e-SAD TBI technique. The resulting clinical plans respected the institutional standard. The commissioning process, as well as the treatment planning and delivery aspects were described in this work with the intention of supporting other clinics in implementing this treatment method.

2.
J Appl Clin Med Phys ; 24(1): e13842, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36355034

RESUMO

Total-body irradiation (TBI) has been used as a part of the conditioning regimen for patients undergoing hematopoietic stem cell transplantation for certain nonmalignant conditions such as sickle cell disease. Although effective, TBI can cause lasting side effects for pediatric patients. One of these potential side effects includes oligospermia or even permanent azoospermia. Although many investigators have studied ways to shield the testicles during the TBI for nonmalignant conditions, there is no set standard. We describe the technical aspects of effective techniques to shield the testicles of male pediatric patients undergoing TBI. We verified that our techniques reduced the testicular dose by approximately 80%-85% of the TBI prescription dose in four male pediatric patients, keeping the dose well below the documented doses that can cause permanent infertility and hypogonadism.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Testículo , Criança , Humanos , Masculino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
3.
J Appl Clin Med Phys ; 23(10): e13791, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36197733

RESUMO

PURPOSE: To determine the thickness of a soft variable shape tungsten rubber (STR) as a lung compensating filter in total body irradiation. METHODS: A tough water (TW) phantom and tough lung (TL) phantom were used as water and lung-equivalent phantoms. The TW with a thickness of 3 cm simulating the thoracic wall was used (upper layer). The TW or TL with a thickness from 1 to 15 cm (1 cm increments) was placed beneath the upper layer (middle layer). The TW with a thickness of 5 cm simulating the mediastinum was placed beneath the middle layer (lower layer), and a farmer ionization chamber was placed beneath this layer. The relative doses of a 10 MV X-rays were then measured. The TL was compensated in 1 mm increments from 1 to 11 mm of the STR, and the thickness of the STR at the same dose of TW (water equivalent) was obtained. RESULTS: The compensating ability of STR increased as the thickness of the TL increased, and an STR with a thickness of 1 mm reduced the dose by 2%-4%, depending on the thickness of lung. The STR thickness as an equivalent dose of TW per cm of TL was approximately linear, and the thickness was 0.62 mm/cm of TL. CONCLUSION: The STR can be used as a lung compensating filter for a water equivalent dose with 0.62 mm of STR per cm of lung.


Assuntos
Tungstênio , Irradiação Corporal Total , Humanos , Borracha , Imagens de Fantasmas , Água , Pulmão/efeitos da radiação , Dosagem Radioterapêutica , Radiometria/métodos
4.
J Appl Clin Med Phys ; 22(3): 119-130, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33565214

RESUMO

The purpose of this work is to establish an automated approach for a multiple isocenter volumetric arc therapy (VMAT)-based TBI treatment planning approach. Five anonymized full-body CT imaging sets were used. A script was developed to automate and standardize the treatment planning process using the Varian Eclipse v15.6 Scripting API. The script generates two treatment plans: a head-first VMAT-based plan for upper body coverage using four isocenters and a total of eight full arcs; and a feet-first AP/PA plan with three isocenters that covers the lower extremities of the patient. PTV was the entire body cropped 5 mm from the patient surface and extended 3 mm into the lungs and kidneys. Two plans were generated for each case: one to a total dose of 1200 cGy in 8 fractions and a second one to a total dose of 1320 cGy in 8 fractions. Plans were calculated using the AAA algorithm and 6 MV photon energy. One plan was created and delivered to an anthropomorphic phantom containing 12 OSLDs for in-vivo dose verification. For the plans prescribed to 1200 cGy total dose the following dosimetric results were achieved: median PTV V100% = 94.5%; median PTV D98% = 89.9%; median lungs Dmean = 763 cGy; median left kidney Dmean = 1058 cGy; and median right kidney Dmean = 1051 cGy. For the plans prescribed to 1320 cGy total dose the following dosimetric results were achieved: median PTV V100% = 95.0%; median PTV D98% = 88.7%; median lungs Dmean = 798 cGy; median left kidney Dmean = 1059 cGy; and median right kidney Dmean = 1064 cGy. Maximum dose objective was met for all cases. The dose deviation between the treatment planning dose and the dose measured by the OSLDs was within ±4%. In summary, we have demonstrated that scripting can produce high-quality plans based on predefined dose objectives and can decrease planning time by automatic target and optimization contours generation, plan creation, field and isocenter placement, and optimization objectives setup.


Assuntos
Radioterapia de Intensidade Modulada , Irradiação Corporal Total , Humanos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
5.
J Appl Clin Med Phys ; 19(3): 159-167, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29654662

RESUMO

In total body irradiation (TBI) utilizing large parallel-opposed fields, the manual placement of lead compensators has conventionally been used to compensate for the varying thickness throughout the body. The goal of this study is to pursue utilizing the modern electronic compensation (E-comp) technique to more accurately deliver dose to TBI patients. Bilateral parallel-opposed TBI treatment plans were created using E-comp for 15 patients for whom CT data had been previously acquired. A desirable fluence pattern was manually painted within each field to yield a uniform dose distribution. The conventional compensation technique was simulated within the treatment planning system (TPS) using a field-in-field (FIF) method. This allows for a meaningful evaluation of the E-comp technique in comparison to the conventional method. Dose-volume histograms (DVH) were computed for all treatment plans. The mean total body dose using E-comp deviates from the prescribed dose (4 Gy) by an average of 2.4%. The mean total body dose using the conventional compensation deviates from the prescribed dose by an average of 4.5%. In all cases, the mean body dose calculated using E-comp technique deviates less than 10% from that of conventional compensation. The average reduction in maximum dose using E-comp compared to that of the conventional method was 30.3% ± 6.6% (standard deviation). In all cases, the s-index for the E-comp technique was lower (10.5% ± 0.7%) than that of the conventional method (15.8% ± 4.4%), indicating a more homogenous dose distribution. In conclusion, a large reduction in maximum body dose can be seen using the proposed E-comp technique while still producing a mean body dose that accurately complies with the prescription dose. Dose homogeneity was quantified using s-index which demonstrated a reduction in hotspots with E-comp technique. Electronic compensation technique is capable of more accurately delivering a total body dose compared to conventional methods.


Assuntos
Eletrônica Médica , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Irradiação Corporal Total/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Doses de Radiação , Radioterapia de Intensidade Modulada/métodos
6.
J Appl Clin Med Phys ; 19(2): 103-110, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29368389

RESUMO

A study was undertaken to explore the use of volumetric modulated arc therapy (VMAT) for total body irradiation (TBI). Five patient plans were created in Pinnacle3 using nine 6 MV photon dynamic arcs. A dose of 12 Gy in six fractions was prescribed. The planning target volume (PTV) was split into four subsections for the head, chest, abdomen, and pelvis. The head and chest beams were optimized together, followed by the abdomen and pelvis beams. The last stage of the planning process involved turning all beams on and performing a final optimization to achieve a clinically acceptable plan. Beam isocenters were shifted by 3 or 5 mm in the left-right, anterior-posterior, and superior-inferior directions to simulate the effect of setup errors on the dose distribution. Treatment plan verification consisted of ArcCheck measurements compared to calculated doses using a global 3%/3 mm gamma analysis. All five patient plans achieved the planning aim of delivering 12 Gy to at least 90% of the target. The mean dose in the PTV was 12.7 Gy. Mean lung dose was restricted to 8 Gy, and a dose reduction of up to 40% for organs such as the liver and kidneys proved feasible. The VMAT technique was found to be sensitive to patient setup errors particularly in the superior-inferior direction. The dose predicted by the planning system agreed with measured doses and had an average pass rate of 99.2% for all arcs. VMAT was found to be a viable treatment technique for total body irradiation.


Assuntos
Abdome/efeitos da radiação , Cabeça/efeitos da radiação , Neoplasias/radioterapia , Pelve/efeitos da radiação , Radioterapia de Intensidade Modulada/métodos , Tórax/efeitos da radiação , Irradiação Corporal Total , Algoritmos , Estudos de Viabilidade , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos
7.
Front Oncol ; 14: 1459287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351359

RESUMO

Introduction: Volumetric modulated arc therapy (VMAT) total body irradiation (TBI) allows for greater organ sparing with improved target coverage compared to 2D-TBI. However, there is limited evidence of whether improved organ sparing translates to decreases in toxicities and how its toxicities compare to those of the 2D technique. We aimed to compare differences in toxicities among patients treated with TBI utilizing VMAT and 2D techniques. Methods/materials: A matched-pair single-institution retrospective analysis of 200 patients treated with TBI from 2014 to 2023 was performed. Overall survival (OS) and progression-free survival (PFS) were analyzed using the Kaplan-Meier method and compared using log-rank tests. Differences in characteristics and toxicities between the VMAT and 2D cohorts were compared using Fisher's exact test. Results: Of the 200 patients analyzed, 100 underwent VMAT-TBI, and 100 underwent 2D-TBI. The median age for VMAT-TBI and 2D-TBI patients was 13.7 years and 16.2 years, respectively (p = 0.25). In each cohort, 53 patients were treated with myeloablative regimens (8-13.76 Gy), and 47 were treated with non-myeloablative regimens (2-4 Gy). For the entire VMAT-TBI cohort, lung Dmean, kidney Dmean, and lens Dmax were spared to 60.6% ± 5.0%, 71.0% ± 8.5%, and 90.1% ± 3.5% of prescription, respectively. For the non-myeloablative VMAT-TBI cohort, testis/ovary Dmax, brain, and thyroid Dmean were spared to 33.4% ± 7.3%, 75.4% ± 7.0%, and 76.1% ± 10.5%, respectively. For 2D-TBI, lungs were spared using partial-transmission lung blocks for myeloablative regimens. The VMAT-TBI cohort experienced significantly lower rates of any grade of pneumonitis (2% vs. 12%), nephrotoxicity (7% vs. 34%), nausea (68% vs. 81%), skin (16% vs. 35%), and graft versus host disease (GVHD) (42% vs. 62%) compared to 2D-TBI patients. For myeloablative regimen patients, rates of pneumonitis (0% vs. 17%) and nephrotoxicity (9% vs. 36%) were significantly lower with VMAT-TBI versus 2D-TBI (p < 0.01). Median follow-up was 14.3 months, and neither median OS nor PFS for the entire cohort was reached. In the VMAT versus 2D-TBI cohort, the 1-year OS was 86.0% versus 83.0% (p = 0.26), and the 1-year PFS was 86.6% and 80.0% (p = 0.36), respectively. Conclusion: Normal tissue sparing with VMAT-TBI compared to the 2D-TBI translated to significantly lower rates of pneumonitis, renal toxicity, nausea, skin toxicity, and GVHD in patients, while maintaining excellent disease control.

8.
Cancers (Basel) ; 16(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473227

RESUMO

Novelty in total body irradiation (TBI) as part of pre-transplant conditioning regimens lacked until recently, despite the developments in the field of allogeneic stem cell transplants. Long-term toxicities have been one of the major concerns associated with TBI in this setting, although the impact of TBI is not so easy to discriminate from that of chemotherapy, especially in the adult population. More recently, lower-intensity TBI and different approaches to irradiation (namely, total marrow irradiation, TMI, and total marrow and lymphoid irradiation, TMLI) were implemented to keep the benefits of irradiation and limit potential harm. TMI/TMLI is an alternative to TBI that delivers more selective irradiation, with healthy tissues being better spared and the control of the radiation dose delivery. In this review, we discussed the potential radiation-associated long-term toxicities and their management, summarized the evidence regarding the current indications of traditional TBI, and focused on the technological advances in radiotherapy that have resulted in the development of TMLI. Finally, considering the most recent published trials, we postulate how the role of radiotherapy in the setting of allografting might change in the future.

9.
Front Oncol ; 14: 1370059, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737901

RESUMO

Objectives: This manuscript presents a bibliometric and visualization analysis of Total Body Irradiation (TBI) research, aiming to elucidate trends, gaps, and future directions in the field. This study aims to provide a comprehensive overview of the global research landscape of TBI, highlighting its key contributions, evolving trends, and potential areas for future exploration. Methods: The data for this study were extracted from the Web of Science Core Collection (WoSCC), encompassing articles published up to May 2023. The analysis included original studies, abstracts, and review articles focusing on TBI-related research. Bibliometric indicators such as total publications (TP), total citations (TC), and citations per publication (C/P) were utilized to assess the research output and impact. Visualization tools such as VOS Viewer were employed for thematic mapping and to illustrate international collaboration networks. Results: The analysis revealed a substantial body of literature, with 7,315 articles published by 2,650 institutions involving, 13,979 authors. Full-length articles were predominant, highlighting their central role in the dissemination of TBI research. The authorship pattern indicated a diverse range of scholarly influences, with both established and emerging researchers contributing significantly. The USA led in global contributions, with significant international collaborations observed. Recent research trends have focused on refining TBI treatment techniques, investigating long-term patient effects, and advancing dosimetry and biomarker studies for radiation exposure assessments. Conclusions: TBI research exhibits a dynamic and multifaceted landscape, driven by global collaboration and innovation. It highlights the clinical challenges of TBI, such as its adverse effects and the need for tailored treatments in pediatric cases. Crucially, the study also acknowledges the fundamental science underpinning TBI, including its effects on inflammatory and apoptotic pathways, DNA damage, and the varied sensitivity of cells and tissues. This dual focus enhances our understanding of TBI, guiding future research toward innovative solutions and comprehensive care.

10.
Zhonghua Xue Ye Xue Za Zhi ; 44(7): 578-581, 2023 Jul 14.
Artigo em Zh | MEDLINE | ID: mdl-37749039

RESUMO

Objective: To evaluate the clinical outcomes and safety of haploidentical hematopoietic stem cell transplantation (haplo-HSCT) using a conditioning regimen based on total body irradiation (TBI) and rabbit anti-human thymocyte globulin (rATG) in the management of chemotherapy-resistant advanced peripheral T-cell lymphoma (PTCL) . Methods: Clinical data of 11 patients with chemotherapy-resistant advanced PTCL who underwent haplo-HSCT with a TBI+rATG-based conditioning regimen at the Department of Hematology, Shanghai Liquan Hospital and Shanghai Zhaxin Integrated Traditional Chinese and Western Medicine Hospital, from September 2019 to December 2022 were retrospectively analyzed. Results: ①Among the 11 patients (six males and five females), with a median age of 40 years (range: 22-58 years), there were six cases of PTCL, not otherwise specified (PTCL-NOS), three cases of angioimmunoblastic T-cell lymphoma (AITL), one case of large-cell transformation of mycosis fungoides (MF-LCT), and one case of T-cell large granular lymphocytic leukemia (T-LGLL). According to the Lugano staging system, all patients were in stage Ⅲ or Ⅳ, and eight patients had B symptoms. Before transplantation, the median number of prior lines of chemotherapy was 4 (range: 2-10), and all patients had progressive disease (PD). The median time from diagnosis to transplantation was 17 months (range: 6-36 months). ②The conditioning regimen consisted of a TBI dose of 10 Gy, administered at 2 Gy on day -8 and 4 Gy from day -7 to day -6, rATG was administered at a daily dose of 2.5 mg/kg from day -5 to day -2. Etoposide (VP-16) was given at a dose of 15 mg/kg/d from day -5 to day -4, while cyclophosphamide (CTX) was administered at a dose of 50 mg/kg/d from day -3 to day -2. In patients with central nervous system involvement, etoposide and cyclophosphamide were replaced with thiotepa (TT) at a dose of 5 mg/kg/d from day -5 to day -4. Additionally, cytarabine (Ara-C) was added at a dose of 2.0 g/m(2) twice a day from day -3 to day -2 into the conditioning. ③Successful engraftment was achieved in all patients, with a median time to neutrophil engraftment of 14.5 d (range: 11-16 d) and a median time to platelet engraftment of 13 days (range: 8-18 days). Acute graft-versus-host disease (aGVHD) occurred in one patient (grade Ⅰ-Ⅱ), and another patient experienced grade Ⅲ-Ⅳ aGVHD. Among the eight survivors, four developed chronic GVHD (cGVHD). ④Post-transplantation, nine patients achieved complete response (CR). ⑤Hematopoietic suppression occurred in all patients after conditioning, with three experiencing diarrhea, four developing mucositis, three exhibiting elevated transaminase/bilirubin levels, and seven developing infectious complications. These non-hematologic adverse events were effectively managed. ⑥At one year post-transplantation, the non-relapse mortality (NRM) was (22.5±14.0) %, the cumulative incidence of relapse (CIR) was (20.2±12.7) %, and overall survival (OS) rate was (72.7±13.4) %, and disease-free survival (DFS) rate was (63.6±14.5) % . Conclusion: TBI+rATG-based conditioning regimen for haplo-HSCT is an effective and safe treatment approach for patients with chemotherapy-resistant advanced PTCL.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Linfoma de Células T Periférico , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Etoposídeo , Linfoma de Células T Periférico/tratamento farmacológico , Irradiação Corporal Total/efeitos adversos , Estudos Retrospectivos , China , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Ciclofosfamida , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/patologia , Condicionamento Pré-Transplante/efeitos adversos
11.
Int J Radiat Biol ; 99(7): 1130-1138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36688956

RESUMO

PURPOSE: A mass casualty disaster involving radiological or nuclear agents continues to be a public health concern which requires consideration of both acute and late tissue toxicities in exposed victims. With the advent of advanced treatment options for the mitigation of hematological injuries, there are likely to be survivors of total body irradiation (TBI) exposures as high as 8-10 Gy. These survivors are at risk for a range of delayed multi-organ morbidities including progressive renal failure. MATERIAL AND METHODS: Here, we established the WAG/RijCmcr rat as an effective model for the evaluation of medical countermeasures (MCM) for acute hematologic radiation syndrome (H-ARS). The LD50/30 dose for adult and pediatric WAG/RijCmcr rats was determined for both sexes. We then confirmed the FDA-approved MCM pegfilgrastim (peg-GCSF, Neulasta®) mitigates H-ARS in adult male and female rats. Finally, we evaluated survival and renal dysfunction up to 300 d post-TBI in male and female adult rats. RESULTS: In the WAG/RijCmcr rat model, 87.5% and 100% of adult rats succumb to lethal hematopoietic acute radiation syndrome (H-ARS) at TBI doses of 8 and 8.5 Gy, respectively. A single dose of the hematopoietic growth factor peg-GCSF administered at 24 h post-TBI improved survival during H-ARS. Peg-GCSF treatment improved 30 d survival from 12.5% to 83% at 8 Gy and from 0% to 63% at 8.5 Gy. We then followed survivors of H-ARS through day 300. Rats exposed to TBI doses greater than 8 Gy had a 26% reduction in survival over days 30-300 compared to rats exposed to 7.75 Gy TBI. Concurrent with the reduction in long-term survival, a dose-dependent impairment of renal function as assessed by blood urea nitrogen (BUN) and urine protein to urine creatinine ratio (UP:UC) was observed. CONCLUSION: Together, these data show survivors of H-ARS are at risk for the development of delayed renal toxicity and emphasize the need for the development of medical countermeasures for delayed renal injury.


Assuntos
Síndrome Aguda da Radiação , Masculino , Ratos , Feminino , Animais , Humanos , Relação Dose-Resposta à Radiação , Modelos Animais de Doenças , Rim/fisiologia , Sobreviventes , Irradiação Corporal Total/efeitos adversos
12.
Leuk Lymphoma ; 64(7): 1285-1294, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37154379

RESUMO

Total-body irradiation (TBI)-based conditioning regimen is preferred in acute lymphoblastic leukemia (ALL). We retrospectively evaluated allogeneic stem cell transplant (alloSCT) outcomes of 86 adult ALL patients in complete remission (CR) who received TBI-containing reduced intensity (RIC) (Flu/Mel/TBI = 31) and myeloablative conditioning (MAC) (VP16/TBI = 47; CY/TBI = 8) between January 2005 and December 2019. All patients received peripheral blood allografts. Patients in the RIC group were older than the MAC group (61 years old versus 36 years, p < .001). Donor was 8/8 HLA-matched in 83% and unrelated in 65% of patients. Three-year survival was 56.04% for RIC and 69.9% for MAC (HR 0.64; p = .19). Propensity score-based multivariable Cox analyses (PSCA) did not demonstrate any difference in grade III-IV acute graft versus host disease (GVHD) (SHR 1.23, p = .91), chronic GVHD (SHR 0.92, p = .88), survival (HR 0.94, p = .92), and relapse-free survival (HR 0.66, p = .47) between both groups, while relapse rate was lower (SHR 0.21, p = .02) for MAC compared to RIC. Our study did not demonstrate any difference in survival for TBI-containing RIC and MAC alloSCT for adult ALL in CR.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Adulto , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Transplante de Células-Tronco , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Indução de Remissão , Doença Aguda , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Condicionamento Pré-Transplante
13.
J Radiat Res ; 63(5): 792-795, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35818297

RESUMO

Light flash and odor during radiotherapy are well-known phenomena. Two prospective observational studies have indicated that 55% of patients observed a light flash during irradiation of the retina and 27% of patients sensed an odor during radiotherapy for the nasal cavity. A prospective observational study was performed in all patients at our hospital who received total body irradiation (TBI) between January 2019 to October 2021. Light flash and odor during TBI were examined using the same method as that used in previous studies. A total of 32 patients received TBI during the study period. The patients had a median age of 41 (18-60) years, and included 20 males and 12 females. A survey checklist showed that 14 patients (44%) sensed light and 14 patients (44%) sensed odor during TBI,. The color of the light during irradiation was yellow in six cases, white in four cases, and blue in four cases. The intensity of the light was 2-5 (median 3, 1 is very weak, 5 is very strong) and the time over which the light flash was felt was 4-60 s (median 10 s). Two patients each sensed smells of plastic, ozone and bleach, and others sensed one smell each. The intensity of the odor was 1-4 (median 3, 1 is very weak, 5 is very strong) and the time over which the odor was sensed was 1-25 s (median 3 s). We conclude that light flashes and odors are each sensed by 44% of patients during TBI. Various types of light flashes and odors were reported in this study.


Assuntos
Ozônio , Irradiação Corporal Total , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Odorantes , Plásticos , Olfato , Irradiação Corporal Total/efeitos adversos
14.
Ann Transl Med ; 10(16): 857, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36110996

RESUMO

Background: Ionizing radiation exposure is a great threat to human health. MicroRNAs (miRNAs) have been shown to play an important role in radiation-induced biological effects. Here, we investigated plasma miRNA expression changes and differentially expressed miRNAs in radiotherapy patients exposed to cobalt-60 (60Co) gamma rays to provide an experimental basis for human plasma miRNAs as an estimation indicator for ionizing radiation injury. Methods: Six patients with acute lymphoblastic leukemia (ALL) received continuous 5 gray (Gy) total body irradiation (TBI) twice. At 12 hours after irradiation, miRNA microarray was applied to screen for differentially expressed miRNAs, with some miRNAs confirmed by real-time polymerase chain reaction (RT-PCR) assay. Bioinformatic analysis was carried out to identify the relevant target genes and biological function of the differentially expressed miRNAs. Results: After radiotherapy patients were exposed to 5 Gy gamma radiation, the expression of 9 plasma miRNAs was significantly upregulated, and the expression of 2 miRNAs was downregulated. After irradiation with 10 Gy gamma radiation, the blood plasma of radiotherapy patients contained 18 differentially expressed miRNAs, of which 17 were upregulated and 1 was downregulated (P<0.05). The expression of miR-4532, miR-4634, miR-4655-5p, miR-4763-3p, miR-4785, miR-6087, miR-6850-5p, and miR-6869-5p were significantly upregulated in both the 5-Gy and 10-Gy dose groups, showing a certain dose-response relationship. The RT-PCR results were consistent with the findings of high-throughput sequencing. In addition, the target genes of the differentially expressed miRNAs were mainly involved in RNA transcription and DNA damage. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these miRNAs participated in phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), Ras, mitogen-activated protein kinase (MAPK), and other signaling pathways. Conclusions: The expression of differential plasma miRNAs of radiotherapy patients was associated with irradiation injury and showed a certain dose-effect relationship. These differentially coexpressed plasma miRNAs could be used as an early indicator for estimating radiation injury.

15.
Cells ; 11(14)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883695

RESUMO

Aplastic anemia (AA) is a rare and serious disorder of hematopoietic stem cells (HSCs) that results in the loss of blood cells due to the failure of the bone marrow (BM). Although BM transplantation is used to treat AA, its use is limited by donor availability. In this sense, mesenchymal stem cells (MSCs) can offer a novel therapeutic approach for AA. This is because the MSCs contribute to the hematopoietic niche organization through their repopulating. In our study, we used the human immature dental pulp stem cell (hIDPSC), an MSC-like cell, to explore an alternative therapeutic approach for AA. For this, isogenic C57BL/6 mice were exposed to total body irradiation (TBI) to induce the AA. After 48 h of TBI, the mice were intraperitoneally treated with hIDPSC. The immunohistochemistry analyses confirmed that the hIDPSCs migrated and grafted in the mouse bone marrow (BM) and spleen, providing rapid support to hematopoiesis recovery compared to the group exposed to radiation, but not to those treated with the cells as well as the hematological parameters. Six months after the last hIDPSC transplantation, the BM showed long-term stable hematopoiesis. Our data highlight the therapeutic plasticity and hematoprotective role of hIDPSC for AA and potentially for other hematopoietic failures.


Assuntos
Anemia Aplástica , Células-Tronco Mesenquimais , Anemia Aplástica/etiologia , Anemia Aplástica/terapia , Animais , Polpa Dentária , Hematopoese , Humanos , Camundongos , Camundongos Endogâmicos C57BL
16.
Front Endocrinol (Lausanne) ; 13: 1064146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619560

RESUMO

Thyroid disorders (TD) represent a remarkable share of all the late morbidities experienced following pediatric haematopoietic stem cell transplantation (HSCT), with long-term reported occurrence often exceeding 70%. In addition, the data collected on wide cohorts of survivors assessed longitudinally outlined a progressive increase in the cumulative incidence of TD as far as 30 years following transplantation. Accordingly, a life-long monitoring of thyroid health is warranted among patients exposed to HSCT in childhood, in order to early detect TD and undertake a prompt dedicated treatment. Although several national and international consortia have provided recommendations for the early detection of thyroid disorders among childhood cancer survivors exposed to radiotherapy and alkylating agents, no guidelines specifically and thoroughly focused on HSCT-related TD have been published to date. As stem cell transplantation has become the standard-of-care in a growing body of non-oncological conditions, this urge has become pivotal. To highlight the challenging issues specifically involving this cohort of patients and to provide clinicians with the proposal of a practical follow-up protocol, we reviewed published literature in the light of the shared experience of a multidisciplinary team of pediatric oncologists, transplantologists, pathologists and endocrinologists involved in the long-term care of HSCT survivors. As a final result, we hereby present the proposals of a practical and customized risk-based approach to tailor thyroid health follow-up based on HSCT-related detrimental factors.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Segunda Neoplasia Primária , Doenças da Glândula Tireoide , Humanos , Criança , Seguimentos , Doenças da Glândula Tireoide/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos
17.
Front Oncol ; 12: 1044539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531001

RESUMO

Background: With the advent of modern radiation treatment technologies such as intensity modulated radiation therapy (IMRT), there has been increasing interest in its use for total body irradiation (TBI) conditioning regimens for hematopoietic cell transplantation (HCT) to achieve lower doses to critical organs such as the lungs and kidneys. Although this has been reported on in early studies, long-term safety and efficacy data is limited. Methods: We performed a single institution matched-pair retrospective analysis of patients treated with IMRT TBI and standard TBI between 2010 and 2020 to provide data on long-term outcomes. Patients with hematologic malignancies, who could not tolerate standing for traditional TBI or who received prior radiation received IMRT TBI. Patients were matched based on age, diagnosis, disease status, and year of transplant, and were matched 2:1 to the standard TBI and IMRT TBI cohorts. Patient and treatment characteristics, toxicity, graft-versus-host disease (GVHD), dosimetry, and outcomes were evaluated for each cohort. Results: A total of 13 patients met inclusion criteria for the IMRT cohort, leading to 26 patients in the standard TBI cohort. There was no significant difference in relevant clinical factors between the cohorts. Reasons for using IMRT over conventional TBI included being unable to stand (n=5), prior radiation (n=5), and pediatric patient requiring anesthesia (n=3). Among living patients, median follow-up for all patients was 5.1 years in the IMRT TBI cohort and 5.5 years in the standard TBI cohort. The 5-yr estimate of OS was 68% in the IMRT TBI cohort and 60% in the standard TBI cohort (p=0.706). The 5-yr estimate of RFS was 54% in the IMRT TBI cohort and 60% in the standard TBI cohort (p=0.529). There was no clinically significant pneumonitis, nephritis, hypothyroidism, or cataracts reported in the IMRT TBI cohort. 41.7% of patients in the IMRT TBI cohort and 79.2% of patients in the standard TBI cohort experienced Grade II-IV acute GVHD (p=0.023). Conclusions: IMRT TBI appears to lead to favorable long-term outcome and dosimetry, and therefore potentially improved long-term toxicity profile compared to conventional TBI. IMRT TBI warrants further investigation as part of larger prospective trials.

18.
Front Pediatr ; 10: 807992, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281233

RESUMO

The ALL SCTped 2012 FORUM (For Omitting Radiation Under Majority age) trial compared outcomes for children ≥4 years of age transplanted for acute lymphoblastic leukaemia (ALL) who were randomised to myeloablation with a total body irradiation (TBI)-based or chemotherapy-based conditioning regimen. The TBI-based preparation was associated with a lower rate of relapse compared with chemoconditioning. Nevertheless, the age considered suitable for TBI was progressively raised over time to spare the most fragile youngest patients from irradiation-related complications. The best approach to use for children <4 years of age remains unclear. Children diagnosed with ALL in their first year of life, defined as infants, have a remarkably poorer prognosis compared with older children. This is largely explained by the biology of their ALL, with infants often carrying a KMT2A gene rearrangement, as well as by their fragility. In contrast, the clinical presentations and biological features of ALL in children >1 year but <4 years often resemble those presented by older children. In this review, we explore the state of the art regarding haematopoietic stem cell transplantation (HSCT) in children <4 years, the preparative regimens available, and new developments in the field that may influence treatment decisions.

19.
J Radiat Res ; 62(5): 918-925, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34350969

RESUMO

Total body irradiation (TBI) with ovarian shielding is expected to preserve fertility among hematopoietic stem cell transplant (HSCT) patients with myeloablative TBI-based regimens. However, the radiation dose to the ovaries that preserves ovarian function in TBI remains poorly understood. Furthermore, it is uncertain whether the dose to the shielded organs is associated with relapse risk. Here, we retrospectively evaluated the relationship between fertility and the dose to the ovaries, and between relapse risk and the dose to the pelvic bones. A total of 20 patients (median age, 23 years) with standard-risk hematologic diseases were included. Median follow-up duration was 31.9 months. The TBI prescribed dose was 12 Gy in six fractions for three days. Patients' ovaries were shielded with cylinder-type lead blocks. The dose-volume parameters (D98% and Dmean) in the ovaries and the pelvic bones were extracted from the dose-volume histogram (DVH). The mean ovary Dmean for all patients was 2.4 Gy, and 18 patients recovered menstruation (90%). The mean ovary Dmean for patients with menstrual recovery and without recovery were 2.4 Gy and 2.4 Gy, respectively, with no significant difference (P = 0.998). Hematological relapse was observed in five patients. The mean pelvis Dmean and pelvis D98% for relapse and non-relapse patients were 11.6 Gy and 11.7 Gy and 5.6 Gy and 5.3 Gy, respectively. Both parameters showed no significant difference (P = 0.827, 0.807). In conclusion, TBI with ovarian shielding reduced the radiation dose to the ovaries to 2.4 Gy, and preserved fertility without increasing the risk of relapse.


Assuntos
Preservação da Fertilidade/métodos , Órgãos em Risco/efeitos da radiação , Ovário/efeitos da radiação , Ossos Pélvicos/efeitos da radiação , Lesões por Radiação/etiologia , Proteção Radiológica/métodos , Condicionamento Pré-Transplante/efeitos adversos , Irradiação Corporal Total/efeitos adversos , Adolescente , Adulto , Anemia Aplástica/terapia , Feminino , Preservação da Fertilidade/instrumentação , Seguimentos , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucemia/terapia , Menstruação/efeitos da radiação , Agonistas Mieloablativos/administração & dosagem , Síndromes Mielodisplásicas/terapia , Lesões por Radiação/prevenção & controle , Proteção Radiológica/instrumentação , Recuperação de Função Fisiológica , Recidiva , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
20.
Curr Oncol ; 28(1): 903-917, 2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33617507

RESUMO

Total body irradiation (TBI), used as part of the conditioning regimen prior to allogeneic and autologous hematopoietic cell transplantation, is the delivery of a relatively homogeneous dose of radiation to the entire body. TBI has a dual role, being cytotoxic and immunosuppressive. This allows it to eliminate disease and create "space" in the marrow while also impairing the immune system from rejecting the foreign donor cells being transplanted. Advantages that TBI may have over chemotherapy alone are that it may achieve greater tumour cytotoxicity and better tissue penetration than chemotherapy as its delivery is independent of vascular supply and physiologic barriers such as renal and hepatic function. Therefore, the so-called "sanctuary" sites such as the central nervous system (CNS), testes, and orbits or other sites with limited blood supply are not off-limits to radiation. Nevertheless, TBI is hampered by challenging logistics of administration, coordination between hematology and radiation oncology departments, increased rates of acute treatment-related morbidity and mortality along with late toxicity to other tissues. Newer technologies and a better understanding of the biology and physics of TBI has allowed the field to develop novel delivery systems which may help to deliver radiation more safely while maintaining its efficacy. However, continued research and collaboration are needed to determine the best approaches for the use of TBI in the future.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Irradiação Corporal Total , Humanos , Condicionamento Pré-Transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA