Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37960357

RESUMO

Given the digitalization trends within the field of engineering, we propose a practical approach to engineering digitization. This method is established based on a physical sandbox model, camera equipment and simulation technology. We propose an image processing modeling method to establish high-precision continuous mathematical models of transmission towers. The calculation of the wind field is realized by using wind speed calculations, a load-wind-direction-time algorithm and the Continuum-Discontinuum Element Method (CDEM). The sensitivity analysis of displacement- and acceleration-controlled transmission tower loads under two different wind direction conditions is conducted. The results show that the digital model exhibits a proportional relationship with the physical dimensions of the transmission tower model. The error between the numerical simulation results and the experimental results falls within a reasonable range. Nodes at higher positions of the transmission tower experience significantly higher forces compared to those at lower positions, and the structural forms with larger windward projected areas yield similar simulation results. The proposed digital twin system can help monitor the performance of structural bodies and assess the disaster degree in extreme conditions. It can guide specific maintenance and repair tasks.

2.
Sensors (Basel) ; 22(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36236386

RESUMO

With the development of robot technology and the extensive application of robots, the research on special robots for some complex working environments has gradually become a hot topic. As a special robot applied to transmission towers, the climbing robot can replace humans to work at high altitudes to complete bolt tightening, detection, and other tasks, which improves the efficiency of transmission tower maintenance and ensures personal safety. However, it is mostly the ability to autonomously locate in the complex environment of the transmission tower that limits the industrial applications of the transmission tower climbing robot. This paper proposes an intelligent positioning method that integrates the three-dimensional information model of transmission tower and visual sensor data, which can assist the robot in climbing and adjusting to the designated working area to guarantee the working accuracy of the climbing robots. The experimental results show that the positioning accuracy of the method is within 1 cm.


Assuntos
Robótica , Humanos
3.
Sensors (Basel) ; 20(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244887

RESUMO

This study presents a technique to identify the vibration characteristics in power transmission towers and to detect the potential structural damages. This method is based on the curvature of the mode shapes coupled with a continuous wavelet transform. The elaborated numerical method is based on signal processing of the output that resulted from ambient vibration. This technique benefits from a limited number of sensors, which makes it a cost-effective approach compared to others. The optimal spatial location for these sensors is obtained by the minimization of the non-diagonal entries in the modal assurance criterion (MAC) matrix. The Hilbert-Huang transform was also used to identify the dynamic anatomy of the structure. In order to simulate the realistic condition of the measured structural response in the field condition, a 10% noise is added to the response of the numerical model. Four damage scenarios were considered, and the potential damages were identified using wavelet transform on the difference of mode shapes curvature in the intact and damaged towers. Results show a promising accuracy considering the small number of applied sensors. This study proposes a low-cost and feasible technique for structural health monitoring.

4.
Sensors (Basel) ; 20(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927813

RESUMO

The structural health monitoring of power transmission towers (PTTs) has drawn increasing attention from researchers in recent years; however, no long-term monitoring of the dynamic parameters of PTTs has previously been reported in the literature. This study performed the long-term monitoring of an instrumented PTT. An automated subspace identification technique was used to extract the dynamic parameters of the PTT from ambient vibration measurements taken over approximately ten months in 2017. Ten target modal frequencies were selected to explore the effects of environmental factors, such as temperature and wind speed, as well as the root-mean-square (RMS) acceleration response of the PTT. Variations in the modal frequencies of approximately 2% to 8% were observed during the study period. In general, among the environmental factors, the temperature was found to be the primary cause of decreases in the modal frequencies, except in the case of some of the higher modes. Typhoon Nesat, which affected the PTT on July 29th, 2017, seems to have decreased the modal frequencies of the PTT, especially for the higher modes. This reduction in the modal frequencies seems to have lasted for approximately two and a half months, after which they recovered to their normal state, probably due to a seasonal cool down in temperature. The reduction percentages in the modal frequencies due to Typhoon Nesat were quantified as approximately -0.89% to -1.34% for the higher modes, but only -0.07% to -0.46% for the remaining lower modes. Although the unusual reductions in the modal frequencies are reported in this study, the reason for this phenomenon is not clear yet. Further studies would be required in the future in order to find the cause.

5.
Sensors (Basel) ; 18(12)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30544698

RESUMO

In view of the settlement problem of transmission tower foundation, the vibration characteristics of transmission towers under wind force are measured experimentally. In this paper, the 110 kV cat head transmission tower of Xi'an Polytechnic University is measured and analyzed. Firstly, the acceleration sensor and meteorological sensor are installed on the tower to collect the vibration response and environment parameters of the tower in real time. Then, an experiment platform is built to simulate the tower settlement, and the vibration response of the tower after settlement is measured in time. Finally, the low-order modal frequencies of the transmission tower before and after settlement under wind force load are extracted by stochastic subspace identification (SSI), and the relationship between modal frequencies of different modes is analyzed via temperature correction. By comparison and analysis, it is obvious that the X-direction modal frequencies before and after settlement under natural wind load are changed, and the change rate increases with the increase of settlement displacement, which can be used as effective evidence for judging the settlement of transmission tower foundation.

6.
Materials (Basel) ; 16(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837376

RESUMO

Fibre-reinforced polymer (FRP) composites have been selected as an alternative to conventional wooden timber cross arms. The advantages of FRP composites include a high strength-to-weight ratio, lightweight, ease of production, as well as optimal mechanical performance. Since a non-conductive cross arm structure is exposed to constant loading for a very long time, creep is one of the main factors that cause structural failure. In this state, the structure experiences creep deformation, which can result in serviceability problems, stress redistribution, pre-stress loss, and the failure of structural elements. These issues can be resolved by assessing the creep trends and properties of the structure, which can forecast its serviceability and long-term mechanical performance. Hence, the principles, approaches, and characteristics of creep are used to comprehend and analyse the behaviour of wood and composite cantilever structures under long-term loads. The development of appropriate creep methods and approaches to non-conductive cross arm construction is given particular attention in this literature review, including suitable mitigation strategies such as sleeve installation, the addition of bracing systems, and the inclusion of cross arm beams in the core structure. Thus, this article delivers a state-of-the-art review of creep properties, as well as an analysis of non-conductive cross arm structures using experimental approaches. Additionally, this review highlights future developments and progress in cross arm studies.

7.
Sci Prog ; 106(2): 368504231171250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139602

RESUMO

The safety of the power transmission towers is the basis for the reliable operation of the power grid. Real-time monitoring of the strain of the key rods of the power transmission tower can reflect the safety status of the power transmission tower. In this paper, a smart rod equipped with fiber Bragg grating with strain sensitivity enhanced structure is proposed to detect the strain of key rods of large-span power transmission towers on the southeast coast of the Yangtze River. The smart rod can be connected with the power transmission tower rod through the foot nails and the force on the tower can be transformed effectively. This structure has the advantages of convenient installation and no damage to the power transmission tower. Prestress can be applied to fiber Bragg grating equipped in the smart rod through the prestressed sleeve and can be continuously and accurately adjusted, sensitivity of the fiber Bragg grating was enhanced by strain sensitivity enhanced structure. The relationship between force and strain of fiber Bragg grating installed in the smart rod was analyzed by ANSYS software. Experimental results show that the sensitivity of the fiber Bragg grating strain sensor in the smart rod is 13 times that of the conventional structure fiber Bragg grating strain sensor, and the linearity between the fiber Bragg grating wavelength change and force is as high as 0.999. Temperature compensation was realized through temperature measurement fiber Bragg grating installed in the smart rod. This structure can be used to measure the strain of a large-span power transmission tower from 0 to 2000 µÎµ with an accuracy of 0.1 µÎµ with good repeatability.

8.
Materials (Basel) ; 16(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37512295

RESUMO

Owing to the high potential application need in the aerospace and structural industry for honeycomb sandwich composite, the study on the flexural behaviour of sandwich composite structure has attracted attention in recent decades. The excellent bending behaviour of sandwich composite structures is based on their facesheet (FS) and core materials. This research studied the effect of woven glass-fibre prepreg orientation on the honeycomb sandwich panel. A three-point bending flexural test was done as per ASTM C393 standard by applying a 5 kN load on different orientation angles of woven glass-fibre prepreg honeycomb sandwich panel: α = 0°, 45° and 90°. The results show that most of the sandwich panel has almost the same failure mode during the three-point bending test. Additionally, the α = 0° orientation angle shows a higher maximum load prior to the first failure occurrence compared to others due to higher flexibility but lower stiffness. In addition, the woven glass-fibre prepreg orientation angle, α = 0°, has the maximum stress and flexural modulus, which directly depend upon the maximum load value obtained during the flexural test. In addition, the experimental results and analytical prediction for honeycomb sandwich deflection show good agreement. According to the result obtained, it is revealed that woven glass-fibre honeycomb sandwich panels with an α = 0° orientation is a good alternative compared to 45° and 90°, especially when better bending application is the main purpose. The final result of this research can be applied to enhance the properties of glass-fibre-reinforced polymer composite (GFRPC) cross-arm and enhance the existing cross-arm used in high transmission towers.

9.
Materials (Basel) ; 16(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049072

RESUMO

Currently, pultruded glass fibre-reinforced polymer (pGFRP) composites have been extensively applied as cross-arm structures in latticed transmission towers. These materials were chosen for their high strength-to-weight ratio and lightweight characteristics. Nevertheless, several researchers have discovered that several existing composite cross arms can decline in performance, which leads to composite failure due to creep, torsional movement, buckling, moisture, significant temperature change, and other environmental factors. This leads to the composite structure experiencing a reduced service life. To resolve this problem, several researchers have proposed to implement composite cross arms with sleeve installation, an addition of bracing systems, and the inclusion of pGFRP composite beams with the core structure in order to have a sustainable composite structure. The aforementioned improvements in these composite structures provide superior performance under mechanical duress by having better stiffness, superiority in flexural behaviour, enhanced energy absorption, and improved load-carrying capacity. Even though there is a deficiency in the previous literature on this matter, several established works on the enhancement of composite cross-arm structures and beams have been applied. Thus, this review articles delivers on a state-of-the-art review on the design improvement and mechanical properties of composite cross-arm structures in experimental and computational simulation approaches.

10.
Materials (Basel) ; 15(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269022

RESUMO

To be typical electrical power infrastructures, high-rise tower-line systems are widely constructed for power transmission. These flexible tower structures commonly possess small damping and may suffer strong vibrations during external excitations. The control approaches based on various devices have been developed to protect transmission towers against strong vibrations, damages, and even failure. However, studies on the vibrant control of wind-excited tower-line systems equipped with SMA dampers have not yet been reported. To this end, the control approach for wind-excited tower-line systems using SMA dampers is conducted. The mechanical model of the tower-line system is established using Lagrange's equations by considering the dynamic interaction between transmission lines and towers. The vibration control method using SMA dampers for the tower-line coupled system is proposed. The control efficacy is verified in both the time domain and the frequency domain. Detailed parametric studies are conducted to examine the effects of physical parameters of SMA dampers on structural responses and hysteresis loops. In addition, the structural energy responses are computed to examine the control performance.

11.
Polymers (Basel) ; 14(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458313

RESUMO

The usage of glass fiber reinforced polymer (GFRP) composite cross-arms in transmission towers is relatively new compared to wood timber cross-arms. In this case, many research works conducted experiments on composite cross-arms, either in coupon or full-scale size. However, none performed finite element (FE) analyses on full-scale composite cross-arms under actual working load and broken wire conditions. Thus, this work evaluates the performance of glass fiber reinforced polymer (GFRP) composite cross-arm tubes in 275 kV transmission towers using FE analysis. In this study, the performance analysis was run mimicking actual normal and broken wire conditions with five and three times more than working loads (WL). The full-scale assembly load test experiment outcomes were used to validate the FE analysis. Furthermore, the mechanical properties values of the GFRP composite were incorporated in simulation analysis based on the previous experimental work on coupons samples of GFRP tubes. Additionally, parametric studies were performed to determine the ultimate applied load and factor of safety for both normal and broken wire loading conditions. This research discovered that the GFRP composite cross-arm could withstand the applied load of five times and three times working load (WL) for normal and broken wire conditions, respectively. In addition, the factor of safety of tubes was 1.08 and 1.1 for normal and broken wire conditions, respectively, which can be considered safe to use. Hence, the composite cross-arms can sustain load two times more than the design requirement, which is two times the working load for normal conditions. In future studies, it is recommended to analyze the fatigue properties of the composite due to wind loading, which may induce failure in long-term service.

12.
Materials (Basel) ; 14(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34832392

RESUMO

High-rise television transmission towers are of low damping and may vibrate excessively when subjected to strong earthquakes. Various dynamic absorbers and dampers are proposed to protect television transmission towers from excessive vibrations and damages. Up to now, the seismic damage reduction in television towers, using SMA dampers under seismic excitations, has not been conducted. To this end, the response reduction in a flexible television tower, disturbed by earthquakes using SMA dampers, is conducted in this study. A two-dimensional dynamic model is developed for dynamic computation at first. The mathematical model of an SMA damper is proposed, and the equations of motion of the tower, without and with, are established, respectively. The structural dynamic responses are examined in the time and the frequency domain, respectively. The effects of damper stiffness, service temperature, hysteresis loops, and earthquake intensity on control efficacy are investigated in detail. In addition, the power spectrum density curves, of dynamic responses and the energy responses, are compared to provide deep insights into the developed control approach. The control performance of SMA dampers is compared with that of widely-used friction dampers. The analytical observations indicate that SMA dampers with optimal parameters can substantially reduce the vibrations of TV transmission towers under seismic excitations.

13.
Materials (Basel) ; 13(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230998

RESUMO

The reliability and safety of power transmission depends first and foremost on the state of the power grid, and mainly on the state of the high-voltage power line towers. The steel structures of existing power line supports (towers) have been in use for many years. Their in-service time, the variability in structural, thermal and environmental loads, the state of foundations (displacement and degradation), the corrosion of supporting structures and lack of technical documentation are essential factors that have an impact on the operating safety of the towers. The tower state assessment used to date, consisting of finding the deviation in the supporting structure apex, is insufficient because it omits the other necessary condition, the stress criterion, which is not to exceed allowable stress values. Moreover, in difficult terrain conditions the measurement of the tower deviation is very troublesome, and for this reason it is often not performed. This paper presents a stress-and-strain analysis of the legs of 110 kV power line truss towers with a height of 32 m. They have been in use for over 70 years and are located in especially difficult geotechnical conditions-one of them is in a gravel mine on an island surrounded by water and the other stands on a steep, wet slope. Purpose-designed fiber Bragg grating (FBG) sensors were proposed for strain measurements. Real values of stresses arising in the tower legs were observed and determined over a period of one year. Validation was also carried out based on geodetic measurements of the tower apex deviation, and a residual magnetic field (RMF) analysis was performed to assess the occurrence of cracks and stress concentration zones.

14.
Polymers (Basel) ; 9(5)2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30970849

RESUMO

Three kinds of fiber reinforced plastic (FRP) composites, including modified polyurethane resin (LGD), epoxy resin (E44) and modified unsaturated polyester resin (D33) glass-fiber reinforced plastics, were subjected to a 5000 h multi-factor accelerated aging test according to the power industry standard. To examine aging resistance and thermal stability of transmission towers made by these three composites, relevant bending properties, thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG), activation energy, as well as microscopic morphology were revealed. The results showed that for these composites, bending modulus retention rates were higher than 94% under the aging test and that of the LGD was highest. Additionally, the onset degradation temperature, temperature at maximum rate of weight loss and T5% reduced at 5000 h, with D33 having highest value and lowest decline rate. The activation energy was calculated with the Bagchi, Coats-Redfern and Broido method, respectively. Although the activation energy of all composites decreased after test, the D33, LGD materials had the highest activation energy which enjoys slight decline. Analysis of the whole experimental results suggested that D33 and LGD composites have good aging resistance, whose basic performance could still perform well after 5000 h aging test, so they can be used to composite towers and applied to engineering practice.

15.
Appl Ergon ; 56: 101-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27184317

RESUMO

High-voltage transmission tower construction is a high-risk operation due to the construction site locations, extreme climatic factors, elevated working surfaces, and narrow working space. To comprehensively enhance our understanding of the psychophysiological phenomena of workers in extremely high tower constructions, we carried out a series of field experiments to test and compare three working surface heights in terms of frequency-domain heart rate variability (HRV) measurements. Twelve experienced male workers participated in this experiment. The dependent variables, namely, heart rate (HR), normalized low-frequency power (nLF), normalized high-frequency power (nHF), and LF-to-HF power ratio (LF/HF), were measured with the Polar RS800CX heart rate monitor. The experimental results indicated that the task workload was similar between working surface heights. Tower construction workers perceived an increased level of mental stress as working surface height increased.


Assuntos
Altitude , Indústria da Construção , Estresse Psicológico/fisiopatologia , Adulto , Instalação Elétrica , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Local de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA