Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834490

RESUMO

The HD-ZIP III transcription factor REVOLUTA (REV) is involved in early leaf development, as well as in leaf senescence. REV directly binds to the promoters of senescence-associated genes, including the central regulator WRKY53. As this direct regulation appears to be restricted to senescence, we aimed to characterize protein-interaction partners of REV which could mediate this senescence-specificity. The interaction between REV and the TIFY family member TIFY8 was confirmed by yeast two-hybrid assays, as well as by bimolecular fluorescence complementation in planta. This interaction inhibited REV's function as an activator of WRKY53 expression. Mutation or overexpression of TIFY8 accelerated or delayed senescence, respectively, but did not significantly alter early leaf development. Jasmonic acid (JA) had only a limited effect on TIFY8 expression or function; however, REV appears to be under the control of JA signaling. Accordingly, REV also interacted with many other members of the TIFY family, namely the PEAPODs and several JAZ proteins in the yeast system, which could potentially mediate the JA-response. Therefore, REV appears to be under the control of the TIFY family in two different ways: a JA-independent way through TIFY8, which controls REV function in senescence, and a JA-dependent way through PEAPODs and JAZ proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Folhas de Planta/metabolismo , Senescência Vegetal , Fatores de Transcrição/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(45): 12721-12726, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791144

RESUMO

The positive transcription elongation factor (P-TEFb) is required for the transcription of most genes by RNA polymerase II. Hexim proteins associated with 7SK RNA bind to P-TEFb and reversibly inhibit its activity. P-TEFb comprises the Cdk9 cyclin-dependent kinase and a cyclin T. Hexim proteins have been shown to bind the cyclin T subunit of P-TEFb. How this binding leads to inhibition of the kinase activity of Cdk9 has remained elusive, however. Using a photoreactive amino acid incorporated into proteins, we show that in live cells, cell extracts, and in vitro reconstituted complexes, Hexim1 cross-links and thus contacts Cdk9. Notably, replacement of a phenylalanine, F208, belonging to an evolutionary conserved Hexim1 peptide (202PYNTTQFLM210) known as the "PYNT" sequence, cross-links a peptide within the activation segment that controls access to the Cdk9 catalytic cleft. Reciprocally, Hexim1 is cross-linked by a photoreactive amino acid replacing Cdk9 W193, a tryptophan within this activation segment. These findings provide evidence of a direct interaction between Cdk9 and its inhibitor, Hexim1. Based on similarities with Cdk2 3D structure, the Cdk9 peptide cross-linked by Hexim1 corresponds to the substrate binding-site. Accordingly, the Hexim1 PYNT sequence is proposed to interfere with substrate binding to Cdk9 and thereby to inhibit its kinase activity.

3.
Proc Natl Acad Sci U S A ; 111(30): 11019-24, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25024220

RESUMO

The E26 transformation-specific (Ets-1) transcription factor is autoinhibited by a conformationally disordered serine-rich region (SRR) that transiently interacts with its DNA-binding ETS domain. In response to calcium signaling, autoinhibition is reinforced by calmodulin-dependent kinase II phosphorylation of serines within the SRR. Using mutagenesis and quantitative DNA-binding measurements, we demonstrate that phosphorylation-enhanced autoinhibition requires the presence of phenylalanine or tyrosine (ϕ) residues adjacent to the SRR phosphoacceptor serines. The introduction of additional phosphorylated Ser-ϕ-Asp, but not Ser-Ala-Asp, repeats within the SRR dramatically reinforces autoinhibition. NMR spectroscopic studies of phosphorylated and mutated SRR variants, both within their native context and as separate trans-acting peptides, confirmed that the aromatic residues and phosphoserines contribute to the formation of a dynamic complex with the ETS domain. Complementary NMR studies also identified the SRR-interacting surface of the ETS domain, which encompasses its positively charged DNA-recognition interface and an adjacent region of neutral polar and nonpolar residues. Collectively, these studies highlight the role of aromatic residues and their synergy with phosphoserines in an intrinsically disordered regulatory sequence that integrates cellular signaling and gene expression.


Assuntos
Fosfosserina/química , Proteína Proto-Oncogênica c-ets-1/química , Humanos , Ressonância Magnética Nuclear Biomolecular , Peptídeos , Fosfosserina/metabolismo , Estrutura Terciária de Proteína , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Sequências Repetitivas de Aminoácidos
4.
Life (Basel) ; 13(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36836777

RESUMO

Krüppel-like factors (KLFs) are a set of DNA-binding proteins belonging to a family of zinc-finger transcription factors, which have been associated with many biological processes related to the activation or repression of genes, inducing cell growth, differentiation, and death, and the development and maintenance of tissues. In response to metabolic alterations caused by disease and stress, the heart will undergo cardiac remodeling, leading to cardiovascular diseases (CVDs). KLFs are among the transcriptional factors that take control of many physiological and, in this case, pathophysiological processes of CVD. KLFs seem to be associated with congenital heart disease-linked syndromes, malformations because of autosomal diseases, mutations that relate to protein instability, and/or loss of functions such as atheroprotective activities. Ischemic damage also relates to KLF dysregulation because of the differentiation of cardiac myofibroblasts or a modified fatty acid oxidation related to the formation of a dilated cardiomyopathy, myocardial infarctions, left ventricular hypertrophy, and diabetic cardiomyopathies. In this review, we describe the importance of KLFs in cardiovascular diseases such as atherosclerosis, myocardial infarction, left ventricle hypertrophy, stroke, diabetic cardiomyopathy, and congenital heart diseases. We further discuss microRNAs that have been involved in certain regulatory loops of KLFs as they may act as critical in CVDs.

5.
Clin Transl Med ; 13(7): e1336, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461263

RESUMO

Intense ultraviolet (UV) exposure can cause phototoxic reactions, such as skin inflammation, resulting in injury. UV is a direct cause of DNA damage, but the mechanisms underlying transcriptional regulation within cells after DNA damage are unclear. The bioinformatics analysis of transcriptome sequencing data from UV-irradiated and non-UV-irradiated skin showed that transcription-related proteins, such as HSF4 and COIL, mediate cellular response to UV irradiation. HSF4 and COIL can form a complex under UV irradiation, and the preference for binding target genes changed because of the presence of a large number of R-loops in cells under UV irradiation and the ability of COIL to recognize R-loops. The regulation of target genes was altered by the HSF4-COIL complex, and the expression of inflammation and ageing-related genes, such as Atg7, Tfpi, and Lims1, was enhanced. A drug screen was performed for the recognition sites of COIL and R-loop. N6-(2-hydroxyethyl)-adenosine can competitively bind COIL and inhibit the binding of COIL to the R-loop. Thus, the activation of downstream inflammation-related genes and inflammatory skin injury was inhibited.


Assuntos
Estruturas R-Loop , Pele , Regulação da Expressão Gênica , Fatores de Transcrição de Choque Térmico/metabolismo , Inflamação/genética , Inflamação/metabolismo , Pele/metabolismo , Transcriptoma
6.
FEBS J ; 289(16): 4773-4796, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34115929

RESUMO

Enteroendocrine cells (EECs) in both invertebrates and vertebrates derive from intestinal stem cells (ISCs) and are scattered along the digestive tract, where they function in sensing various environmental stimuli and subsequently secrete neurotransmitters or neuropeptides to regulate diverse biological and physiological processes. To fulfill these functions, EECs are specified into multiple subtypes that occupy specific gut regions. With advances in single-cell technology, organoid culture experimental systems, and CRISPR/Cas9-mediated genomic editing, rapid progress has been made toward characterization of EEC subtypes in mammals. Additionally, studies of genetic model organisms-especially Drosophila melanogaster-have also provided insights about the molecular processes underlying EEC specification from ISCs and about the establishment of diverse EEC subtypes. In this review, we compare the regulation of EEC specification and function in mammals and Drosophila, with a focus on EEC subtype characterization, on how internal and external regulators mediate EEC subtype specification, and on how EEC-mediated intra- and interorgan communications affect gastrointestinal physiology and pathology.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila melanogaster/genética , Células Enteroendócrinas , Mamíferos
7.
J Genet Genomics ; 48(5): 411-425, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34144929

RESUMO

The genetically engineered pig is regarded as an optimal source of organ transplantation for humans and an excellent model for human disease research, given its comparable physiology to human beings. A myriad of single-cell RNA sequencing (scRNA-seq) data on humans has been reported, but such data on pigs are scarce. Here, we apply scRNA-seq technology to study the cellular heterogeneity of 3-month-old pig lungs, generating the single-cell atlas of 13,580 cells covering 16 major cell types. Based on these data, we systematically characterize the similarities and differences in the cellular cross-talk and expression patterns of respiratory virus receptors in each cell type of pig lungs compared with human lungs. Furthermore, we analyze pig lung xenotransplantation barriers and reported the cell-type expression patterns of 10 genes associated with pig-to-human immunobiological incompatibility and coagulation dysregulation. We also investigate the conserved transcription factors (TFs) and their candidate target genes and constructed five conserved TF regulatory networks in the main cell types shared by pig and human lungs. Finally, we present a comprehensive and openly accessible online platform, ScdbLung. Our scRNA-seq atlas of the domestic pig lung and ScdbLung database can guide pig lung research and clinical applicability.


Assuntos
Perfilação da Expressão Gênica , Pulmão/metabolismo , Análise de Célula Única/métodos , Sus scrofa/genética , Transcriptoma , Animais , Biomarcadores , Biologia Computacional/métodos , Sequência Conservada , Bases de Dados Genéticas , Suscetibilidade a Doenças/imunologia , Evolução Molecular , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/genética , Humanos , Anotação de Sequência Molecular , RNA-Seq , Suínos , Navegador
8.
Curr Protoc Bioinformatics ; 72(1): e106, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32986267

RESUMO

The BioGateway App is a plugin for the Cytoscape network editor, allowing users to interactively build biological networks by querying the Biogateway Resource Description Framework (RDF) triple store. BioGateway contains information from several curated resources including UniProtKB, IntAct, Gene Ontology Annotations, various datasets containing transcription-factor regulatory relations to specific target genes, and more. The BioGateway App facilitates the step-by-step creation of complex SPARQL queries through an intuitive Graphical User Interface, allowing users to build and explore biological interaction networks to assess, among other things, gene regulatory relationships, gene ontology annotations, and protein-protein interactions. As the BioGateway information content is most abundant for human proteins and genes, this article describes the utility of the tool through a series of use cases on these human data, starting from the most basic levels and then detailing applications that address some of the rich complexity of the integrated data. Network refinement and display can be further optimized via the selection and filtering possibilities that the Cytoscape framework provides. The use cases also provide examples to explore network information in other species, as they become supported by BioGateway. © 2020 The Authors. Basic Protocol 1: Introducing a node from the canvas Basic Protocol 2: Introducing a node from the query builder Basic Protocol 3: Exploring molecular relationships between diseases Basic Protocol 4: Find proteins with protein kinase activity involved in a disease and explore the context around them Basic Protocol 5: Exploring the potential downstream effects after targeted inhibition of proteins Support Protocol: Installation of the BioGateway plugin through the Cytoscape App Manager and from source.


Assuntos
Biologia Computacional , Ontologia Genética , Redes Reguladoras de Genes , Software , Humanos , Anotação de Sequência Molecular , Interface Usuário-Computador
9.
Biomed Pharmacother ; 131: 110541, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33152901

RESUMO

PURPOSE: Osteosarcoma is a malignant musculoskeletal tumor with early metastasis and a poor prognosis, especially in adolescents. Ganoderma lucidum (Leyss. Ex Fr.) Karst (G. lucidum), a traditional East Asian medicine, has been reported to play a critical role in antitumor and immunomodulatory activity. The aim of this study was to investigate the effects and molecular mechanisms of water extract of sporoderm-broken spores of G. lucidum (BSGWE) on osteosarcoma PD-L1 (programmed cell death-ligand 1) transcriptional regulation, efficacy enhancement, and side effect remission. METHODS: The antitumor effects on cell proliferation of BSGWE in osteosarcoma cells were detected by apoptosis flow cytometry, and the migration ability of HOS and K7M2 cells were evaluated by cell scratch assay. Potential signaling regulation of PD-L1 was detected by western blotting. To confirm the signaling pathway of BSGWE-related PD-L1 downregulation, a pho-STAT3 turnover experiment was carried out. Colivelin was administered as a pho-STAT3 activator to rescue the BSGWE-induced PD-L1 inhibition. To further study in vivo signaling, in a Balb/c osteosarcoma allograft model, tumor volume was measured using an in vivo bioluminescence imaging system. The body weight curve and tumor volume curve were analyzed to reveal the remission effects of BSGWE on PD-L1 antibody-related body weight loss and its immunomodulatory effects on the osteosarcoma and spleen. The PD-L1 expression level and expression of related transcription-factor pho-STAT3 in tumor cells and spleens were assessed by IHC analysis. RESULTS: BSGWE suppressed the proliferation and migration of osteosarcoma cells in vitro via induction of apoptosis. In addition, BSGWE downregulated PD-L1 expression and related STAT3 (signal transducers and activators of transcription) phosphorylation levels in a dose-dependent manner. Western blotting and qRT-PCR assay revealed that BSGWE downregulated PD-L1 expression by inhibiting STAT3 phosphorylation. A turnover experiment showed that colivelin administration could rescue PD-L1 inhibition via pho-STAT3 activation. BSGWE not only downregulated PD-L1 expression via the STAT3 pathway in an allograft Balb/c mouse model, but also relieved complications including weight loss and spleen atrophy in a mouse monoclonal antibody therapy model on the basis of its traditional advantages in immune enhancement. CONCLUSION: BSGWE downregulated PD-L1 expression via pho-STAT3 inhibition of protein and RNA levels. BSGWE enhanced PD-L1 antibody efficacy via phosphorylated STAT3 downregulation in vitro and in vivo. BSGWE also relieved complications of weight loss and spleen atrophy in a murine allograft osteosarcoma immune checkpoint blockade therapy model.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Reishi , Animais , Anticorpos Monoclonais/efeitos adversos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Osteossarcoma/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Esporos Fúngicos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Plant Direct ; 3(12): e00190, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31879716

RESUMO

Regulation of iron (Fe) acquisition and homeostasis is critical for plant survival. In Arabidopsis, Fe deficiency-induced bHLH039 forms a complex with the master regulator FIT and activates it to upregulate Fe acquisition genes. FIT is partitioned between cytoplasm and nucleus, whereby active FIT accumulates more in the nucleus than inactive FIT. At the same time, there is so far no information on the subcellular localization of bHLH039 protein and how it is controlled. We report here that the bHLH039 localization pattern changes depending on the presence of FIT in the cell. When expressed in cells lacking FIT, bHLH039 localizes predominantly in the cytoplasm, including cytoplasmic foci in close proximity to the plasma membrane. The presence of FIT enhances the mobility of bHLH039 and redirects the protein toward primarily nuclear localization, abolishing its accumulation in cytoplasmic foci. This FIT-dependent change in localization of bHLH039 found in transient fluorescent protein expression experiments was confirmed in both leaves and roots of Arabidopsis transgenic plants, stably expressing hemagglutinin-tagged bHLH039 in wild-type or fit mutant background. This posttranslational mechanism for intracellular partitioning of Fe-responsive transcription factors suggests a signaling cascade that translates Fe sensing at the plasma membrane to nuclear accumulation of the transcriptional regulators.

11.
Cell Rep ; 26(7): 1815-1827.e5, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759392

RESUMO

To optimize fitness, pathogens selectively activate their virulence program upon host entry. Here, we report that the facultative intracellular bacterium Listeria monocytogenes exploits exogenous oligopeptides, a ubiquitous organic N source, to sense the environment and control the activity of its virulence transcriptional activator, PrfA. Using a genetic screen in adsorbent-treated (PrfA-inducing) medium, we found that PrfA is functionally regulated by the balance between activating and inhibitory nutritional peptides scavenged via the Opp transport system. Activating peptides provide essential cysteine precursor for the PrfA-inducing cofactor glutathione (GSH). Non-cysteine-containing peptides cause promiscuous PrfA inhibition. Biophysical and co-crystallization studies reveal that peptides inhibit PrfA through steric blockade of the GSH binding site, a regulation mechanism directly linking bacterial virulence and metabolism. L. monocytogenes mutant analysis in macrophages and our functional data support a model in which changes in the balance of antagonistic Opp-imported oligopeptides promote PrfA induction intracellularly and PrfA repression outside the host.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Listeria monocytogenes/patogenicidade , Peptídeos/metabolismo , Ecossistema , Humanos , Mutação , Virulência
12.
Artigo em Inglês | MEDLINE | ID: mdl-29247845

RESUMO

Hibernation is a period of torpor and heterothermy that is typically associated with a strong reduction in metabolic rate, global suppression of transcription and translation, and upregulation of various genes/proteins that are central to the cellular stress response such as protein kinases, antioxidants, and heat shock proteins. The current study examined cell signaling cascades in hibernating monito del monte, Dromiciops gliroides, a South American marsupial of the Order Microbiotheria. Responses to hibernation by members of the mitogen-activated protein kinase (MAPK) pathways, and their roles in coordinating hibernator metabolism were examined in liver, kidney, heart and brain of control and versus hibernating (4days continuous torpor) D. gliroides. The targets evaluated included key protein kinases in their activated phosphorylated forms (p-ERK/MAPK 1/2, p-MEK1, p-MSK1, p-p38, p-JNK) and related target proteins (p-CREB 2, p-ATF2, p-c-Jun and p-p53). Liver exhibited a strong coordinated response by MAPK members to hibernation with significant increases in protein phosphorylation levels of p-MEK1, p-ERK/MAPK1/2, p-MSK1, p-JNK and target proteins c-Jun, and p-ATF2, all combining to signify a strong activation of MAPK signaling during hibernation. Kidney also showed activation of MAPK cascades with significant increases in p-MEK1, p-ERK/MAPK1/2, p-p38, and p-c-Jun levels in hibernating animals. By contrast, responses by heart and brain indicated reduced MAPK pathway function during torpor with reduced phosphorylation of targets including p-ERK/MAPK 1/2 in both tissues as well as lower p-p38 and p-JNK content in heart. Overall, the data indicate a vital role for MAPK signaling in regulating the cell stress response during marsupial hibernation.


Assuntos
Hibernação/fisiologia , Rim/enzimologia , Fígado/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Marsupiais/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Animais
13.
FEBS J ; 283(18): 3488-502, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27472814

RESUMO

Transcription factors of the basic helix-loop-helix (bHLH) PER-ARNT-SIM (PAS) family generally have critical and nonredundant biological roles, but some bHLH PAS proteins compete for common cofactors or recognise similar DNA elements. Identifying factors that regulate function of bHLH PAS proteins, particularly in cells where multiple family members are coexpressed, is important for understanding bHLH PAS factor biology. This study identifies and characterises a novel interaction between melanoma-associated antigen D1 (MAGED1) and select members of the bHLH PAS transcription factor family. MAGED1 binds and positively regulates the transcriptional activity of family members SIM1, SIM2, NPAS4 and ARNT2, but does not interact with AhR, HIF1α and ARNT. This interaction is mediated by PAS repeat regions which also form the interface for bHLH PAS dimerisation, and accordingly MAGED1 is not found in complex with bHLH PAS dimers. We show that MAGED1 does not affect bHLH PAS protein levels and cannot be acting as a coactivator of transcriptionally active heterodimers, but rather appears to interact with nascent bHLH PAS proteins in the cytoplasm to enhance their function prior to nuclear import. As a selective regulator, MAGED1 may play an important role in the biology of these specific factors and in general bHLH PAS protein dynamics.


Assuntos
Antígenos de Neoplasias/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/classificação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/classificação , Estabilidade Proteica , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
14.
Trends Plant Sci ; 20(8): 477-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26115780

RESUMO

MicroProteins (miPs) are short, usually single-domain proteins that, in analogy to miRNAs, heterodimerize with their targets and exert a dominant-negative effect. Recent bioinformatic attempts to identify miPs have resulted in a list of potential miPs, many of which lack the defining characteristics of a miP. In this opinion article, we clearly state the characteristics of a miP as evidenced by known proteins that fit the definition; we explain why modulatory proteins misrepresented as miPs do not qualify as true miPs. We also discuss the evolutionary history of miPs, and how the miP concept can extend beyond transcription factors (TFs) to encompass different non-TF proteins that require dimerization for full function.


Assuntos
Biologia Computacional/métodos , Fatores de Transcrição/genética , Estrutura Terciária de Proteína/genética
15.
Gene Expr Patterns ; 16(1): 8-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25058891

RESUMO

The differentiation to cardiomyocytes is a prerequisite and an important part of heart development. A good understanding of the complicated cardiomyocyte differentiation process benefits cardiogenesis study. Embryonic stem cells (ESCs), cell lines with infinite ability to proliferate and to be differentiated into all cell types of the adult body, are important research tools for investigation of differentiation and meanwhile good models for developmental research. In the current study, genome-wide gene expression of ESCs is profiled through high throughput platform during cardiomyocyte-specific differentiation and maturation. Gene expression patterns of undifferentiated ESCs and ESC-derived cardiomyocytes provide a global overview of genes involved in cardiomyocyte-specific differentiation, whereas marker gene expression profiles of both ESC-related genes and cardiac-specific genes presented the expression pattern shift during differentiation in a pure ESC-derived cardiomyocyte cell culture system. The differentiation and maturation process was completed at day 19 after initiation of differentiation, according to our gene expression profile results. Functional analysis of regulated genes reveals over-represented biological processes, molecular functions and pathways during the differentiation and maturation process. Finally, transcription factor regulation networks were engineered based on gene expression data. Within these networks, the number of identified important regulators (Trim28, E2f4, Foxm1, Myc, Hdac1, Rara, Mef2c, Nkx2-5, Gata4) and possible key co-regulation modules (Nkx2-5 - Gata4 - Tbx5, Myc - E2F4) could be expanded. We demonstrate that a more comprehensive picture of cardiomyocyte differentiation and its regulation can be achieved solely by studying gene expression patterns. The results from our study contribute to a better and more accurate understanding of the regulation mechanisms during cardiomyocyte differentiation.


Assuntos
Células-Tronco Embrionárias/fisiologia , Redes Reguladoras de Genes , Miócitos Cardíacos/fisiologia , Animais , Diferenciação Celular/genética , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA