Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(18): 3426-3440.e19, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055201

RESUMO

The 1000 Genomes Project (1kGP) is the largest fully open resource of whole-genome sequencing (WGS) data consented for public distribution without access or use restrictions. The final, phase 3 release of the 1kGP included 2,504 unrelated samples from 26 populations and was based primarily on low-coverage WGS. Here, we present a high-coverage 3,202-sample WGS 1kGP resource, which now includes 602 complete trios, sequenced to a depth of 30X using Illumina. We performed single-nucleotide variant (SNV) and short insertion and deletion (INDEL) discovery and generated a comprehensive set of structural variants (SVs) by integrating multiple analytic methods through a machine learning model. We show gains in sensitivity and precision of variant calls compared to phase 3, especially among rare SNVs as well as INDELs and SVs spanning frequency spectrum. We also generated an improved reference imputation panel, making variants discovered here accessible for association studies.


Assuntos
Genoma Humano , Sequenciamento Completo do Genoma , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação INDEL , Masculino , Polimorfismo de Nucleotídeo Único
2.
Am J Hum Genet ; 109(6): 1117-1139, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35588731

RESUMO

Preeclampsia is a multi-organ complication of pregnancy characterized by sudden hypertension and proteinuria that is among the leading causes of preterm delivery and maternal morbidity and mortality worldwide. The heterogeneity of preeclampsia poses a challenge for understanding its etiology and molecular basis. Intriguingly, risk for the condition increases in high-altitude regions such as the Peruvian Andes. To investigate the genetic basis of preeclampsia in a population living at high altitude, we characterized genome-wide variation in a cohort of preeclamptic and healthy Andean families (n = 883) from Puno, Peru, a city located above 3,800 meters of altitude. Our study collected genomic DNA and medical records from case-control trios and duos in local hospital settings. We generated genotype data for 439,314 SNPs, determined global ancestry patterns, and mapped associations between genetic variants and preeclampsia phenotypes. A transmission disequilibrium test (TDT) revealed variants near genes of biological importance for placental and blood vessel function. The top candidate region was found on chromosome 13 of the fetal genome and contains clotting factor genes PROZ, F7, and F10. These findings provide supporting evidence that common genetic variants within coagulation genes play an important role in preeclampsia. A selection scan revealed a potential adaptive signal around the ADAM12 locus on chromosome 10, implicated in pregnancy disorders. Our discovery of an association in a functional pathway relevant to pregnancy physiology in an understudied population of Native American origin demonstrates the increased power of family-based study design and underscores the importance of conducting genetic research in diverse populations.


Assuntos
Pré-Eclâmpsia , Altitude , Fatores de Coagulação Sanguínea , Proteínas Sanguíneas/genética , Estudos de Casos e Controles , Fator VII/genética , Fator X/genética , Feminino , Humanos , Peru/epidemiologia , Placenta , Pré-Eclâmpsia/epidemiologia , Pré-Eclâmpsia/genética , Gravidez
3.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34498682

RESUMO

Rare diseases occur in a smaller proportion of the general population, which is variedly defined as less than 200 000 individuals (US) or in less than 1 in 2000 individuals (Europe). Although rare, they collectively make up to approximately 7000 different disorders, with majority having a genetic origin, and affect roughly 300 million people globally. Most of the patients and their families undergo a long and frustrating diagnostic odyssey. However, advances in the field of genomics have started to facilitate the process of diagnosis, though it is hindered by the difficulty in genome data analysis and interpretation. A major impediment in diagnosis is in the understanding of the diverse approaches, tools and datasets available for variant prioritization, the most important step in the analysis of millions of variants to select a few potential variants. Here we present a review of the latest methodological developments and spectrum of tools available for rare disease genetic variant discovery and recommend appropriate data interpretation methods for variant prioritization. We have categorized the resources based on various steps of the variant interpretation workflow, starting from data processing, variant calling, annotation, filtration and finally prioritization, with a special emphasis on the last two steps. The methods discussed here pertain to elucidating the genetic basis of disease in individual patient cases via trio- or family-based analysis of the genome data. We advocate the use of a combination of tools and datasets and to follow multiple iterative approaches to elucidate the potential causative variant.


Assuntos
Análise de Dados , Doenças Raras , Estudos de Associação Genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Software
4.
Metab Eng ; 82: 262-273, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387675

RESUMO

Balancing relative expression of pathway genes to minimize flux bottlenecks and metabolic burden is one of the key challenges in metabolic engineering. This is especially relevant for iterative pathways, such as reverse ß-oxidation (rBOX) pathway, which require control of flux partition at multiple nodes to achieve efficient synthesis of target products. Here, we develop a plasmid-based inducible system for orthogonal control of gene expression (referred to as the TriO system) and demonstrate its utility in the rBOX pathway. Leveraging effortless construction of TriO vectors in a plug-and-play manner, we simultaneously explored the solution space for enzyme choice and relative expression levels. Remarkably, varying individual expression levels led to substantial change in product specificity ranging from no production to optimal performance of about 90% of the theoretical yield of the desired products. We obtained titers of 6.3 g/L butyrate, 2.2 g/L butanol and 4.0 g/L hexanoate from glycerol in E. coli, which exceed the best titers previously reported using equivalent enzyme combinations. Since a similar system behavior was observed with alternative termination routes and higher-order iterations, we envision our approach to be broadly applicable to other iterative pathways besides the rBOX. Considering that high throughput, automated strain construction using combinatorial promoter and RBS libraries remain out of reach for many researchers, especially in academia, tools like the TriO system could democratize the testing and evaluation of pathway designs by reducing cost, time and infrastructure requirements.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredução , Plasmídeos/genética , Expressão Gênica
5.
Clin Genet ; 106(2): 140-149, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38468460

RESUMO

Genotype and clinical phenotype analyses of 128 children were performed based on whole exome sequencing (WES), providing a reference for the provision of genetic counseling and the precise diagnosis and treatment of epilepsy. A total of 128 children with unexplained epilepsy were included in this study, and all their clinical data were analyzed. The children's treatments, epilepsy control, and neurodevelopmental levels were regularly followed up every 3 months. The genetic diagnostic yield of the 128 children with epilepsy is 50.8%, with an SNV diagnostic yield of 39.8% and a CNV diagnostic yield of 12.5%. Among the 128 children with epilepsy, 57.0% had onset of epilepsy in infancy, 25.8% have more than two clinical seizure forms, 62.5% require two or more anti-epileptic drug treatments, and 72.7% of the children have varying degrees of psychomotor development retardation. There are significant differences between ages of onset, neurodevelopmental levels and the presence of drug resistance in the genetic diagnostic yield (all p < 0.05). The 52 pathogenic/likely pathogenic SNVs involve 31 genes, with genes encoding ion channels having the largest number of mutations (30.8%). There were 16 cases of pathogenic/possibly pathogenic CNVs, among which the main proportions of CNVs were located in chromosome 15 and chromosome 16. Trio-WES is an essential tool for the genetic diagnosis of unexplained epilepsy, with a genetic diagnostic yield of up to 50.8%. Early genetic testing can provide an initiate appropriate therapies and accurate molecular diagnosis.


Assuntos
Epilepsia , Sequenciamento do Exoma , Predisposição Genética para Doença , Humanos , Epilepsia/genética , Epilepsia/diagnóstico , Masculino , Feminino , Criança , Pré-Escolar , Lactente , Variações do Número de Cópias de DNA/genética , Mutação , Fenótipo , Adolescente , Testes Genéticos , Estudos de Associação Genética/métodos , Exoma/genética , Genótipo , Polimorfismo de Nucleotídeo Único
6.
Clin Genet ; 105(5): 549-554, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38225536

RESUMO

Congenital hyperinsulinism (CHI; OMIM: 256450) is characterized by persistent insulin secretion despite severe hypoglycemia. The most common causes are variants in the ATP-binding cassette subfamily C member 8(ABCC8) and potassium inwardly-rectifying channel subfamily J member 11(KCNJ11) genes. These encode ATP-sensitive potassium (KATP) channel subunit sulfonylurea receptor 1 (SUR1) and inwardly rectifying potassium channel (Kir6.2) proteins. A 7-day-old male infant presented with frequent hypoglycemic episodes and was clinically diagnosed with CHI, underwent trio-whole-exome sequencing, revealing compound heterozygous ABCC8 variants (c.307C>T, p.His103Tyr; and c.3313_3315del, p.Ile1105del) were identified. In human embryonic kidney 293 (HEK293) and rat insulinoma cells (INS-1) transfected with wild-type and variant plasmids, KATP channels formed by p.His103Tyr were delivered to the plasma membrane, whereas p.Ile1105del or double variants (p.His103Tyr coupled with p.Ile1105del) failed to be transported to the plasma membrane. Compared to wild-type channels, the channels formed by the variants (p.His103Tyr; p.Ile1105del) had elevated basal [Ca2+]i, but did not respond to stimulation by glucose. Our results provide evidence that the two ABCC8 variants may be related to CHI owing to defective trafficking and dysfunction of KATP channels.


Assuntos
Hiperinsulinismo Congênito , Canais de Potássio Corretores do Fluxo de Internalização , Lactente , Animais , Ratos , Masculino , Humanos , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Células HEK293 , Receptores de Droga/genética , Receptores de Droga/metabolismo , Mutação/genética , Hiperinsulinismo Congênito/genética , Trifosfato de Adenosina , Potássio/metabolismo
7.
Exp Eye Res ; : 110109, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326774

RESUMO

Keratoconus (KC) is a complex corneal disorder with a well-recognized genetic component. In this study, we aimed to expand the genetic spectrum of 200 Chinese patients with keratoconus and their unaffected parents. Trio-based whole-exome sequencing was performed in 200 patients with sporadic keratoconus and their unaffected parents. The variants identified in candidate genes for keratoconus were analyzed using multiple bioinformatics tools. Finally, we identified 7 variants in 5 candidate genes for keratoconus in 5 patients. The c.T464C variant in the IMPDH1 gene was defined as likely pathogenic according to the guidelines of the American College of Medical Genetics and Genomics, and the remaining variants in candidate genes (TRANK1, SLC4A11, CERKL, IFT172) were defined as uncertain significance. Our results expand the genetic spectrum in KC, highlight the genetic heterogeneity of this disease and provide important clues for future functional validation.

8.
Hum Genomics ; 17(1): 35, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085889

RESUMO

BACKGROUND: Assisted reproductive technologies (ART) may perturb DNA methylation (DNAm) in early embryonic development. Although a handful of epigenome-wide association studies of ART have been published, none have investigated CpGs on the X chromosome. To bridge this knowledge gap, we leveraged one of the largest collections of mother-father-newborn trios of ART and non-ART (natural) conceptions to date to investigate sex-specific DNAm differences on the X chromosome. The discovery cohort consisted of 982 ART and 963 non-ART trios from the Norwegian Mother, Father, and Child Cohort Study (MoBa). To verify our results from the MoBa cohort, we used an external cohort of 149 ART and 58 non-ART neonates from the Australian 'Clinical review of the Health of adults conceived following Assisted Reproductive Technologies' (CHART) study. The Illumina EPIC array was used to measure DNAm in both datasets. In the MoBa cohort, we performed a set of X-chromosome-wide association studies ('XWASs' hereafter) to search for sex-specific DNAm differences between ART and non-ART newborns. We tested several models to investigate the influence of various confounders, including parental DNAm. We also searched for differentially methylated regions (DMRs) and regions of co-methylation flanking the most significant CpGs. Additionally, we ran an analogous model to our main model on the external CHART dataset. RESULTS: In the MoBa cohort, we found more differentially methylated CpGs and DMRs in girls than boys. Most of the associations persisted after controlling for parental DNAm and other confounders. Many of the significant CpGs and DMRs were in gene-promoter regions, and several of the genes linked to these CpGs are expressed in tissues relevant for both ART and sex (testis, placenta, and fallopian tube). We found no support for parental DNAm-dependent features as an explanation for the observed associations in the newborns. The most significant CpG in the boys-only analysis was in UBE2DNL, which is expressed in testes but with unknown function. The most significant CpGs in the girls-only analysis were in EIF2S3 and AMOT. These three loci also displayed differential DNAm in the CHART cohort. CONCLUSIONS: Genes that co-localized with the significant CpGs and DMRs associated with ART are implicated in several key biological processes (e.g., neurodevelopment) and disorders (e.g., intellectual disability and autism). These connections are particularly compelling in light of previous findings indicating that neurodevelopmental outcomes differ in ART-conceived children compared to those naturally conceived.


Assuntos
Metilação de DNA , Epigênese Genética , Masculino , Gravidez , Adulto , Criança , Feminino , Humanos , Recém-Nascido , Metilação de DNA/genética , Estudos de Coortes , Estudo de Associação Genômica Ampla , Austrália
9.
Am J Med Genet A ; 194(7): e63599, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38517182

RESUMO

Pathogenic variants in TRIO, encoding the guanine nucleotide exchange factor, are associated with two distinct neurodevelopmental delay phenotypes: gain-of-function missense mutations within the spectrin repeats are causative for a severe developmental delay with macrocephaly (MIM: 618825), whereas loss-of-function missense variants in the GEF1 domain and truncating variants throughout the gene lead to a milder developmental delay and microcephaly (MIM: 617061). In three affected family members with mild intellectual disability/NDD and microcephaly, we detected a novel heterozygous TRIO variant at the last coding base of exon 31 (NM_007118.4:c.4716G>A). RNA analysis from patient-derived lymphoblastoid cells confirmed aberrant splicing resulting in the skipping of exon 31 (r.4615_4716del), leading to an in-frame deletion in the first Pleckstrin homology subdomain of the GEF1 domain: p.(Thr1539_Lys1572del). To test for a distinct gestalt, facial characteristics of the family members and 41 previously published TRIO cases were systematically evaluated via GestaltMatcher. Computational analysis of the facial gestalt suggests a distinguishable facial TRIO-phenotype not outlined in the existing literature.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Linhagem , Fenótipo , Sítios de Splice de RNA , Humanos , Fatores de Troca do Nucleotídeo Guanina/genética , Masculino , Feminino , Sítios de Splice de RNA/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Microcefalia/genética , Microcefalia/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Éxons/genética , Splicing de RNA/genética , Fácies , Proteínas Serina-Treonina Quinases
10.
Am J Med Genet A ; 194(6): e63544, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38258498

RESUMO

In this pilot study, we aimed to evaluate the feasibility of whole genome sequencing (WGS) as a first-tier diagnostic test for infants hospitalized in neonatal intensive care units in the Brazilian healthcare system. The cohort presented here results from a joint collaboration between private and public hospitals in Brazil considering the initiative of a clinical laboratory to provide timely diagnosis for critically ill infants. We performed trio (proband and parents) WGS in 21 infants suspected of a genetic disease with an urgent need for diagnosis to guide medical care. Overall, the primary indication for genetic testing was dysmorphic syndromes (n = 14, 67%) followed by inborn errors of metabolism (n = 6, 29%) and skeletal dysplasias (n = 1, 5%). The diagnostic yield in our cohort was 57% (12/21) based on cases that received a definitive or likely definitive diagnostic result from WGS analysis. A total of 16 pathogenic/likely pathogenic variants and 10 variants of unknown significance were detected, and in most cases inherited from an unaffected parent. In addition, the reported variants were of different types, but mainly missense (58%) and associated with autosomal diseases (19/26); only three were associated with X-linked diseases, detected in hemizygosity in the proband an inherited from an unaffected mother. Notably, we identified 10 novel variants, absent from public genomic databases, in our cohort. Considering the entire diagnostic process, the average turnaround time from enrollment to medical report in our study was 53 days. Our findings demonstrate the remarkable utility of WGS as a diagnostic tool, elevating the potential of transformative impact since it outperforms conventional genetic tests. Here, we address the main challenges associated with implementing WGS in the medical care system in Brazil, as well as discuss the potential benefits and limitations of WGS as a diagnostic tool in the neonatal care setting.


Assuntos
Testes Genéticos , Unidades de Terapia Intensiva Neonatal , Sequenciamento Completo do Genoma , Humanos , Brasil/epidemiologia , Recém-Nascido , Masculino , Feminino , Testes Genéticos/métodos , Projetos Piloto , Lactente , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética
11.
J Hered ; 115(4): 480-486, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38416051

RESUMO

Previous studies of canid population and evolutionary genetics have relied on high-quality domestic dog reference genomes that have been produced primarily for biomedical and trait mapping studies in dog breeds. However, the absence of highly contiguous genomes from other Canis species like the gray wolf and coyote, that represent additional distinct demographic histories, may bias inferences regarding interspecific genetic diversity and phylogenetic relationships. Here, we present single haplotype de novo genome assemblies for the gray wolf and coyote, generated by applying the trio-binning approach to long sequence reads generated from the genome of a female first-generation hybrid produced from a gray wolf and coyote mating. The assemblies were highly contiguous, with contig N50 sizes of 44.6 and 42.0 Mb for the wolf and coyote, respectively. Genome scaffolding and alignments between the two Canis assemblies and published dog reference genomes showed near complete collinearity, with one exception: a coyote-specific chromosome fission of chromosome 13 and fusion of the proximal portion of that chromosome with chromosome 8, retaining the Canis-typical haploid chromosome number of 2n = 78. We evaluated mapping quality for previous RADseq data from 334 canids and found nearly identical mapping quality and patterns among canid species and regional populations regardless of the genome used for alignment (dog, coyote, or gray wolf). These novel wolf and coyote genome reference assemblies will be important resources for proper and accurate inference of Canis demography, taxonomic evaluation, and conservation genetics.


Assuntos
Coiotes , Genoma , Genômica , Lobos , Animais , Coiotes/genética , Lobos/genética , Genômica/métodos , Feminino , Hibridização Genética , Filogenia , Cães/genética , Haplótipos , Mapeamento Cromossômico , Canidae/genética
12.
J Assist Reprod Genet ; 41(9): 2257-2269, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38951360

RESUMO

PURPOSE: Retrotransposons play important roles during early development when they are transiently de-repressed during epigenetic reprogramming. Long interspersed element-1 (L1), the only autonomous retrotransposon in humans, comprises 17% of the human genome. We applied the Single Cell Transposon Insertion Profiling by Sequencing (scTIPseq) to characterize and map L1 insertions in human embryos. METHODS: Sixteen cryopreserved, genetically tested, human blastocysts, were accessed from consenting couples undergoing IVF at NYU Langone Fertility Center. Additionally, four trios (father, mother, and embryos) were also evaluated. scTIPseq was applied to map L1 insertions in all samples, using L1 locations reported in the 1000 Genomes as controls. RESULTS: Twenty-nine unknown and unique insertions were observed in the sixteen embryos. Most were intergenic; no insertions were located in exons or immediately upstream of genes. The location or number of unknown insertions did not differ between euploid and aneuploid embryos, suggesting they are not merely markers of aneuploidy. Rather, scTIPseq provides novel information about sub-chromosomal structural variation in human embryos. Trio analyses showed a parental origin of all L1 insertions in embryos. CONCLUSION: Several studies have measured L1 expression at different stages of development in mice, but this study for the first time reports unknown insertions in human embryos that were inherited from one parent, confirming no de novo L1 insertions occurred in parental germline or during embryogenesis. Since one-third of euploid embryo transfers fail, future studies would be useful for understanding whether these sub-chromosomal genetic variants or de novo L1 insertions affect embryo developmental potential.


Assuntos
Blastocisto , Elementos Nucleotídeos Longos e Dispersos , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Blastocisto/metabolismo , Feminino , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Mutagênese Insercional/genética , Aneuploidia , Genoma Humano/genética , Fertilização in vitro , Masculino , Variação Genética/genética , Camundongos , Mapeamento Cromossômico/métodos
13.
Genes Chromosomes Cancer ; 62(6): 342-352, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36916207

RESUMO

Among sarcomas, MDM2 amplification is usually a molecular hallmark of well-differentiated liposarcoma and dedifferentiated liposarcoma (DDLPS) and occasionally a secondary genetic anomaly in other sarcomas. Histological evaluation and FISH analysis showing MDM2 amplification led to the diagnosis of DDLPS for a tumor located on the left arm of a 71-year-old patient. The patient was treated by adjuvant radiotherapy (RT) but the tumor recurred soon after. Array-comparative genomic hybridization and targeted RNA/DNA sequencing of the primary tumor and of four recurrences were done. Strikingly, the MDM2 amplification observed in the primary tumor had vanished in the recurrences. In contrast, other rearrangements, such as amplification of the genes TRIO and TERT as well as TRIO::TERT fusion were detected retrospectively in the primary tumor and in all the recurrences. The transitory nature of the MDM2 amplification raised the hypothesis that RT was active on cells that contained MDM2 amplification but not on other tumor cells with only the TERT and TRIO alterations. In contrast to MDM2 amplification, the TRIO::TERT amplified fusion was stable over time. The detection of this fusion was crucial in the analysis of the diagnostically challenging last tumor; it allowed to determine that it was a fourth recurrence, instead of a new independent tumor. It also suggested the diagnosis undifferentiated pleomorphic sarcoma rather than DDLPS. The TRIO::TERT fusion is not well explored. The current study shows that its role in sarcomas, with or without MDM2 amplification, should be more extensively researched.


Assuntos
Lipossarcoma , Sarcoma , Neoplasias de Tecidos Moles , Telomerase , Humanos , Hibridização Genômica Comparativa , Amplificação de Genes , Rearranjo Gênico , Lipossarcoma/genética , Lipossarcoma/radioterapia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Estudos Retrospectivos , Sarcoma/genética , Sarcoma/radioterapia , Sarcoma/patologia , Neoplasias de Tecidos Moles/genética , Telomerase/genética , Idoso
14.
J Radiol Prot ; 44(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193305

RESUMO

Veterans of the British nuclear testing programme represent a population of ex-military personnel who had the potential to be exposed to ionising radiation through their participation at nuclear testing sites in the 1950s and 1960s. In the intervening years, members of this population have raised concerns about the status of their health and that of their descendants, as a consequence. Radiation dose estimates based on film badge measurements of external dose recorded at the time of the tests suggest any exposure to be limited for the majority of personnel, however, only ∼20% of personnel were monitored and no measurement for internalised exposure are on record. Here, to in-part address families concerns, we assay for chromosomal evidence of historical radiation exposure in a group of aged nuclear test (NT) veterans, using multiplexin situhybridisation (M-FISH), for comparison with a matched group of veterans who were not present at NT sites. In total, we analysed 9379 and 7698 metaphase cells using M-FISH (24-colour karyotyping) from 48 NT and 38 control veteran samples, representing veteran servicemen from the army, Royal Airforce and Royal Navy. We observed stable and unstable simple- and complex-type chromosome aberrations in both NT and control veterans' samples, however find no significant difference in yield of any chromosome aberration type between the two cohorts. We do observe higher average frequencies of complex chromosome aberrations in a very small subset of veterans previously identified as having a higher potential for radiation exposure, which may be indicative of internalised contamination to long-lived radionuclides from radiation fallout. By utilising recently published whole genome sequence analysis data of a sub-set of the same family groups, we examined for but found no relationship between paternal chromosome aberration burden, germline mutation frequency and self-reported concerns of adverse health in family members, suggesting that the previously reported health issues by participants in this study are unlikely to be associated with historical radiation exposure. We did observe a small number of families, representing both control and NT cohorts, showing a relationship between paternal chromosome aberrations and germline mutation sub-types which should be explored in future studies. In conclusion, we find no cytogenetic evidence of historical radiation exposure in the cohort of nuclear veterans sampled here, offering reassurance that attendance at NTs sites by the veterans sampled here, was not associated with significant levels of exposure to radiation.


Assuntos
Aberrações Cromossômicas , Militares , Humanos , Idoso , Radiação Ionizante , Bioensaio , Família
15.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 384-389, 2024 Jun 18.
Artigo em Zh | MEDLINE | ID: mdl-38864121

RESUMO

OBJECTIVE: To explore the association between polymorphisms of transforming growth factor-ß (TGF-ß) signaling pathway and non-syndromic cleft lip with or without cleft palate (NSCL/P) among Asian populations, while considering gene-gene interaction and gene-environment interaction. METHODS: A total of 1 038 Asian NSCL/P case-parent trios were ascertained from an international consortium, which conducted a genome-wide association study using a case-parent trio design to investigate the genes affec-ting risk to NSCL/P. After stringent quality control measures, 343 single nucleotide polymorphism (SNP) spanning across 10 pivotal genes in the TGF-ß signaling pathway were selected from the original genome-wide association study(GWAS) dataset for further analysis. The transmission disequilibrium test (TDT) was used to test for SNP effects. The conditional Logistic regression models were used to test for gene-gene interaction and gene-environment interaction. Environmental factors collected for the study included smoking during pregnancy, passive smoking during pregnancy, alcohol intake during pregnancy, and vitamin use during pregnancy. Due to the low rates of exposure to smoking during pregnancy and alcohol consumption during pregnancy (<3%), only the interaction between maternal smoking during pregnancy and multivitamin supplementation during pregnancy was analyzed. The threshold for statistical significance was rigorously set at P =1.46×10-4, applying Bonferroni correction to account for multiple testing. RESULTS: A total of 23 SNPs in 4 genes yielded nominal association with NSCL/P (P<0.05), but none of these associations was statistically significant after Bonferroni' s multiple test correction. However, there were 6 pairs of SNPs rs4939874 (SMAD2) and rs1864615 (TGFBR2), rs2796813 (TGFB2) and rs2132298 (TGFBR2), rs4147358 (SMAD3) and rs1346907 (TGFBR2), rs4939874 (SMAD2) and rs1019855 (TGFBR2), rs4939874 (SMAD2) and rs12490466 (TGFBR2), rs2009112 (TGFB2) and rs4075748 (TGFBR2) showed statistically significant SNP-SNP interaction (P<1.46×10-4). In contrast, the analysis of gene-environment interactions did not yield any significant results after being corrected by multiple testing. CONCLUSION: The comprehensive evaluation of SNP associations and interactions within the TGF-ß signaling pathway did not yield any direct associations with NSCL/P risk in Asian populations. However, the significant gene-gene interactions identified suggest that the genetic architecture influencing NSCL/P risk may involve interactions between genes within the TGF-ß signaling pathway. These findings underscore the necessity for further investigations to unravel these results and further explore the underlying biological mechanisms.


Assuntos
Fenda Labial , Fissura Palatina , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Fator de Crescimento Transformador beta , Feminino , Humanos , Masculino , Gravidez , Consumo de Bebidas Alcoólicas/genética , Povo Asiático/genética , Fenda Labial/genética , Fissura Palatina/genética , Epistasia Genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Transdução de Sinais/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Poluição por Fumaça de Tabaco/efeitos adversos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
16.
J Biol Chem ; 298(9): 102361, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963430

RESUMO

TRIO encodes a cytoskeletal regulatory protein with three catalytic domains-two guanine exchange factor (GEF) domains, GEF1 and GEF2, and a kinase domain-as well as several accessory domains that have not been extensively studied. Function-damaging variants in the TRIO gene are known to be enriched in individuals with neurodevelopmental disorders (NDDs). Disease variants in the GEF1 domain or the nine adjacent spectrin repeats (SRs) are enriched in NDDs, suggesting that dysregulated GEF1 activity is linked to these disorders. We provide evidence here that the Trio SRs interact intramolecularly with the GEF1 domain to inhibit its enzymatic activity. We demonstrate that SRs 6-9 decrease GEF1 catalytic activity both in vitro and in cells and show that NDD-associated variants in the SR8 and GEF1 domains relieve this autoinhibitory constraint. Our results from chemical cross-linking and bio-layer interferometry indicate that the SRs primarily contact the pleckstrin homology region of the GEF1 domain, reducing GEF1 binding to the small GTPase Rac1. Together, our findings reveal a key regulatory mechanism that is commonly disrupted in multiple NDDs and may offer a new target for therapeutic intervention for TRIO-associated NDDs.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Transtornos do Neurodesenvolvimento , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Guanina/metabolismo , Humanos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Espectrina/metabolismo
17.
J Biol Chem ; 298(8): 102209, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35779635

RESUMO

Trio is a large and highly conserved metazoan signaling scaffold that contains two Dbl family guanine nucleotide exchange factor (GEF) modules, TrioN and TrioC, selective for Rac and RhoA GTPases, respectively. The GEF activities of TrioN and TrioC are implicated in several cancers, especially uveal melanoma. However, little is known about how these modules operate in the context of larger fragments of Trio. Here we show via negative stain electron microscopy that the N-terminal region of Trio is extended and could thus serve as a rigid spacer between the N-terminal putative lipid-binding domain and TrioN, whereas the C-terminal half of Trio seems globular. We found that regions C-terminal to TrioN enhance its Rac1 GEF activity and thus could play a regulatory role. We went on to characterize a minimal, well-behaved Trio fragment with enhanced activity, Trio1284-1959, in complex with Rac1 using cryo-electron microscopy and hydrogen-deuterium exchange mass spectrometry and found that the region conferring enhanced activity is disordered. Deletion of two different strongly conserved motifs in this region eliminated this enhancement, suggesting that they form transient intramolecular interactions that promote GEF activity. Because Dbl family RhoGEF modules have been challenging to directly target with small molecules, characterization of accessory Trio domains such as these may provide alternate routes for the development of therapeutics that inhibit Trio activity in human cancer.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Proteínas Serina-Treonina Quinases/química , Fatores de Troca de Nucleotídeo Guanina Rho/química , Animais , Microscopia Crioeletrônica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Neoplasias Uveais , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
18.
J Cell Sci ; 134(3)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568469

RESUMO

The well-studied members of the Trio family of proteins are Trio and kalirin in vertebrates, UNC-73 in Caenorhabditis elegans and Trio in Drosophila Trio proteins are key regulators of cell morphogenesis and migration, tissue organization, and secretion and protein trafficking in many biological contexts. Recent discoveries have linked Trio and kalirin to human disease, including neurological disorders and cancer. The genes for Trio family proteins encode a series of large multidomain proteins with up to three catalytic activities and multiple scaffolding and protein-protein interaction domains. As such, Trio family proteins engage a wide array of cell surface receptors, substrates and interaction partners to coordinate changes in cytoskeletal regulatory and protein trafficking pathways. We provide a comprehensive review of the specific mechanisms by which Trio family proteins carry out their functions in cells, highlight the biological and cellular contexts in which they occur, and relate how alterations in these functions contribute to human disease.


Assuntos
Caenorhabditis elegans , Transdução de Sinais , Animais , Caenorhabditis elegans/genética , Movimento Celular/genética , Citoesqueleto , Humanos , Morfogênese/genética
19.
Development ; 147(10)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32366678

RESUMO

Directional migration during embryogenesis and tumor progression faces the challenge that numerous external signals need to converge to precisely control cell movement. The Rho guanine exchange factor (GEF) Trio is especially well suited to relay signals, as it features distinct catalytic domains to activate Rho GTPases. Here, we show that Trio is required for Xenopus cranial neural crest (NC) cell migration and cartilage formation. Trio cell-autonomously controls protrusion formation of NC cells and Trio morphant NC cells show a blebbing phenotype. Interestingly, the Trio GEF2 domain is sufficient to rescue protrusion formation and migration of Trio morphant NC cells. We show that this domain interacts with the DEP/C-terminus of Dishevelled (DVL). DVL - but not a deletion construct lacking the DEP domain - is able to rescue protrusion formation and migration of Trio morphant NC cells. This is likely mediated by activation of Rac1, as we find that DVL rescues Rac1 activity in Trio morphant embryos. Thus, our data provide evidence for a novel signaling pathway, whereby Trio controls protrusion formation of cranial NC cells by interacting with DVL to activate Rac1.


Assuntos
Movimento Celular/genética , Proteínas Desgrenhadas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Crista Neural/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Proteínas Desgrenhadas/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Crista Neural/embriologia , Fenótipo , Plasmídeos/genética , Ligação Proteica/genética , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Transfecção , Proteínas de Xenopus/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
20.
Genet Med ; 25(8): 100875, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37149759

RESUMO

PURPOSE: Clinical checklists are the standard of care to determine whether a child with cancer shows indications for genetic testing. Nevertheless, the efficacy of these tests to reliably detect genetic cancer predisposition in children with cancer is still insufficiently investigated. METHODS: We assessed the validity of clinically recognizable signs to identify cancer predisposition by correlating a state-of-the-art clinical checklist to the corresponding exome sequencing analysis in an unselected single-center cohort of 139 child-parent data sets. RESULTS: In total, one-third of patients had a clinical indication for genetic testing according to current recommendations, and 10.1% (14 of 139) of children harbored a cancer predisposition. Of these, 71.4% (10 of 14) were identified through the clinical checklist. In addition, >2 clinical findings in the checklist increased the likelihood to identifying genetic predisposition from 12.5% to 50%. Furthermore, our data revealed a high rate of genetic predisposition (40%, 4 of 10) in myelodysplastic syndrome cases, while no (likely) pathogenic variants were identified in the sarcoma and lymphoma group. CONCLUSION: In summary, our data show high checklist sensitivity, particularly in identifying childhood cancer predisposition syndromes. Nevertheless, the checklist used here also missed 29% of children with a cancer predisposition, highlighting the drawbacks of sole clinical evaluation and underlining the need for routine germline sequencing in pediatric oncology.


Assuntos
Neoplasias , Síndromes Neoplásicas Hereditárias , Humanos , Criança , Predisposição Genética para Doença , Detecção Precoce de Câncer , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patologia , Testes Genéticos , Genótipo , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Mutação em Linhagem Germinativa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA