Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 289: 120551, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382862

RESUMO

It has been revealed that abnormal voxel-mirrored homotopic connectivity (VMHC) is present in patients with schizophrenia, yet there are inconsistencies in the relevant findings. Moreover, little is known about their association with brain gene expression profiles. In this study, transcription-neuroimaging association analyses using gene expression data from Allen Human Brain Atlas and case-control VMHC differences from both the discovery (meta-analysis, including 9 studies with a total of 386 patients and 357 controls) and replication (separate group-level comparisons within two datasets, including a total of 258 patients and 287 controls) phases were performed to identify genes associated with VMHC alterations. Enrichment analyses were conducted to characterize the biological functions and specific expression of identified genes, and Neurosynth decoding analysis was performed to examine the correlation between cognitive-related processes and VMHC alterations in schizophrenia. In the discovery and replication phases, patients with schizophrenia exhibited consistent VMHC changes compared to controls, which were correlated with a series of cognitive-related processes; meta-regression analysis revealed that illness duration was negatively correlated with VMHC abnormalities in the cerebellum and postcentral/precentral gyrus. The abnormal VMHC patterns were stably correlated with 1287 genes enriched for fundamental biological processes like regulation of cell communication, nervous system development, and cell communication. In addition, these genes were overexpressed in astrocytes and immune cells, enriched in extensive cortical regions and wide developmental time windows. The present findings may contribute to a more comprehensive understanding of the molecular mechanisms underlying VMHC alterations in patients with schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Imageamento por Ressonância Magnética , Encéfalo , Mapeamento Encefálico , Expressão Gênica
2.
Neuroimage Clin ; 43: 103645, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39059208

RESUMO

BACKGROUND: Functional Magnetic Resonance Imaging (fMRI) has shown brain activity alterations in individuals with a history of attempted suicide (SA) who are diagnosed with depression disorder (DD) or bipolar disorder (BD). However, patterns of spontaneous brain activity and their genetic correlations need further investigation. METHODS: A voxel-based meta-analysis of 19 studies including 26 datasets, involving 742 patients with a history of SA and 978 controls (both nonsuicidal patients and healthy controls) was conducted. We examined fMRI changes in SA patients and analyzed the association between these changes and gene expression profiles using data from the Allen Human Brain Atlas by partial least squares regression analysis. RESULTS: SA patients demonstrated increased spontaneous brain activity in several brain regions including the bilateral inferior temporal gyrus, hippocampus, fusiform gyrus, and right insula, and decreased activity in areas like the bilateral paracentral lobule and inferior frontal gyrus. Additionally, 5,077 genes were identified, exhibiting expression patterns associated with SA-related fMRI alterations. Functional enrichment analyses demonstrated that these SA-related genes were enriched for biological functions including glutamatergic synapse and mitochondrial structure. Concurrently, specific expression analyses showed that these genes were specifically expressed in the brain tissue, in neurons cells, and during early developmental periods. CONCLUSION: Our findings suggest a neurobiological basis for fMRI abnormalities in SA patients with DD or BD, potentially guiding future genetic and therapeutic research.

3.
CNS Neurosci Ther ; 29(12): 3913-3924, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37311691

RESUMO

AIMS: The amplitude of low-frequency fluctuations (ALFF) of resting-state functional MRI signals is a reliable neuroimaging measure of spontaneous brain activity. Inconsistent ALFF alterations have been reported in major depressive disorder (MDD) possibly due to clinical heterogeneity. This study was designed to investigate clinically sensitive and insensitive genes associated with ALFF alterations in MDD and the potential mechanisms. METHODS: Transcription-neuroimaging association analyses of case-control ALFF differences from two independent neuroimaging datasets with gene expression data from Allen Human Brain Atlas were performed to identify the two gene sets. Various enrichment analyses were conducted to characterize their preference in biological functions, cell types, temporal stages, and shared effects with other psychiatric disorders. RESULTS: Compared with controls, first-episode and drug-naïve patients showed more extensive ALFF alterations than patients with varied clinical features. We identified 903 clinically sensitive genes and 633 clinically insensitive genes, and the former was enriched for genes with down-regulated expression in the cerebral cortex of MDD patients. Despite shared functions of cell communication, signaling, and transport, clinically sensitive genes were enriched for cell differentiation and development whereas clinically insensitive genes were for ion transport and synaptic signaling. Clinically sensitive genes showed enrichment for microglia and macrophage from childhood to young adulthood in contrast to clinically insensitive genes for neurons before early infancy. Clinically sensitive genes (15.2%) were less likely correlated with ALFF alterations in schizophrenia than clinically insensitive genes (66.8%), and both were not relevant to bipolar disorder and adult attention deficit and hyperactivity disorder based on a third independent neuroimaging dataset. CONCLUSIONS: Present results provide novel insights into the molecular mechanisms of spontaneous brain activity changes in clinically different patients with MDD.


Assuntos
Transtorno Depressivo Maior , Adulto , Humanos , Adulto Jovem , Criança , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Córtex Cerebral , Neuroimagem , Mapeamento Encefálico
4.
Front Neurosci ; 17: 1219753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456995

RESUMO

Introduction: The present investigation aimed to explore the neurodevelopmental trajectory of autism spectrum disorder (ASD) by identifying the changes in brain function and gene expression associated with the disorder. Previous studies have indicated that ASD is a highly inherited neurodevelopmental disorder of the brain that displays symptom heterogeneity across different developmental periods. However, the transcriptomic changes underlying these developmental differences remain largely unknown. Methods: To address this gap in knowledge, our study employed resting-state functional magnetic resonance imaging (rs-fMRI) data from a large sample of male participants across four representative age groups to stratify the abnormal changes in brain function associated with ASD. Partial least square regression (PLSr) was utilized to identify unique changes in gene expression in brain regions characterized by aberrant functioning in ASD. Results: Our results revealed that ASD exhibits distinctive developmental trajectories in crucial brain regions such as the default mode network (DMN), temporal lobe, and prefrontal lobes during critical periods of neurodevelopment when compared to the control group. These changes were also associated with genes primarily located in synaptic tissues. Discussion: The findings of this study suggest that the neurobiology of ASD is uniquely heterogeneous across different ages and may be accompanied by distinct molecular mechanisms related to gene expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA