Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 29(11): 1738-1753, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37586723

RESUMO

Expression of fission yeast Pho1 acid phosphatase is repressed under phosphate-replete conditions by transcription of an upstream prt lncRNA that interferes with the pho1 mRNA promoter. lncRNA-mediated interference is alleviated by genetic perturbations that elicit precocious lncRNA 3'-processing and transcription termination, such as (i) the inositol pyrophosphate pyrophosphatase-defective asp1-H397A allele, which results in elevated levels of IP8, and (ii) absence of the 14-3-3 protein Rad24. Combining rad24Δ with asp1-H397A causes a severe synthetic growth defect. A forward genetic screen for SRA (Suppressor of Rad24 Asp1-H397A) mutations identified a novel missense mutation (Tyr86Asp) of Pla1, the essential poly(A) polymerase subunit of the fission yeast cleavage and polyadenylation factor (CPF) complex. The pla1-Y86D allele was viable but slow-growing in an otherwise wild-type background. Tyr86 is a conserved active site constituent that contacts the RNA primer 3' nt and the incoming ATP. The Y86D mutation elicits a severe catalytic defect in RNA-primed poly(A) synthesis in vitro and in binding to an RNA primer. Yet, analyses of specific mRNAs indicate that poly(A) tails in pla1-Y86D cells are not different in size than those in wild-type cells, suggesting that other RNA interactors within CPF compensate for the defects of isolated Pla1-Y86D. Transcriptome profiling of pla1-Y86D cells revealed the accumulation of multiple RNAs that are normally rapidly degraded by the nuclear exosome under the direction of the MTREC complex, with which Pla1 associates. We suggest that Pla1-Y86D is deficient in the hyperadenylation of MTREC targets that precedes their decay by the exosome.


Assuntos
RNA Longo não Codificante , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Domínio Catalítico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Longo não Codificante/genética , Mutação , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
2.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396979

RESUMO

Gallic acid (GA), a phenolic compound naturally found in many plants, exhibits potential preventive and therapeutic roles. However, the underlying molecular mechanisms of its diverse biological activities remain unclear. Here, we investigated possible mechanisms of GA function through a transcriptome-based analysis using LINCS L1000, a publicly available data resource. We compared the changes in the gene expression profiles induced by GA with those induced by FDA-approved drugs in three cancer cell lines (A549, PC3, and MCF7). The top 10 drugs exhibiting high similarity with GA in their expression patterns were identified by calculating the connectivity score in the three cell lines. We specified the known target proteins of these drugs, which could be potential targets of GA, and identified 19 potential targets. Next, we retrieved evidence in the literature that GA likely binds directly to DNA polymerase ß and ribonucleoside-diphosphate reductase. Although our results align with previous studies suggesting a direct and/or indirect connection between GA and the target proteins, further experimental investigations are required to fully understand the exact molecular mechanisms of GA. Our study provides insights into the therapeutic mechanisms of GA, introducing a new approach to characterizing therapeutic natural compounds using transcriptome-based analyses.


Assuntos
Neoplasias , Transcriptoma , Humanos , Ácido Gálico/farmacologia , Ácido Gálico/metabolismo , Perfilação da Expressão Gênica
3.
BMC Genomics ; 24(1): 27, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650452

RESUMO

BACKGROUND: As an economically important crop, tea is strongly nitrogen (N)-dependent. However, the physiological and molecular mechanisms underlying the response of N deficiency in tea are not fully understood. Tea cultivar "Chunlv2" [Camellia sinensis (L.) O. Kuntze] were cultured with a nutrient solution with 0 mM [N-deficiency] or 3 mM (Control) NH4NO3 in 6 L pottery pots containing clean river sands. RESULTS: N deficiency significantly decreased N content, dry weight, chlorophyll (Chl) content, L-theanine and the activities of N metabolism-related enzymes, but increased the content of total flavonoids and polyphenols in tea leaves. N deficiency delayed the sprouting time of tea buds. By using the RNA-seq technique and subsequent bioinformatics analysis, 3050 up-regulated and 2688 down-regulated differentially expressed genes (DEGs) were isolated in tea leaves in response to N deficiency. However, only 1025 genes were up-regulated and 744 down-regulated in roots. Gene ontology (GO) term enrichment analysis showed that 205 DEGs in tea leaves were enriched in seven GO terms and 152 DEGs in tea roots were enriched in 11 GO items based on P < 0.05. In tea leaves, most GO-enriched DEGs were involved in chlorophyll a/b binding activities, photosynthetic performance, and transport activities. But most of the DEGs in tea roots were involved in the metabolism of carbohydrates and plant hormones with regard to the GO terms of biological processes. N deficiency significantly increased the expression level of phosphate transporter genes, which indicated that N deficiency might impair phosphorus metabolism in tea leaves. Furthermore, some DEGs, such as probable anion transporter 3 and high-affinity nitrate transporter 2.7, might be of great potential in improving the tolerance of N deficiency in tea plants and further study could work on this area in the future. CONCLUSIONS: Our results indicated N deficiency inhibited the growth of tea plant, which might be due to altered N metabolism and expression levels of DEGs involved in the photosynthetic performance, transport activity and oxidation-reduction processes.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Clorofila A , Nitrogênio/metabolismo , Chá/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
J Neurochem ; 167(4): 571-581, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37874764

RESUMO

In the central nervous system, microglia are responsible for removing infectious agents, damaged/dead cells, and amyloid plaques by phagocytosis. Other cell types, such as astrocytes, are also recently recognized to show phagocytotic activity under some conditions. Oligodendrocyte precursor cells (OPCs), which belong to the same glial cell family as microglia and astrocytes, may have similar functions. However, it remains largely unknown whether OPCs exhibit phagocytic activity against foreign materials like microglia. To answer this question, we examined the phagocytosis activity of OPCs using primary rat OPC cultures. Since innate phagocytosis activity could trigger cell death pathways, we also investigated whether participating in phagocytosis activity may lead to OPC cell death. Our data shows that cultured OPCs phagocytosed myelin-debris-rich lysates prepared from rat corpus callosum, without progressing to cell death. In contrast to OPCs, mature oligodendrocytes did not show phagocytotic activity against the bait. OPCs also exhibited phagocytosis towards lysates of rat brain cortex and cell membrane debris from cultured astrocytes, but the percentage of OPCs that phagocytosed beta-amyloid was much lower than the myelin debris. We then conducted RNA-seq experiments to examine the transcriptome profile of OPC cultures and found that myelination- and migration-associated genes were downregulated 24 h after phagocytosis. On the other hand, there were a few upregulated genes in OPCs 24 h after phagocytosis. These data confirm that OPCs play a role in debris removal and suggest that OPCs may remain in a quiescent state after phagocytosis.


Assuntos
Células Precursoras de Oligodendrócitos , Ratos , Animais , Células Precursoras de Oligodendrócitos/fisiologia , Diferenciação Celular/fisiologia , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Fagocitose/genética , Células Cultivadas
5.
Mod Pathol ; 36(12): 100349, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820764

RESUMO

A small subset of high-grade B-cell lymphoma (HGBL) with blastoid morphology remains poorly understood. We assessed 55 cases of blastoid HGBL, not otherwise specified (NOS) and compared their clinicopathologic characteristics with those of 81 non-blastoid HGBL-NOS and 62 blastoid HGBL with MYC and BCL2, with or without BCL6 rearrangements (double/triple-hit lymphoma [D/THL]). Patients with blastoid HGBL-NOS showed similar clinicopathologic features to patients with blastoid D/THLs and non-blastoid HGBL-NOS, except more frequently with a history of low-grade B-cell lymphoma, bone marrow involvement, and BCL2 rearrangement (P < .05) compared to the latter. MYC rearrangement (MYC-R), detected in 40% of blastoid HGBL-NOS, was associated with aggressive clinicopathologic features and poorer overall survival, even worse than that of blastoid D/THL (P < .05). Transcriptome profiling revealed a distinct gene expression pattern with differentially expressed genes enriched in MYC and P53-targeted genes in MYC-R blastoid HGBL-NOS. Fifty-two percent of blastoid HGBL-NOS had a double hit-like signature, similar to non-blastoid HGBL-NOS (P = .73). The overall survival of the blastoid HGBL-NOS group was similar to that of the blastoid D/THL group but appeared poorer than that of its non-blastoid counterparts (P = .07). Taken together, blastoid HGBL-NOS is an aggressive B-cell lymphoma that shares overlapping clinicopathologic and genetic features with non-blastoid HGBL-NOS. MYC-R in patients with blastoid HGBL-NOS identifies a highly aggressive subgroup with distinct aggressive clinicopathologic features, unique molecular signatures, and a dismal clinical outcome.


Assuntos
Linfoma de Células B , Linfoma Difuso de Grandes Células B , Humanos , Rearranjo Gênico , Linfoma de Células B/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Biomarcadores Tumorais/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Linfoma Difuso de Grandes Células B/patologia , Proteínas Proto-Oncogênicas c-bcl-6/genética
6.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203592

RESUMO

To grow in various harsh environments, extremophiles have developed extraordinary strategies such as biofilm formation, which is an extremely complex and progressive process. However, the genetic elements and exact mechanisms underlying extreme biofilm formation remain enigmatic. Here, we characterized the biofilm-forming ability of Deinococcus radiodurans in vitro under extreme environmental conditions and found that extremely high concentrations of NaCl or sorbitol could induce biofilm formation. Meantime, the survival ability of biofilm cells was superior to that of planktonic cells in different extreme conditions, such as hydrogen peroxide stress, sorbitol stress, and high UV radiation. Transcriptome profiles of D. radiodurans in four different biofilm development stages further revealed that only 13 matched genes, which are involved in environmental information processing, carbohydrate metabolism, or stress responses, share sequence homology with genes related to the biofilm formation of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Overall, 64% of the differentially expressed genes are functionally unknown, indicating the specificity of the regulatory network of D. radiodurans. The mutation of the drRRA gene encoding a response regulator strongly impaired biofilm formation ability, implying that DrRRA is an essential component of the biofilm formation of D. radiodurans. Furthermore, transcripts from both the wild type and the drRRA mutant were compared, showing that the expression of drBON1 (Deinococcus radioduransBON domain-containing protein 1) significantly decreased in the drRRA mutant during biofilm development. Further analysis revealed that the drBON1 mutant lacked the ability to form biofilm and DrRRA, and as a facilitator of biofilm formation, could directly stimulate the transcription of the biofilm-related gene drBON1. Overall, our work highlights a molecular mechanism mediated by the response regulator DrRRA for controlling extreme biofilm formation and thus provides guidance for future studies to investigate novel mechanisms that are used by D. radiodurans to adapt to extreme environments.


Assuntos
Deinococcus , Deinococcus/genética , Biofilmes , Agregação Celular , Cognição , Escherichia coli , Sorbitol
7.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446159

RESUMO

Truffles are ascomycete hypogeous fungi belonging to the Tuberaceae family of the Pezizales order that grow in ectomycorrhizal symbiosis with tree roots, and they are known for their peculiar aromas and flavors. The axenic culture of truffle mycelium is problematic because it is not possible in many cases, and the growth rate is meager when it is possible. This limitation has prompted searching and characterizing new strains that can be handled in laboratory conditions for basic and applied studies. In this work, a new strain of Tuber borchii (strain SP1) was isolated and cultured, and its transcriptome was analyzed under different in vitro culture conditions. The results showed that the highest growth of T. borchii SP1 was obtained using maltose-enriched cultures made with soft-agar and in static submerged cultures made at 22 °C. We analyzed the transcriptome of this strain cultured in different media to establish a framework for future comparative studies, paying particular attention to the central metabolic pathways, principal secondary metabolite gene clusters, and the genes involved in producing volatile aromatic compounds (VOCs). The results showed a transcription signal for around 80% of the annotated genes. In contrast, most of the transcription effort was concentrated on a limited number of genes (20% of genes account for 80% of the transcription), and the transcription profile of the central metabolism genes was similar in the different conditions analyzed. The gene expression profile suggests that T. borchii uses fermentative rather than respiratory metabolism in these cultures, even in aerobic conditions. Finally, there was a reduced expression of genes belonging to secondary metabolite clusters, whereas there was a significative transcription of those involved in producing volatile aromatic compounds.


Assuntos
Ascomicetos , Micorrizas , Transcriptoma , Ascomicetos/metabolismo , Micorrizas/genética , Simbiose
8.
Fish Physiol Biochem ; 49(1): 97-116, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36574113

RESUMO

Farmed Atlantic salmon (Salmo salar) welfare and performance can be strongly influenced by stress episodes caused by handling during farming practices. To better understand the changes occurring after an acute stress response, we exposed a group of Atlantic salmon parr to an acute stressor, which involved netting and transferring fish to several new holding tanks. We describe a time-course response to stress by sampling parr in groups before (T0) and 10, 20, 30, 45, 60, 120, 240, 300, and 330 min post-stress. A subgroup of fish was also subjected to the same stressor for a second time to assess their capacity to respond to the same challenge again within a short timeframe (ReStressed). Fish plasma was assessed for adrenocorticotropic hormone (ACTH), cortisol, and ions levels. Mucus cortisol levels were analyzed and compared with the plasma cortisol levels. At 5 selected time points (T0, 60, 90, 120, 240, and ReStressed), we compared the head kidney transcriptome profile of 10 fish per time point. The considerably delayed increase of ACTH in the plasma (60 min post-stress), and the earlier rise of cortisol levels (10 min post-stress), suggests that cortisol release could be triggered by more rapidly responding factors, such as the sympathetic system. This hypothesis may be supported by a high upregulation of several genes involved in synaptic triggering, observed both during the first and the second stress episodes. Furthermore, while the transcriptome profile showed few changes at 60 min post-stress, expression of genes in several immune-related pathways increased markedly with each successive time point, demonstrating the role of the immune system in fish coping capacity. Although many of the genes discussed in this paper are still poorly characterized, this study provides new insights regarding the mechanisms occurring during the stress response of salmon parr and may form the basis for a useful guideline on timing of sampling protocols.


Assuntos
Salmo salar , Animais , Hidrocortisona , Rim Cefálico , Transcriptoma , Muco , Hormônio Adrenocorticotrópico
9.
Mol Biol Rep ; 49(7): 6395-6403, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35469389

RESUMO

BACKGROUND: Gallbladder cancer (GBC) represents a wide geographical diversity as well as heterogeneity in clinical and genomic landscape. There seems to be little progress in the development of diagnostic biomarkers, targeted therapies or individualized approaches to GBC management. In this study, we investigated the whole transcriptome profile of GBC patients using RNA sequencing and identified key genes and pathways associated with gallbladder cancer using bioinformatics. METHODOLOGY: A total of 10 cases of GBC were collected and sequenced. The raw reads of the gallbladder sample was compared with the gallbladder normal control (SRA Database ID: ERX288537: HPA RNA-seq normal tissues gallbladder). Using Gene ontology analysis the differentially expressed genes were categorized into the biological pathway, cellular component, and molecular function. Pathway enrichment analyses, protein-protein interaction, transcription factor and miRNA interaction that regulate the expression of hub genes were conducted using bioinformatics tool. RESULTS: A total of 954 differentially expressed mRNA transcripts were identified, including overexpression of REG4, TMEM238, S100A2, LYPD2, and KRT17, as well as underexpressed genes like CCKAR, IGSF10, CHRM2, CRISP3, and FGF19. Enrichment analysis showed the metabolic pathways to be the top five cancer pathways in gallbladder carcinogenesis besides PI3k-Akt signalling pathway, cAMP signalling pathway, miRNAs in cancer, and cell adhesion profile of GBC. CONCLUSIONS: CCKAR, CDKN2A and LRRK2 were found to be most involved genes in its progression and development through different regulatory pathways. Further, most of the genes were significantly involved in PI3k-Akt, Wnt and hedgehog signaling pathways which have a key role in gallbladder cancer development.


Assuntos
Neoplasias da Vesícula Biliar , MicroRNAs , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/metabolismo , Proteínas Hedgehog/genética , Humanos , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Transcriptoma/genética
10.
Microb Pathog ; 152: 104765, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33524567

RESUMO

Uropathogenic Escherichia coli (UPEC) is the most common pathogen causing urinary tract infections (UTIs). The pathogenesis of UPEC relies on the formation of intracellular bacterial communities (IBCs) after invading bladder epithelial cells (BECs). In this study, the gene expression profiles of UPEC after invading BECs were comprehensively analyzed using RNA sequencing to reveal potential virulence-related genes. The small protein MgtS, which is transcriptionally upregulated in BECs, was further investigated. It was found that MgtS contributed positively to UPEC invasion of BECs and colonization in murine bladders. A two-component regulatory system, PhoPQ was confirmed as a direct activator of mgtS expression in BECs, and magnesium limitation is proposed as a host cue for the activation. This study provides the first comprehensive analysis of the transcriptome profile of UPEC during its intra-BECs life, revealing a new virulence-associated gene and its regulatory mechanism.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Proteínas de Escherichia coli/genética , Camundongos , Transcriptoma , Escherichia coli Uropatogênica/genética , Virulência , Fatores de Virulência/genética
11.
Mol Biol Rep ; 48(4): 3059-3068, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33929647

RESUMO

The expression of human and microbial genes serves as biomarkers for disease and health. Blood RNA is an important biological resource for precision medicine and translational medicine. However, few studies have assessed the human transcriptome profiles and microbial communities composition and diversity of peripheral blood from different cell isolation methods, which could affect the reproducibility of researches. We collected peripheral blood from three healthy donors and processed it immediately. We used RNA sequencing to investigate the effect of three leukocyte isolation methods including buffy coat (BC) extraction, red blood cell (RBC) lysis and peripheral blood mononuclear cell (PBMC) isolation with the comparison with whole blood (WB), through analyzing the sensitivity of gene detection, the whole transcriptome profiling and microbial composition and diversity. Our data showed that BC extraction with high globin mRNA mapping rate had similar transcriptome profiles with WB, while RBC lysis and PBMC isolation depleted RBCs effectively. With the efficient depletion of RBC and distinct compositions of leukocyte subsets, RNA-seq of RBC lysis and PBMC isolation uniquely detected genes from specific cell types, like granulocytes and NK cells. In addition, we observed that the microbial composition and diversity were more affected by individuals than isolation methods. Our results showed that blood cell isolations could largely influence the sensitivity of detection of human genes and transcriptome profile.


Assuntos
Células Sanguíneas , Separação Celular/métodos , RNA-Seq , Buffy Coat , Eritrócitos , Humanos , Leucócitos Mononucleares , Microbiota/genética , Análise de Sequência de RNA , Transcriptoma
12.
Int J Med Sci ; 18(6): 1519-1531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628110

RESUMO

Chronological skin ageing is an inevitable physiological process that results in thin and sagging skin, fine wrinkles, and gradual dermal atrophy. The main therapeutic approaches to soft tissue augmentation involve using dermal fillers, where natural fillers, such as autologous fibroblasts, are involved in generating dermal matrix proteins. The aim of this study was to determine the global transcriptome profile of three passages of dermal autologous fibroblasts from a male volunteer, focusing on the processes of the cell cycle and cell proliferation status to estimate the optimal passage of the tested cells with respect to their reimplantation. We performed K-means clustering and validation of the expression of the selected mRNA by qRT-PCR. Ten genes were selected (ANLN, BUB1, CDC20, CCNA2, DLGAP5, MKI67, PLK1, PRC1, SPAG5, and TPX2) from the top five processes annotated to cluster 5. Detailed microarray analysis of the fibroblast genes indicated that the cell population of the third passage exhibited the highest number of upregulated genes involved in the cell cycle and cell proliferation. In all cases, the results of qRT-PCR confirmed the differences in expression of the selected mRNAs between fibroblasts from the primary culture (C0) and from the first (C1), second (C2), and third (C3) cell passage. Our results thus suggest that these cells might be useful for increasing fibroblast numbers after reimplantation into a recipient's skin, and the method used in this study seems to be an excellent tool for autologous transplantation allowing the rejuvenation of aging skin.


Assuntos
Técnicas Cosméticas , Fibroblastos/fisiologia , Envelhecimento da Pele/genética , Pele/citologia , Ciclo Celular/genética , Proliferação de Células/genética , Células Cultivadas , Face , Fibroblastos/transplante , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Reação em Cadeia da Polimerase em Tempo Real , Rejuvenescimento , Transplante Autólogo/métodos
13.
Endocr J ; 68(9): 1067-1079, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33867398

RESUMO

Gestational diabetes mellitus (GDM) affects one in four Saudi women and is associated with high risks of cardiovascular diseases in both the mother and foetus. It is believed that endothelial cells (ECs) dysfunction initiates these diabetic complications. In this study, differences in the transcriptome profiles, cell cycle distribution, and mitochondrial superoxide (MTS) between human umbilical vein endothelial cells (HUVECs) from GDM patients and those from healthy (control) subjects were analysed. Transcriptome profiles were generated using high-density expression microarray. The selected four altered genes were validated using qRT-PCR. MTS and cell cycle were analysed by flow cytometry. A total of 84 altered genes were identified, comprising 52 upregulated and 32 downregulated genes in GDM.HUVECs. Our selection of the four interested altered genes (TGFB2, KITLG, NEK7, and IGFBP5) was based on the functional network analysis, which revealed that these altered genes are belonging to the highest enrichment score associated with cellular function and proliferation; all of which may contribute to ECs dysfunction. The cell cycle revealed an increased percentage of cells in the G2/M phase in GDM.HUVECs, indicating cell cycle arrest. In addition, we found that GDM.HUVECs had increased MTS generation. In conclusion, GDM induces persistent impairment of the biological functions of foetal ECs, as evidenced by analyses of transcriptome profiles, cell cycle, and MTS even after ECs culture in vitro for several passages under normal glucose conditions.


Assuntos
Ciclo Celular/fisiologia , Diabetes Gestacional/fisiopatologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Mitocôndrias/metabolismo , Superóxidos/metabolismo , Transcriptoma/fisiologia , Adulto , Células Cultivadas , Feminino , Doenças Fetais/etiologia , Expressão Gênica , Humanos , Gravidez , Arábia Saudita
14.
Ecotoxicol Environ Saf ; 225: 112801, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560614

RESUMO

Soil salinity is a widespread stress in semi-arid forests worldwide, but how to manage nitrogen (N) nutrition to improve plant saline tolerance remains unclear. Here, the cuttings of a widely distributed poplar from central Asia, Populus russikki Jabl., were exposed to either normal or low nitrogen (LN) concentrations for two weeks in semi-controlled greenhouse, and then they were added with moderate salt solution or not for another two weeks to evaluate their physiological, biochemical, metabolites and transcriptomic profile changes. LN-pretreating alleviated the toxicity caused by the subsequent salt stress in the poplar plants, demonstrated by a significant reduction in the influx of Na+ and Cl- and improvement of the K+/Na+ ratio. The other salt-stressed traits were also ameliarated, indicated by the variations of chlorophyll content, PSII photochemical activity and lipid peroxidation. Stress alleviation resulted from two different processes. First, LN pretreatment caused a significant increase of non-structural carbohydrates (NSC), allowed for an increased production of osmolytes and a higher potential fueling ion transport under subsequent salt condition, along with increased transcript levels of the cation/H+ ATPase. Second, LN pretreatment enhanced the transcript levels of stress signaling components and phytohormones pathway as well as antioxidant enzyme activities. The results indicate that early restrictions of N supply could enhance posterior survival under saline stress in poplar plants, which is important for plantation programs and restoration activities in semi-arid areas.


Assuntos
Populus , Carboidratos , Nitrogênio , Populus/genética , Estresse Salino , Tolerância ao Sal
15.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925480

RESUMO

Conventional chemotherapy for acute myeloid leukemia regimens generally encompass an intensive induction phase, in order to achieve a morphological remission in terms of bone marrow blasts (<5%). The majority of cases are classified as Primary Induction Response (PIR); unfortunately, 15% of children do not achieve remission and are defined Primary Induction Failure (PIF). This study aims to characterize the gene expression profile of PIF in children with Acute Myeloid Leukemia (AML), in order to detect molecular pathways dysfunctions and identify potential biomarkers. Given that NUP98-rearrangements are enriched in PIF-AML patients, we investigated the association of NUP98-driven genes in primary chemoresistance. Therefore, 85 expression arrays, deposited on GEO database, and 358 RNAseq AML samples, from TARGET program, were analyzed for "Differentially Expressed Genes" (DEGs) between NUP98+ and NUP98-, identifying 110 highly confident NUP98/PIF-associated DEGs. We confirmed, by qRT-PCR, the overexpression of nine DEGs, selected on the bases of the diagnostic accuracy, in a local cohort of PIF patients: SPINK2, TMA7, SPCS2, CDCP1, CAPZA1, FGFR1OP2, MAN1A2, NT5C3A and SRP54. In conclusion, the integrated analysis of NUP98 mutational analysis and transcriptome profiles allowed the identification of novel putative biomarkers for the prediction of PIF in AML.


Assuntos
Biomarcadores Tumorais/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Quinase 6 Dependente de Ciclina/genética , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Humanos , Lactente , Recém-Nascido , Masculino , Família Multigênica , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Falha de Tratamento
16.
Appl Microbiol Biotechnol ; 104(9): 4059-4069, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32179949

RESUMO

Geobacter sulfurreducens is capable of reducing Pd(II) to Pd(0) using acetate as electron donor; however, the biochemical and genetic mechanisms involved in this process have not been described. In this work, we carried out transcriptome profiling analysis to identify the genes involved in Pd(II) reduction in this bacterium. Our results showed that 252 genes were upregulated while 141 were downregulated during Pd(II) reduction. Among the upregulated genes, 12 were related to energy metabolism and electron transport, 50 were classified as involved in protein synthesis, 42 were associated to regulatory functions and transcription, and 47 have no homologs with known function. RT-qPCR data confirmed upregulation of genes encoding PilA, the structural protein for electrically conductive pili, as well as c-type cytochromes GSU1062, GSU2513, GSU2808, GSU2934, GSU3107, OmcH, OmcM, PpcA, and PpcD under Pd(II)-reducing conditions. ΔpilA and ΔpilR mutant strains showed 20% and 40% decrease in the Pd(II)-reducing capacity, respectively, as compared to the wild type strain, indicating the central role of pili in this process. RT-qPCR data collected during Pd(II) reduction also confirmed downregulation of omcB, omcC, omcZ, and omcS genes, which have been shown to be involved in the reduction of Fe(III) and electrodes. The present study contributes to elucidate the mechanisms involved in Pd(II) reduction by G. sulfurreducens. Graphical Abstract KEY POINTS: • Transcriptome analysis provided evidence on Pd(II) reduction by G. sulfurreducens. • Results indicate that electrically conductive pili is involved in Pd(II) reduction. • G. sulfurreducens was not able to grow under Pd(II)-reducing conditions. • The study contributes to a better understanding of the mechanisms in Pd(II) reduction.


Assuntos
Citocromos/genética , Perfilação da Expressão Gênica , Geobacter/genética , Paládio/metabolismo , Citocromos/classificação , Regulação para Baixo , Transporte de Elétrons/genética , Metabolismo Energético/genética , Regulação Bacteriana da Expressão Gênica , Oxirredução , Regulação para Cima
17.
Int J Med Sci ; 17(1): 125-136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929746

RESUMO

Implantation of autologous fibroblasts is a method used to correct age-related changes in facial skin. The aim of this study was to establish the optimal population of cultured human fibroblasts according to the organization of the extracellular matrix in the dermis. Transcriptome profile analysis of cells derived from three consecutive passages indicated that fibroblasts after the second passage were the population with the greatest number of upregulated genes encoding the critical biological processes responsible for skin regeneration, such as extracellular matrix organization, collagen fibril organization, and cell adhesion. Furthermore, genes encoding proteinases responsible for the degradation of dermal extracellular matrix proteins were noticeably downregulated at this stage of culture. Autologous fibroblasts seem to be an optimal and safe biological filler for the renewal of all skin structures.


Assuntos
Derme/crescimento & desenvolvimento , Face/fisiologia , Desenvolvimento Maxilofacial/genética , Transcriptoma/genética , Derme/metabolismo , Matriz Extracelular/genética , Proteínas da Matriz Extracelular/genética , Fibroblastos , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Masculino , Pessoa de Meia-Idade
18.
BMC Ophthalmol ; 20(1): 92, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143590

RESUMO

BACKGROUND: Retinoblastoma (RB) is the most frequent pediatric retinal tumor. In the present study, to elucidate chemoresistance mechanisms and identify potential biomarkers in RB, we utilized RNA sequencing (RNAseq) technological platforms to reveal transcriptome profiles and identify any differentially expressed genes (DEGs) between an etoposide drug-resistant subline (Y79/EDR) and parental Y79 cells. METHODS: To test whether Y79/EDR cells showed resistance to antineoplastic agents for RB, we treated the cells with etoposide, carboplatin and vincristine and analyzed them with a Cell Counting Kit-8 (CCK-8). Y79/EDR and parental Y79 cells were used for RNAseq and bioinformatics analysis to enable a genome-wide review of DEGs between the two lines using the DESeq R package (1.10.1). Then, DEG enrichment in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was analyzed with KOBAS software. Next, real-time quantitative reverse transcription polymerase chain reaction (real time QRT-PCR) and cytotoxicity assays were performed to experimentally and functionally validate the identified candidate biomarkers. RESULTS: Y79/EDR cells showed resistance to etoposide, carboplatin and vincristine at different concentrations. In total, 524 transcripts were differentially expressed in Y79/EDR cells based on analysis of fragments per kilobase of transcript per million fragments mapped (FPKM); among these, 57 genes were downregulated and 467 genes were upregulated in Y79/EDR cells compared to parental Y79 cells. We selected candidate DEGs, including ARHGAP9, HIST1H4H, RELN, DDIT4, HK2, STC1 and PFKFB4, for mRNA expression validation with real time QRT-PCR assays and found that the expression levels determined by real time QRT-PCR were consistent with the RNAseq data. Further studies involving downregulation of ARHGAP9 with a specific siRNA showed that ARHGAP9 altered the cellular sensitivity of Y79 cells to etoposide and carboplatin. CONCLUSION: Our initial findings provided a genomic view of the transcription profiles of etoposide-induced acquired resistance in RB. Follow-up studies indicated that ARHGAP9 might be a chemoresistance biomarker in RB, providing insight into potential therapeutic targets for overcoming acquired chemoresistance in RB. These findings can aid in understanding and overcoming chemoresistance during treatment of RB in the clinic.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Etoposídeo/farmacologia , RNA Neoplásico/genética , Neoplasias da Retina/genética , Retinoblastoma/genética , Transcriptoma/genética , Antineoplásicos Fitogênicos/farmacologia , Humanos , Proteína Reelina , Neoplasias da Retina/tratamento farmacológico , Neoplasias da Retina/patologia , Retinoblastoma/tratamento farmacológico , Retinoblastoma/patologia , Células Tumorais Cultivadas
19.
Eur Neurol ; 83(2): 195-212, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32474563

RESUMO

INTRODUCTION: Spinal cord injury (SCI) causes most severe motor and sensory dysfunctions. In Chinese traditional medicine, the agonist of a purinergic receptor is believed to have a positive effect on SCIs, and 2-Methylthio-adenosine-5'-diphosphate (2-MesADP) is a selective agonist of the P2Y purinergic receptor. METHODS: To investigate its therapeutic function and molecular mechanism in SCI, transcriptome analysis associated with weighted gene co-expression network analysis (WGCNA) was carried out at various time points after T9 crush injury. RESULTS: 2-MesADP demonstrated recovery of limb motor function at the 6 weeks after injury, accompanied by neuronal regeneration and axon remyelination at 2 and 6 weeks. Furthermore, gene profiling revealed alternated gene expression with the treatment of 2-MesADP. These genes were assigned to a total of 38 modules, followed by gene ontology analysis; of these, 18 represented neuronal apoptosis and regeneration, immune response, synaptic transmission, cell cycle, and angiogenesis. In the neuronal apoptosis and regeneration module, Nefh, NeuroD6, and Dcx in the 2-MesADP group were noticed due to their interesting expression pattern. The gene expression patterns of Mag, Mog, and Cnp, which played key roles in myelination, were significantly changed with the treatment of 2-MesADP. Wnt signal pathway was the most important pathway in 2-MesADP treatment for acute SCI. CONCLUSION: 2-MesADP enhanced locomotor recovery in mouse SCI by altering the expression of neuronal apoptosis and remyelination-related genes and Wnt signaling pathways.


Assuntos
Difosfato de Adenosina/análogos & derivados , Regulação da Expressão Gênica/efeitos dos fármacos , Locomoção/fisiologia , Agonistas Purinérgicos/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal , Tionucleotídeos/farmacologia , Difosfato de Adenosina/farmacologia , Animais , Proteína Duplacortina , Humanos , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Remielinização/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
20.
J Cell Physiol ; 234(6): 9756-9763, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30362566

RESUMO

Cervical cancer continues to be a major public health problem. Although long noncoding RNAs (lncRNAs) were involved in the initiation and progression of cancer, few studies focus on the lncRNAs in the cervical cancer. Here, we systematically studied the clinical information, transcriptome profiling, and methylation array data of cervical squamous cell carcinoma and endocervical adenocarcinoma that retrieved from genomic data commons (GDC). Compared with protein-coding genes, the expression levels of pseudogenes and lncRNAs were much lower. A total of 190 differentially expressed lncRNAs and 2,326 protein-coding genes were identified. Meanwhile, 269 differentially methylation regions (DMRs), where 16 lncRNAs were located, were figured out. Only one lncRNA, LINC00592, which was located in the DMRs, was also found differentially expressed. Several transcriptional regulation genes, such as ZNF20, ZNF441, ZNF573, and TMF1, were highly correlated with the expression of LINC00592, which illustrated its possible function on the transcription. Two microRNAs, which were both associated with tumor progression, can bind to LINC00592. Moreover, LINC00592 were also differentially expressed in other tumors. We proposed, with the help of various databases, that LINC00592 is a potential cancer-related lncRNA in cervical cancer and might activate the cancer progression through the regulation of transcription or structural integrity.


Assuntos
Metilação de DNA/genética , RNA Longo não Codificante/genética , Transcriptoma/genética , Neoplasias do Colo do Útero/genética , Ilhas de CpG/genética , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA