RESUMO
Embryogenesis necessitates harmonious coordination between embryonic and extraembryonic tissues. Although stem cells of both embryonic and extraembryonic origins have been generated, they are grown in different culture conditions. In this study, utilizing a unified culture condition that activates the FGF, TGF-ß, and WNT pathways, we have successfully derived embryonic stem cells (FTW-ESCs), extraembryonic endoderm stem cells (FTW-XENs), and trophoblast stem cells (FTW-TSCs) from the three foundational tissues of mouse and cynomolgus monkey (Macaca fascicularis) blastocysts. This approach facilitates the co-culture of embryonic and extraembryonic stem cells, revealing a growth inhibition effect exerted by extraembryonic endoderm cells on pluripotent cells, partially through extracellular matrix signaling. Additionally, our cross-species analysis identified both shared and unique transcription factors and pathways regulating FTW-XENs. The embryonic and extraembryonic stem cell co-culture strategy offers promising avenues for developing more faithful embryo models and devising more developmentally pertinent differentiation protocols.
Assuntos
Embrião de Mamíferos , Células-Tronco Embrionárias , Animais , Técnicas de Cocultura , Macaca fascicularis , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular , Endoderma/metabolismo , Linhagem da CélulaRESUMO
The placenta is a highly evolved, specialized organ in mammals. It differs from other organs in that it functions only for fetal maintenance during gestation. Therefore, there must be intrinsic mechanisms that guarantee its unique functions. To address this question, we comprehensively analyzed epigenomic features of mouse trophoblast stem cells (TSCs). Our genome-wide, high-throughput analyses revealed that the TSC genome contains large-scale (>1-Mb) rigid heterochromatin architectures with a high degree of histone H3.1/3.2-H3K9me3 accumulation, which we termed TSC-defined highly heterochromatinized domains (THDs). Importantly, depletion of THDs by knockdown of CAF1, an H3.1/3.2 chaperone, resulted in down-regulation of TSC markers, such as Cdx2 and Elf5, and up-regulation of the pluripotent marker Oct3/4, indicating that THDs maintain the trophoblastic nature of TSCs. Furthermore, our nuclear transfer technique revealed that THDs are highly resistant to genomic reprogramming. However, when H3K9me3 was removed, the TSC genome was fully reprogrammed, giving rise to the first TSC cloned offspring. Interestingly, THD-like domains are also present in mouse and human placental cells in vivo, but not in other cell types. Thus, THDs are genomic architectures uniquely developed in placental lineage cells, which serve to protect them from fate reprogramming to stably maintain placental function.
Assuntos
Histonas , Trofoblastos , Animais , Diferenciação Celular/genética , Feminino , Histonas/genética , Histonas/metabolismo , Mamíferos , Camundongos , Placenta , Gravidez , Células-Tronco , Trofoblastos/metabolismoRESUMO
Endogenous retroviruses (ERVs) are frequently reactivated in mammalian placenta. It has been proposed that ERVs contribute to shaping the gene regulatory network of mammalian trophoblasts, dominantly acting as species- and placental-specific enhancers. However, whether and how ERVs control human trophoblast development through alternative pathways remains poorly understood. Besides the well-recognized function of human endogenous retrovirus-H (HERVH) in maintaining pluripotency of early human epiblast, here we present a unique role of HERVH on trophoblast lineage development. We found that the LTR7C/HERVH subfamily exhibits an accessible chromatin state in the human trophoblast lineage. Particularly, the LTR7C/HERVH-derived Urothelial Cancer Associated 1 (UCA1), a primate-specific long non-coding RNA (lncRNA), is transcribed in human trophoblasts and promotes the proliferation of human trophoblast stem cells (hTSCs), whereas its ectopic expression compromises human trophoblast syncytialization coinciding with increased interferon signaling pathway. Importantly, UCA1 upregulation is detectable in placental samples from early-onset preeclampsia (EO-PE) patients and the transcriptome of EO-PE placenta exhibits considerable similarities to that of the syncytiotrophoblasts differentiated from UCA1-overexpressing hTSCs, supporting up-regulated UCA1 as a potential biomarker of this disease. Altogether, our data shed light on the versatile regulatory role of HERVH in early human development and provide a unique mechanism whereby ERVs exert a function in human placentation and placental syndromes.
Assuntos
Retrovirus Endógenos , RNA Longo não Codificante , Animais , Humanos , Gravidez , Feminino , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Placenta/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Trofoblastos/metabolismo , Placentação , Primatas/genética , Mamíferos/genéticaRESUMO
Nutrient sensing and adaptation in the placenta are essential for pregnancy viability and proper fetal growth. Our recent study demonstrated that the placenta adapts to nutrient insufficiency through mechanistic target of rapamycin (mTOR) inhibition-mediated trophoblast differentiation toward syncytiotrophoblasts (STBs), a highly specialized multinucleated trophoblast subtype mediating extensive maternal-fetal interactions. However, the underlying mechanism remains elusive. Here, we unravel the indispensable role of the mTORC1 downstream transcriptional factor TFEB in STB formation both in vitro and in vivo. TFEB deficiency significantly impaired STB differentiation in human trophoblasts and placenta organoids. Consistently, systemic or trophoblast-specific deletion of Tfeb compromised STB formation and placental vascular construction, leading to severe embryonic lethality. Mechanistically, TFEB conferred direct transcriptional activation of the fusogen ERVFRD-1 in human trophoblasts and thereby promoted STB formation, independent of its canonical function as a master regulator of the autophagy-lysosomal pathway. Moreover, we demonstrated that TFEB directed the trophoblast syncytialization response driven by mTOR complex 1 (mTORC1) signaling. TFEB expression positively correlated with the reinforced trophoblast syncytialization in human fetal growth-restricted placentas exhibiting suppressed mTORC1 activity. Our findings substantiate that the TFEB-fusogen axis ensures proper STB formation during placenta development and under nutrient stress, shedding light on TFEB as a mechanistic link between nutrient-sensing machinery and trophoblast differentiation.
Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Diferenciação Celular , Alvo Mecanístico do Complexo 1 de Rapamicina , Trofoblastos , Trofoblastos/metabolismo , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Feminino , Gravidez , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Placenta/metabolismo , Transdução de Sinais , Autofagia/fisiologiaRESUMO
Failures in growth and differentiation of the early human placenta are associated with severe pregnancy disorders such as pre-eclampsia and fetal growth restriction. However, regulatory mechanisms controlling development of placental epithelial cells, the trophoblasts, remain poorly elucidated. Using trophoblast stem cells (TSCs), trophoblast organoids (TB-ORGs) and primary cytotrophoblasts (CTBs) of early pregnancy, we herein show that autocrine NOTCH3 signalling controls human placental expansion and differentiation. The NOTCH3 receptor was specifically expressed in proliferative CTB progenitors and its active form, the nuclear NOTCH3 intracellular domain (NOTCH3-ICD), interacted with the transcriptional co-activator mastermind-like 1 (MAML1). Doxycycline-inducible expression of dominant-negative MAML1 in TSC lines provoked cell fusion and upregulation of genes specific for multinucleated syncytiotrophoblasts, which are the differentiated hormone-producing cells of the placenta. However, progenitor expansion and markers of trophoblast stemness and proliferation were suppressed. Accordingly, inhibition of NOTCH3 signalling diminished growth of TB-ORGs, whereas overexpression of NOTCH3-ICD in primary CTBs and TSCs showed opposite effects. In conclusion, the data suggest that canonical NOTCH3 signalling plays a key role in human placental development by promoting self-renewal of CTB progenitors.
Assuntos
Placenta , Trofoblastos , Humanos , Gravidez , Feminino , Placenta/metabolismo , Receptor Notch3/genética , Receptor Notch3/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Células-Tronco , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Trophoblast stem cells (TSCs), derived from the trophectoderm of the blastocyst, are used as an in vitro model to reveal the mechanisms underlying placentation in mammals. In humans, suitable culture conditions for TSC derivation have recently been established. The established human TSCs (hTSCs) differentiate efficiently toward two trophoblast subtypes: syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). However, the efficiency of differentiation is lower in macaque TSCs than in hTSCs. Here, we demonstrate that the activation of Wnt signaling downregulated the expression of inhibitory G protein and induced trophoblastic lineage switching to the STB progenitor state. The treatment of macaque TSCs with a GSK-3 inhibitor, CHIR99021, upregulated STB progenitor markers and enhanced proliferation. Under the Wnt signaling-activated conditions, macaque TSCs effectively differentiated to STBs upon dbcAMP and forskolin treatment. RNA-seq analyses revealed the downregulation of inhibitory G protein, which may make macaque TSCs responsive to forskolin. Interestingly, this lineage switching appeared to be reversible as the macaque TSCs lost responsiveness to forskolin upon the removal of CHIR99021. The ability to regulate the direction of macaque TSC differentiation would be advantageous in elucidating the mechanisms underlying placentation in non-human primates.
RESUMO
The mouse placenta is composed of three different trophoblast layers that are occupied by particular trophoblast subtypes to maintain placental function and pregnancy. Accurate control of trophoblast differentiation is required for proper placental function; however, the molecular mechanisms underlying cell fate decisions in trophoblast stem cells remain poorly understood. Epidermal growth factor (EGF) signaling is involved in multiple biological processes including cell survival, proliferation, and differentiation. The effect of EGF on trophoblast function has been reported in various species; however, the role of EGF signaling in mouse trophoblast specification remains unclear. In this study, we aimed to elucidate the role of EGF signaling in mouse trophoblast differentiation using mouse trophoblast stem cells (mTSCs) in an in vitro culture system. EGF stimulation at the early stage of differentiation repressed mTSC differentiation into spongiotrophoblast cells (SpT). Gene deletion and inhibitor experiments showed that the effect of EGF exposure went through epidermal growth factor receptor (Egfr) activity in mTSCs. EGF stimuli induced acute downstream activation of MAPK/ERK, PI3K/AKT, and JNK pathways, and inhibition of the MAPK/ERK pathway, but not others, alleviated EGF-mediated repression of SpT differentiation. Moreover, expression of Mash2, a master regulator of SpT differentiation, was repressed by EGF stimulation, and MAPK/ERK inhibition counteracted this repression. The Mash2 overexpression recovered SpT marker expression, indicating that the decrease in Mash2 expression was due to abnormal SpT differentiation in EGF-treated mTSCs. Our findings suggest that the EGF-Egfr-MAPK/ERK-Mash2 axis is a core regulatory mechanism for the EGF-mediated repression of SpT differentiation.
Assuntos
Fator de Crescimento Epidérmico , Trofoblastos , Camundongos , Animais , Feminino , Gravidez , Trofoblastos/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Placenta/metabolismo , Receptores ErbB/metabolismo , Diferenciação Celular/genética , Células-Tronco/metabolismoRESUMO
With the development of the embryo, the totipotent blastomere undergoes the first lineage decision to the inner cell mass (ICM) and the trophectoderm (TE). The ICM forms the fetus while the TE forms the placenta, which is one of the unique organs in mammals serving as the interface between maternal and fetal bloodstreams. Proper trophoblast lineage differentiation is crucial for correct placental and fetal development, including the TE progenitor self-renewal and its differentiation toward mononuclear cytotrophoblast, which later either develops into invasive extravillous trophoblast, remodeling the uterine vascular, or fuses into multinuclear syncytiotrophoblast, secreting pregnancy-sustaining hormone. Aberrant differentiation and gene expression of trophoblast lineage is associated with severe pregnancy disorders and fetal growth restriction. This review focuses on the early differentiation and key regulatory factors of trophoblast lineage, which have been poorly elucidated. Meanwhile, the recent development of trophoblast stem cells, trophectoderm stem cells, and blastoids derived from pluripotent stem cells bring the accessible model to investigate the profound mystery of embryo implantation and placentation and were also summarized.
Assuntos
Células-Tronco Pluripotentes , Trofoblastos , Animais , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Placenta/metabolismo , Placentação/genética , Diferenciação Celular/genética , Expressão Gênica , MamíferosRESUMO
The use of in vitro tools to study trophoblast differentiation and function is essential to improve understanding of normal and abnormal placental development. The relative accessibility of human placentae enables the use of primary trophoblasts and placental explants in a range of in vitro systems. Recent advances in stem cell models, three-dimensional organoid cultures, and organ-on-a-chip systems have further shed light on the complex microenvironment and cell-cell crosstalk involved in placental development. However, understanding each model's strengths and limitations, and which in vivo aspects of human placentation in vitro data acquired does, or does not, accurately reflect, is key to interpret findings appropriately. To help researchers use and design anatomically accurate culture models, this review both outlines our current understanding of placental development, and critically considers the range of established and emerging culture models used to study this, with a focus on those derived from primary tissue.
Assuntos
Placenta , Placentação , Diferenciação Celular , Feminino , Humanos , Gravidez , Células-Tronco , TrofoblastosRESUMO
In utero mammalian development relies on the establishment of the maternal-fetal exchange interface, which ensures transportation of nutrients and gases between the mother and the fetus. This exchange interface is established via development of multinucleated syncytiotrophoblast cells (SynTs) during placentation. In mice, SynTs develop via differentiation of the trophoblast stem cell-like progenitor cells (TSPCs) of the placenta primordium, and in humans, SynTs are developed via differentiation of villous cytotrophoblast (CTB) progenitors. Despite the critical need in pregnancy progression, conserved signaling mechanisms that ensure SynT development are poorly understood. Herein, we show that atypical protein kinase C iota (PKCλ/ι) plays an essential role in establishing the SynT differentiation program in trophoblast progenitors. Loss of PKCλ/ι in the mouse TSPCs abrogates SynT development, leading to embryonic death at approximately embryonic day 9.0 (E9.0). We also show that PKCλ/ι-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. PKCλ/ι is selectively expressed in the first-trimester CTBs of a developing human placenta. Furthermore, loss of PKCλ/ι in CTB-derived human trophoblast stem cells (human TSCs) impairs their SynT differentiation potential both in vitro and after transplantation in immunocompromised mice. Our mechanistic analyses indicate that PKCλ/ι signaling maintains expression of GCM1, GATA2, and PPARγ, which are key transcription factors to instigate SynT differentiation programs in both mouse and human trophoblast progenitors. Our study uncovers a conserved molecular mechanism, in which PKCλ/ι signaling regulates establishment of the maternal-fetal exchange surface by promoting trophoblast progenitor-to-SynT transition during placentation.
Assuntos
Diferenciação Celular/fisiologia , Isoenzimas/metabolismo , Troca Materno-Fetal/fisiologia , Placenta/metabolismo , Proteína Quinase C/metabolismo , Trofoblastos/fisiologia , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Fator de Transcrição GATA2/metabolismo , Humanos , Isoenzimas/genética , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , PPAR gama/metabolismo , Placenta/citologia , Placentação/fisiologia , Gravidez , Proteína Quinase C/genética , Transdução de Sinais , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Trofoblastos/citologiaRESUMO
The endometrium is a dynamic tissue that undergoes extensive remodeling during the menstrual cycle and further gets modified during pregnancy. Different kinds of stem cells are reported in the endometrium. These include epithelial stem cells, endometrial mesenchymal stem cells, side population stem cells, and very small embryonic-like stem cells. Stem cells are also reported in the placenta which includes trophoblast stem cells, side population trophoblast stem cells, and placental mesenchymal stem cells. The endometrial and placental stem cells play a pivotal role in endometrial remodeling and placental vasculogenesis during pregnancy. The dysregulation of stem cell function is reported in various pregnancy complications like preeclampsia, fetal growth restriction, and preterm birth. However, the mechanisms by which it does so are yet elusive. Herein, we review the current knowledge of the different type of stem cells involved in pregnancy initiation and also highlight how their improper functionality leads to pathological pregnancy.
Assuntos
Placenta , Nascimento Prematuro , Recém-Nascido , Gravidez , Feminino , Humanos , Placenta/patologia , Nascimento Prematuro/patologia , Endométrio/patologia , Trofoblastos , Células-Tronco/fisiologiaRESUMO
The placenta plays various roles in a healthy pregnancy, and abnormalities in the placenta result in adverse outcomes. Adequate differentiation of trophoblast subtypes is necessary for placental function, but the molecular mechanisms that determine trophoblast cell fate remain unclear. Here, we screened small molecular compound (SMC) libraries (1904 SMCs) to identify particular SMCs which regulate trophoblast differentiation in mouse trophoblast stem cells (mTSCs) to understand the molecular mechanisms underlying cell fate decision in trophoblast cells. The two-step screening revealed a novel effect of N-oleoyldopamine (OLDA), an endogenic vanilloid, to promote differentiation into parietal trophoblast giant cells (P-TGCs) and repress them into spongiotrophoblast cells in mTSCs. Analyses by gene deletion and inhibitor treatments indicated that transient receptor potential cation channel subfamily V member 3 (Trpv3), one of the candidates for targeting by OLDA, was involved in maintaining stem status and P-TGC differentiation in mTSCs. Finally, transcriptome analysis revealed that Fosl1, a key regulatory factor in differentiation into P-TGCs, was upregulated by OLDA treatment, suggesting that OLDA promoted the differentiation of mTSCs into P-TGCs via regulation of Fosl1 expression.
Assuntos
Placenta , Trofoblastos , Camundongos , Animais , Feminino , Gravidez , Trofoblastos/metabolismo , Placenta/metabolismo , Células Gigantes , Diferenciação Celular/genética , Células-TroncoRESUMO
Placental dysplasia increases the risk of recurrent spontaneous abortion (RSA). However, the underlying mechanism regulating placental development remains unclear. In this study, we showed that the expression of CDC42 was decreased in the villous tissue of RSA samples compared to healthy controls. Further examination demonstrated that CDC42 deficiency led to the differentiation of human trophoblast stem cells (hTSCs) and inhibited their proliferation. Genetic manipulation of YAP and EZRIN in hTSCs revealed that CDC42 regulates the stemness and proliferation of hTSCs; this is dependent on EZRIN, which translocates YAP into the nucleus. Moreover, the expression pattern of EZRIN, YAP, and Ki67 was also abnormal in the villous tissue of RSA samples, consistent with in vitro experiments. In summary, these findings suggest that the CDC42/EZRIN/YAP pathway plays an important role in placental development.
Assuntos
Proteínas do Citoesqueleto/metabolismo , Placenta , Trofoblastos , Proteínas de Sinalização YAP/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proliferação de Células , Regulação para Baixo , Feminino , Humanos , Placenta/metabolismo , Gravidez , Células-Tronco , Trofoblastos/citologia , Trofoblastos/metabolismoRESUMO
PURPOSE: Human trophoblast stem cells (hTSCs) are counterparts of the precursor cells of the placenta and are valuable cell models for the study of placental development and the pathogenesis of placental diseases. The aim of this work was to establish a triploid human TSC (hTSC3PN) derived from the tripronuclear embryos, which are clinically discarded but readily available, for potential applications in basic placental research and disease modeling. METHODS: Eighteen tripronuclear human zygotes from IVF were collected and cultured for 5-6 days. Five high-quality blastocysts were harvested and were individually cultured in hTSC medium. Finally, two hTSC lines were established after 10 days and could be passaged stably. RESULTS: The karyotyping analysis showed that hTSC3PN contained three sets of chromosomes. And the hTSC3PN exhibited typical features of hTSCs, with the ability to differentiate into two trophoblast lineages: extravillous cytotrophoblasts (EVTs) and syncytiotrophoblasts (STs). In addition, the hTSC3PN can mimic some vital features of trophoblast, including hormone secretion and invasion. Further studies showed that the proliferation and differentiation of hTSC3PN were reduced compared with normal hTSCs, which may be related to the disturbed metabolic signaling in hTSC3PN. CONCLUSIONS: We established the triploid hTSC lines derived from tripronuclear embryos, which provides a potentially useful research model in vitro to study human placental biology and diseases.
Assuntos
Triploidia , Trofoblastos , Diferenciação Celular/genética , Feminino , Humanos , Placenta , Gravidez , Células-Tronco , Trofoblastos/metabolismoRESUMO
Early mammalian development is crucially dependent on the establishment of oxidative energy metabolism within the trophectoderm (TE) lineage. Unlike the inner cell mass, TE cells enhance ATP production via mitochondrial oxidative phosphorylation (OXPHOS) and this metabolic preference is essential for blastocyst maturation. However, molecular mechanisms that regulate establishment of oxidative energy metabolism in TE cells are incompletely understood. Here, we show that conserved transcription factor TEAD4, which is essential for pre-implantation mammalian development, regulates this process by promoting mitochondrial transcription. In developing mouse TE and TE-derived trophoblast stem cells (TSCs), TEAD4 localizes to mitochondria, binds to mitochondrial DNA (mtDNA) and facilitates its transcription by recruiting mitochondrial RNA polymerase (POLRMT). Loss of TEAD4 impairs recruitment of POLRMT, resulting in reduced expression of mtDNA-encoded electron transport chain components, thereby inhibiting oxidative energy metabolism. Our studies identify a novel TEAD4-dependent molecular mechanism that regulates energy metabolism in the TE lineage to ensure mammalian development.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Embrionário/genética , Metabolismo Energético , Mamíferos/embriologia , Mamíferos/genética , Mitocôndrias/genética , Proteínas Musculares/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Blastocisto/ultraestrutura , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Ectoderma/citologia , Transporte de Elétrons , Metabolismo Energético/genética , Camundongos , Mitocôndrias/ultraestrutura , Modelos Biológicos , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Oxirredução , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Trofoblastos/citologiaRESUMO
All trophoblast subtypes of the placenta are derived from trophoblast stem cells (TSCs). TSCs have the capacity to self-renew, but how the proliferation of these cells is regulated in the undifferentiated state has been largely unclear. We now show that the F-box protein Skp2 regulates the proliferation of TSCs and thereby plays a pivotal role in placental development in mice on the C57BL/6 background. The placenta of Skp2-/- mouse embryos on the C57BL/6 background was smaller than that of their Skp2+/+ littermates, with the mutant embryos also manifesting intrauterine growth retardation. Although the Skp2-/- mice were born alive, most of them died before postnatal day 21, presumably as a result of placental defects. Depletion of Skp2 in TSCs cultured in the undifferentiated state resulted in a reduced rate of proliferation and arrest of the cell cycle in G1 phase, indicative of a defect in self-renewal capacity. The cell cycle arrest apparent in Skp2-deficient TSCs was reversed by additional ablation of the cyclin-dependent kinase inhibitor (CKI) p57 but not by that of the CKI p27. Our results thus suggest that Skp2-mediated degradation of p57 is an important determinant of the self-renewal capacity of TSCs during placental development, at least in mice of certain genetic backgrounds.
Assuntos
Ciclo Celular/genética , Embrião de Mamíferos/metabolismo , Placenta/metabolismo , Placentação/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Células-Tronco/metabolismo , Trofoblastos/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Embrião de Mamíferos/embriologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/embriologia , Gravidez , Ratos , Proteínas Quinases Associadas a Fase S/genéticaRESUMO
Mouse trophoblast stem cells (TSCs) can differentiate into trophoblast cells, which constitute the placenta. Under conventional culture conditions, in a medium supplemented with 20% fetal bovine serum (FBS), fibroblast growth factor 4 (FGF4), and heparin and in the presence of mouse embryonic fibroblast cells (MEFs) as feeder cells, TSCs maintain their undifferentiated, proliferative status. MEFs can be replaced by a 70% MEF-conditioned medium (MEF-CM) or by TGF-ß/activin A. To find out if KnockOutTM Serum Replacement (KSR) can replace FBS for TSC maintenance, we cultured mouse TSCs in KSR-based, FBS-free medium and investigated their proliferation capacity, stemness, and differentiation potential. The results indicated that fibronectin, vitronectin, or laminin coating was necessary for adhesion of TSCs under KSR-based conditions but not for their survival or proliferation. While the presence of FGF4, heparin, and activin A was not sufficient to support the proliferation of TSCs, the addition of a pan-retinoic acid receptor inverse agonist and a ROCK-inhibitor yielded a proliferation rate comparable to that obtained under the conventional FBS-based conditions. TSCs cultured under the KSR-based conditions had a gene expression and DNA methylation profile characteristic of TSCs and exhibited a differentiation potential. Moreover, under KSR-based conditions, we could obtain a suspension culture of TSCs using extracellular matrix (ECM) coating-free dishes. Thus, we have established here, KSR-based culture conditions for the maintenance of TSCs, which should be useful for future studies.
Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura , Células-Tronco/citologia , Trofoblastos/citologia , Animais , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , CamundongosRESUMO
Human trophoblast stem cells (TSCs) play a key role in the placenta. These cells are proliferative, undifferentiated, and can differentiate into mature trophoblast cell types. However, primary human TSCs are difficult to obtain. In our previous study, we established TSCs from human induced pluripotent stem cells (TShiPSC). Here, we aimed to characterize the identity of these TShiPSC cells by comparing them with BeWo choriocarcinoma cells and primary TSCs (CT cells). Compared with BeWo cells, CT and TShiPSC cells showed high secretion of human chorionic gonadotrophin (hCG) and syncytiotrophoblast differentiation ability. Global gene microarray analysis results showed that CT and TShiPSC cells, unlike BeWo cells, could be classified in the same group. Compared with BeWo cells, CT and TShiPSC cells showed high expression levels of TSC-specific genes and low expression of cancer adhesion and invasion genes. Analysis of placental barrier integrity showed that TShiPSC cells could form a good barrier. Prospective studies using TShiPSC cells hold great promise for elucidating the pathogenesis of infertility due to trophoblast defects.
Assuntos
Gonadotropina Coriônica/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco/citologia , Trofoblastos/citologia , Trofoblastos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Coriocarcinoma/genética , Coriocarcinoma/metabolismo , Feminino , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Placenta/metabolismo , Placenta/fisiologia , Gravidez , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Trofoblastos/fisiologiaRESUMO
Previous studies have shown that some inflammatory cytokines promote the expression of corticotropin-releasing hormone (CRH) in trophoblasts during pregnancy and that placental CRH could induce the production of adrenocorticotropic hormone (ACTH) in humans. However, whether the same is true in rodent placenta remains unclear. In this study, we examined the effect of pro-inflammatory cytokine LIF on the induction of CRH in mouse trophoblast stem cells (mTSCs). During differentiation, the CRH levels in mTSCs gradually increased. On days 3 and 5 after LIF supplementation, Crh expression in the differentiated mTSCs was significantly increased with LIF treatment than those without LIF treatment. Moreover, the CRH concentration in the culture media increased. Thereafter, we examined the contribution of the downstream pathways of LIF to CRH induction in differentiated mTSCs. The LIF-induced upregulation of CRH was attenuated by inhibition of PI3K/AKT and MAPK phosphorylation but not by inhibition of JAK/STAT3. Therefore, in mTSCs, LIF increased Crh expression through activation of the PI3K/AKT and MAPK pathways but not by the JAK/STAT3 pathway. The present study suggests that mTSC is an ideal in vitro model for studying regulation and function of placental CRH.
Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Fator Inibidor de Leucemia/metabolismo , Células-Tronco/citologia , Trofoblastos/metabolismo , Animais , Diferenciação Celular , Membrana Celular/metabolismo , Feminino , Sistema de Sinalização das MAP Quinases , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Placenta/metabolismo , GravidezRESUMO
The study explores the role of neddylation in early trophoblast development and its alteration during the pathogenesis of recurrent spontaneous abortion (RSA). Immunofluorescence and western blot were conducted to evaluate the expression pattern of NEDD8 protein in the first-trimester placentas of healthy control and RSA patients. Neddylated-cullins, especially neddylated-cullin1, were downregulated and their substrate, p21, was accumulated in RSA samples. NEDD8 cytoplasmic recruitment was observed in extravillous trophoblast (EVT) progenitors of RSA placentas. Consistent with the results of clinical samples, neddylation inhibition using MLN4924 in trophoblast cell lines caused obvious p21 accumulation and free NEDD8 cytoplasmic recruitment. Further in vitro study demonstrated neddylation inhibition attenuated proliferation of Jeg-3 cells via p21 accumulation. Moreover, when trophoblast stem (TS) cells derived from first-trimester placentas were cultured for differentiation analyses. MLN4924 impaired the differentiation of TS cells towards EVTs by downregulating HLA-G and GATA3. p21 knockdown could partly rescue MLN4924-suppressed HLA-G and GATA3 expression. In conclusion, cullin1 neddylation-mediated p21 degradation is required for trophoblast proliferation and can affect trophoblast plasticity by affecting HLA-G and GATA3 expression. The results provide insights into the pathological mechanism of RSA and the biological regulation of trophoblast development.