Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(13): 1186-1193, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38538564

RESUMO

Melanoma, renowned for its aggressive behavior and resistance to conventional treatments, stands as a formidable challenge in the oncology landscape. The dynamic and complex interplay between cancer cells and the tumor microenvironment has gained significant attention, revealing Melanoma-Associated Fibroblasts (MAFs) as central players in disease progression. The heterogeneity of MAFs endows them with a dual role in melanoma. This exhaustive review seeks to not only shed light on the multifaceted roles of MAFs in orchestrating tumor-promoting inflammation but also to explore their involvement in antitumor immunity. By unraveling novel mechanisms underlying MAF functions, this review aims to provide a comprehensive understanding of their impact on melanoma development. Additionally, it delves into the potential of leveraging MAFs for innovative immunotherapeutic strategies, offering new avenues for enhancing treatment outcomes in the challenging realm of melanoma therapeutics.


Assuntos
Fibroblastos Associados a Câncer , Imunoterapia , Melanoma , Microambiente Tumoral , Humanos , Melanoma/imunologia , Melanoma/terapia , Melanoma/patologia , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/metabolismo , Animais , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Inflamação/imunologia , Fibroblastos/imunologia , Fibroblastos/metabolismo
2.
BMC Biol ; 21(1): 181, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37635218

RESUMO

BACKGROUND: Functional role of Rho GDP-dissociation inhibitor beta (RhoGDIß) in tumor biology appears to be contradictory across various studies. Thus, the exploration of the molecular mechanisms underlying the differential functions of this protein in urinary bladder carcinogenesis is highly significant in the field. Here, RhoGDIß expression patterns, biological functions, and mechanisms leading to transformation and progression of human urothelial cells (UROtsa cells) were evaluated following varying lengths of exposure to the bladder carcinogen N-butyl-N-(4-hydmoxybutyl) nitrosamine (BBN). RESULTS: It was seen that compared to expression in vehicle-treated control cells, RhoGDIß protein expression was downregulated after 2-month of BBN exposure, but upregulated after 6-month of exposure. Assessments of cell function showed that RhoGDIß inhibited UROtsa cell growth in cells with BBN for 2-month exposure, whereas it promoted the invasion of cells treated with BBN for 6 months. Mechanistic studies revealed that 2-month of BBN exposure markedly attenuated DNMT3a abundance, and this led to reduced miR-219a promoter methylation, increased miR-219a binding to the RhoGDIß mRNA 3'UTR, and reduced RhoGDIß protein translation. While after 6-mo of BBN treatment, the cells showed increased PP2A/JNK/C-Jun axis phosphorylation and this in turn mediated overall RhoGDIß mRNA transcription and protein expression as well as invasion. CONCLUSIONS: These findings indicate that RhoGDIß is likely to inhibit the transformation of human urothelial cells during the early phase of BBN exposure, whereas it promotes invasion of the transformed/progressed urothelial cells in the late stage of BBN exposure. The studies also suggest that RhoGDIß may be a useful biomarker for evaluating the progression of human bladder cancers.


Assuntos
MicroRNAs , Nitrosaminas , Humanos , Inibidor beta de Dissociação do Nucleotídeo Guanina rho , Nitrosaminas/toxicidade , Células Epiteliais , Carcinogênese
3.
Nitric Oxide ; 133: 1-17, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764605

RESUMO

This present paper provides an assessment of the occurrence of nitric oxide (NO)-induced hormetic-biphasic dose/concentration relationships in biomedical research. A substantial reporting of such NO-induced hormetic effects was identified with particular focus on wound healing, tumor promotion, and sperm biology, including mechanistic assessment and potential for translational applications. Numerous other NO-induced hormetic effects have been reported, but require more development prior to translational applications. The extensive documentation of NO-induced biphasic responses, across numerous organs (e.g., bone, cardiovascular, immune, intestine, and neuronal) and cell types, suggests that NO-induced biological activities are substantially mediated via hormetic processes. These observations are particularly important because broad areas of NO biology are constrained by the quantitative features of the hormetic response. This determines the amplitude and width of the low dose stimulation, affecting numerous biomedical implications, study design features (e.g., number of doses, dose spacing, sample sizes, statistical power), and the potential success of clinical trials.


Assuntos
Hormese , Óxido Nítrico , Masculino , Humanos , Hormese/fisiologia , Óxido Nítrico/farmacologia , Sêmen , Coração , Neurônios , Relação Dose-Resposta a Droga
4.
Acta Pharmacol Sin ; 43(9): 2202-2211, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35042992

RESUMO

Cyclic guanosine monophosphate-adenosine monophosphate adenosine synthetase (cGAS) is a DNA sensor that detects and binds to cytosolic DNA to generate cyclic GMP-AMP (cGAMP). As a second messenger, cGAMP mainly activates the adapter protein STING, which induces the production of type I interferons (IFNs) and inflammatory cytokines. Mounting evidence shows that cGAS is extensively involved in the innate immune response, senescence, and tumor immunity, thereby exhibiting a tumor-suppressive function, most of which is mediated by the STING pathway. In contrast, cGAS can also act as an oncogenic factor, mostly by increasing genomic instability through inhibitory effects on DNA repair, suggesting its utility as an antitumor target. This article reviews the roles and the underlying mechanisms of cGAS in cancer, particularly focusing on its dual roles in carcinogenesis and tumor progression, which are probably attributable to its classical and nonclassical functions, as well as approaches targeting cGAS for cancer therapy.


Assuntos
Interferon Tipo I , Neoplasias , Carcinogênese/metabolismo , Citosol/metabolismo , DNA/metabolismo , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
5.
Int J Mol Sci ; 23(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36142453

RESUMO

Damage-associated molecular patterns (DAMPs) are well recognized as the molecular signature of immunogenic cell death (ICD). The efficacy of drug-induced ICD function may be impacted by the precise ratio between immunostimulatory and immunoinhibitory DAMPs. Tumor-derived DAMPs can activate tumor-expressed TLRs for the promotion of tumor cell motility, invasion, metastatic spread and resistance to chemotherapeutic treatment. Herein, drug-induced DAMPs' expression and their role in tumor progression are utilized as one crucial point of evaluation regarding chemotherapeutic treatment efficacy in our study. Cisplatin and oxaliplatin, the conventional anticancer chemotherapy drugs, are emphasized as a cause of well-known DAMPs' release from cholangiocarcinoma (CCA) cells (e.g., HSP family, S100, CRT and HMGB1), whereby they trigger Akt, ERK and Cyclin-D1 to promote tumor activities. These findings strengthen the evidence that DAMPs are not only involved in immunomodulation but also in tumor promotion. Therefore, DAMP molecules should be considered as either targets of cancer treatment or biomarkers to evaluate treatment efficacy and tumor recurrence.


Assuntos
Antineoplásicos , Colangiocarcinoma , Proteína HMGB1 , Alarminas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Colangiocarcinoma/tratamento farmacológico , Cisplatino/farmacologia , Ciclinas , Proteína HMGB1/metabolismo , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Oxaliplatina/farmacologia , Proteômica , Proteínas Proto-Oncogênicas c-akt
6.
J Toxicol Pathol ; 35(4): 313-320, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36406173

RESUMO

The carcinogenicity of 2,2'-[1,2-ethanediylbis(oxymethylene)]bis-oxirane (ethylene glycol diglycidyl ether; EGDE), 3-hydroxy-2-naphthoic acid (HNA), and acetoacetanilide (AAA) was investigated using a medium-term rat liver bioassay for an occupational safety assessment. F344 male rats were administered a single intraperitoneal injection of diethylnitrosamine (200 mg/kg body weight (bw)/day) and then starting 2 weeks later, they received EGDE at 6, 20, and 60 mg/kg bw/day, HNA at 20, 60, and 200 mg/kg bw/day, or AAA at 60, 200, and 600 mg/kg bw/day by oral gavage for 6 weeks. The animals in the positive control group received phenobarbital sodium solution (PB, 25 mg/kg bw/day) by oral gavage and those in the negative control group received a vehicle (water/corn oil) during the administration period of test substances in this model. All animals were subjected to two-thirds partial hepatectomy at week 3 and euthanized at week 8. Neither the number nor the area of hepatocellular foci positive for glutathione S-transferase placental form (GST-P) increased in any of the EGDE, HNA, or AAA treated groups. However, the number and area of GST-P-positive foci significantly increased in the positive control group treated with PB. The results indicate that EGDE, HNA, and AAA lack hepatocarcinogenicity in rats.

7.
J Proteome Res ; 20(12): 5315-5328, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34766501

RESUMO

Although plasma complement factor B (CFB, NX_P00751), both alone and in combination with CA19-9 (i.e., the ComB-CAN), previously exhibited a reliable diagnostic ability for pancreatic cancer (PC), its detectability of the early stages and the cancer detection mechanism remained elusive. We first evaluated the diagnostic accuracy of ComB-CAN using plasma samples from healthy donors (HDs), patients with chronic pancreatitis (CP), and patients with different PC stages (I/II vs III/IV). An analysis of the area under the curve (AUC) by PanelComposer using logistic regression revealed that ComB-CAN has a superior diagnostic ability for early-stage PC (97.1.% [95% confidence interval (CI): (97.1-97.2)]) compared with CFB (94.3% [95% CI: 94.2-94.4]) or CA19-9 alone (34.3% [95% CI: 34.1-34.4]). In the comparisons of all stages of patients with PC vs CP and HDs, the AUC values of ComB-CAN, CFB, and CA19-9 were 0.983 (95% CI: 0.983-0.983), 0.950 (95% CI: 0.950-0.951), and 0.873 (95% CI: 0.873-0.874), respectively. We then investigated the molecular mechanism underlying the detection of early-stage PC by using stable cell lines of CFB knockdown and CFB overexpression. A global transcriptomic analysis coupled to cell invasion assays of both CFB-modulated cell lines suggested that CFB plays a tumor-promoting role in PC, which likely initiates the PI3K-AKT cancer signaling pathway. Thus our study establishes ComB-CAN as a reliable early diagnostic marker for PC that can be clinically applied for early PC screening in the general public.


Assuntos
Fator B do Complemento , Neoplasias Pancreáticas , Biomarcadores Tumorais/genética , Antígeno CA-19-9 , Fator B do Complemento/metabolismo , Humanos , Fosfatidilinositol 3-Quinases
8.
J Hepatol ; 73(1): 140-148, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32302728

RESUMO

BACKGROUND & AIMS: Obesity and type 2 diabetes increase hepatocellular carcinoma (HCC) incidence in humans and accelerate diethylnitrosamine (DEN)-induced hepatocarcinogenesis in mice. We investigated whether exercise reduces HCC development in obese/diabetic Alms1 mutant (foz/foz) mice and studied protective mechanisms. METHODS: We measured HCC development in DEN-injected male foz/foz and wild-type (WT) littermates housed with or without an exercise wheel from week 4 until 12 or 24 weeks, and in foz/foz mice pair-fed to WT littermates. We also studied HCC development in DEN-injected Jnk1-/-.foz/foz mice generated by cross breeding, as well as their genetic controls. Dysplastic hepatocytes were identified by glutathione-S-transferase pi form (GST-pi) immunohistochemistry, liver nodules were counted, and HCC was analysed by histopathology. RESULTS: Exercising foz/foz mice maintained similar weight as WT mice up to 10 weeks, but then gained weight and were obese by 24 weeks; a similar body weight profile was obtained by pair-feeding foz/foz mice to WT. At 12 weeks, livers of exercising foz/foz mice exhibited fewer GST-pi positive hepatocytes than sedentary counterparts; by 24 weeks, fewer exercising foz/foz mice developed HCC (15% vs. 64%, p <0.05). Conversely, pair-feeding foz/foz mice failed to reduce HCC incidence. In these insulin-resistant foz/foz mice, exercise failed to activate hepatic AMPK or Akt/mTORC1. Instead, it improved insulin sensitivity, ameliorated steatosis and liver injury, activated p53 to increase p27 expression, and prevented JNK activation. This was associated with suppression of hepatocellular proliferation. DEN-injected Jnk1-/-.foz/foz mice failed to develop liver tumours or HCC at 24 weeks. CONCLUSIONS: Direct effects of exercise dampen proliferation of dysplastic hepatocytes to reduce 3-month dysplastic foci and 6-month incidence of DEN-induced HCC in obese, insulin-resistant mice. The effects of exercise that potentially slow hepatocarcinogenesis include p53-mediated induction of p27 and prevention of JNK activation. LAY SUMMARY: Fatty liver disease commonly occurs alongside obesity and diabetes, contributing to rapidly increasing rates of liver cancer throughout the world. Herein, we show that exercise reduces the incidence and progression of hepatocellular carcinoma in mouse models. The effect of exercise on cancer risk was shown to be independent of changes in weight. Exercise could be a protective mechanism against liver cancer in at-risk individuals.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Atividade Motora/fisiologia , Obesidade , Animais , Peso Corporal/fisiologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Imuno-Histoquímica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Obesos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Condicionamento Físico Animal , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fatores de Proteção , Fatores de Risco , Proteína Supressora de Tumor p53/metabolismo
9.
Bioorg Med Chem Lett ; 30(24): 127657, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33130291

RESUMO

Debromoaplysiatoxin (DAT) is a potent protein kinase C (PKC) activator with tumor-promoting and pro-inflammatory activities. Irie and colleagues have found that 10-methyl-aplog-1 (1), a simplified analog of DAT, has strong anti-proliferative activity against several cancer cell lines with few adverse effects. Therefore, 1 is a potential lead compound for cancer therapy. We synthesized a new derivative 2 which has a naphthalene ring at the side chain terminal position instead of a benzene ring, to increase CH/π interactions with Pro-241 of the PKCδ-C1B domain. Based on the synthetic route of 1, 2 was convergently synthesized in 26 linear steps from 6-hydroxy-1-naphthoic acid with an overall yield of 0.18%. Although the anti-proliferative activity of 2 was more potent than that of 1, the binding potency of 2 to the PKCδ-C1B domain did not exceed that of 1. Molecular dynamics simulation indicated the capability of 2 to simultaneously form hydrogen bonds and CH/π interactions with the PKCδ-C1B domain. Focusing on the hydrogen bonds, their geometry in the binding modes involving the CH/π interactions seemed to be sub-optimal, which may explain the slightly lower affinity of 2 compared to 1. This study could be of help in optimizing such interactions and synthesizing a promising lead cancer compound.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Toxinas de Lyngbya/química , Toxinas de Lyngbya/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Humanos , Toxinas de Lyngbya/síntese química , Modelos Moleculares , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade
10.
Arch Toxicol ; 94(12): 3983-3991, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33097968

RESUMO

Aberrant signaling through ß-catenin is an important determinant of tumorigenesis in rodents as well as in humans. In mice, xenobiotic activators of the constitutive androstane receptor (CAR), a chemo-sensing nuclear receptor, promote liver tumor growth by means of a non-genotoxic mechanism and, under certain conditions, select for hepatocellular tumors which contain activated ß-catenin. In normal hepatocytes, interactions of ß-catenin and CAR have been demonstrated with respect to the induction of proliferation and drug metabolism-related gene expression. The molecular details of these interactions are still not well understood. Recently it has been hypothesized that CAR might activate ß-catenin signaling, thus providing a possible explanation for some of the observed phenomena. Nonetheless, many aspects of the molecular interplay of the two regulators have still not been elucidated. This review briefly summarizes our current knowledge about the interplay of CAR and ß-catenin. By taking into account data and observations obtained with different mouse models and employing different experimental approaches, it is shown that published data also contain substantial evidence that xenobiotic activators of CAR do not activate, or do even inhibit signaling through the ß-catenin pathway. The review highlights new aspects of possible ways of interaction between the two signaling cascades and will help to stimulate scientific discussion about the crosstalk of ß-catenin signaling and the nuclear receptor CAR.


Assuntos
Transformação Celular Neoplásica/induzido quimicamente , Neoplasias Hepáticas/induzido quimicamente , Fígado/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Via de Sinalização Wnt , Xenobióticos/toxicidade , beta Catenina/metabolismo , Animais , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Receptor Constitutivo de Androstano , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Medição de Risco , Fatores de Risco
11.
Vet Pathol ; 57(1): 192-199, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31221040

RESUMO

After initiation with 7,12-dimethylbenz[a]anthracene (DMBA), the promoting potential of 12-O-tetradecanoylphorbol-13-acetate (TPA) on skin tumor development can be detected by an ultra-short-term skin carcinogenicity bioassay using Tg-rasH2 mice. In the present study, 10 chemicals were assessed using this ultra-short-term bioassay as a first step to validate this practical and easy-to-use skin carcinogenicity bioassay. These chemicals belonged to 4 categories: dermal vehicles (acetone, 99.5% ethanol, anhydrous ethanol, and Vaseline), skin noncarcinogens (oleic acid diethanolamine condensate, benzethonium chloride, and diisopropylcarbodiimide), skin tumor promoters (TPA and benzoyl peroxide), and a skin carcinogen (4-vinyl-1-cyclohexene diepoxide). In a first study, DMBA was used as the initiator at a dose of 50 µg according to previous data, but skin tumors were observed in the no-treatment and vehicle groups. Therefore, the dose of DMBA for skin tumor initiation was reevaluated using 12.5 or 25 µg, with 12.5 µg found to be sufficient for initiation activity. In the ultra-short-term assay, the vehicles and skin noncarcinogens were negative while the skin tumor promoters and the skin carcinogen were positive. The detection of skin tumor promotion and carcinogenicity was feasible in only 8 weeks. In conclusion, this carcinogenicity bioassay may represent a useful tool for the assessment of the carcinogenicity potential of topically applied chemicals.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/administração & dosagem , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol/administração & dosagem , Animais , Feminino , Genes ras/genética , Humanos , Camundongos , Camundongos Transgênicos , Pele/patologia , Neoplasias Cutâneas/induzido quimicamente
12.
Gastroenterology ; 155(1): 33-37.e6, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29630898

RESUMO

We studied the effects of gut microbiome depletion by oral antibiotics on tumor growth in subcutaneous and liver metastases models of pancreatic cancer, colon cancer, and melanoma. Gut microbiome depletion significantly reduced tumor burden in all the models tested. However, depletion of gut microbiome did not reduce tumor growth in Rag1-knockout mice, which lack mature T and B cells. Flow cytometry analyses demonstrated that gut microbiome depletion led to significant increase in interferon gamma-producing T cells with corresponding decrease in interleukin 17A and interleukin 10-producing T cells. Our results suggest that gut microbiome modulation could emerge as a novel immunotherapeutic strategy.


Assuntos
Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Metástase Neoplásica/imunologia , Neoplasias/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Antibacterianos/farmacologia , Carcinoma/secundário , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucina-17/imunologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Melanoma/imunologia , Melanoma/secundário , Melanoma Experimental/imunologia , Melanoma Experimental/secundário , Camundongos , Camundongos Knockout , Transplante de Neoplasias , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Neoplasias de Tecidos Moles/imunologia , Neoplasias de Tecidos Moles/secundário , Linfócitos T/imunologia , Microambiente Tumoral/imunologia
13.
Cancer Immunol Immunother ; 68(3): 395-405, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30552459

RESUMO

Optimal ex vivo expansion protocols for adoptive cell therapy (ACT) must yield T cells able to effectively home to tumors and survive the inhospitable conditions of the tumor microenvironment (TME), while simultaneously exerting persistent anti-tumor effector functions. Our previous work has shown that ex vivo activation in the presence of IL-12 can induce optimal expansion of murine CD8+ T cells, thus resulting in significant tumor regression after ACT mostly via sustained secretion of IFN-γ. In this report, we further elucidate the mechanism of this potency, showing that IL-12 additionally counteracts the negative regulatory effects of autocrine IFN-γ. IL-12 not only downregulates PD-1 expression by T cells, thus minimizing the effects of IFN-γ-induced PD-L1 upregulation by tumor stromal cells, but also inhibits IFNγR2 expression, thereby protecting T cells from IFN-γ-induced cell death. Thus, the enhanced anti-tumor activity of CD8+ T cells expanded ex vivo in the presence of IL-12 is due not only to the ability of IL-12-stimulated cells to secrete sustained levels of IFN-γ, but also to the additional capacity of IL-12 to counter the negative regulatory effects of autocrine IFN-γ.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Interferon gama/fisiologia , Interleucina-12/farmacologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Humanos , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interferon/análise , Receptores de Interferon/fisiologia , Receptor de Interferon gama
14.
Mol Carcinog ; 58(2): 185-195, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30346064

RESUMO

Prevention remains an important strategy to reduce the burden of cancer. One approach to prevent cancer is the use of phytochemicals in various combinations as safe and effective cancer preventative agents. The purpose of this study was to examine the effects of the combination of ursolic acid (UA) and curcumin (Curc) for potential combinatorial inhibition of skin tumor promotion using the mouse two-stage skin carcinogenesis model. In short-term experiments, the combination of UA + Curc given topically prior to 12-O-tetradecanoylphorbol-13-acetate (TPA) significantly inhibited activation of epidermal EGFR, p70S6K, NF-κB p50, Src, c-Jun, Rb, and IκBα. Levels of c-Fos, c-Jun, and Cox-2 were also significantly reduced by the combination compared to the TPA treated group. The alterations in these signaling pathways by the combination of UA + Curc were associated with decreased epidermal proliferation as assessed by measuring BrdU incorporation. Significant effects were also seen with the combination on epidermal inflammatory gene expression and dermal inflammation, with the greatest effects on expression of IL-1ß, IL-6, IL-22, and CXCL2. Furthermore, results from skin tumor experiments demonstrated that the combination of UA + Curc given topically significantly inhibited mouse skin tumor promotion by TPA to a greater extent than the individual compounds given alone. The greatest effects were seen on tumor free survival, tumor size, and tumor weight, although tumor incidence and multiplicity were also further reduced by the combination. These results demonstrate the potential cancer chemopreventive activity and mechanism(s) for the combination of UA + Curc.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Curcumina/administração & dosagem , Neoplasias Cutâneas/tratamento farmacológico , Acetato de Tetradecanoilforbol/efeitos adversos , Triterpenos/administração & dosagem , Administração Tópica , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Curcumina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Resultado do Tratamento , Triterpenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Interleucina 22 , Ácido Ursólico
15.
Arch Toxicol ; 93(7): 1927-1939, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31115591

RESUMO

The lipophilic phycotoxin okadaic acid (OA) occurs in the fatty tissue and hepatopancreas of filter-feeding shellfish. The compound provokes the diarrhetic shellfish poisoning (DSP) syndrome after intake of seafood contaminated with high levels of the DSP toxin. In animal experiments, long-term exposure to OA is associated with an elevated risk for tumor formation in different organs including the liver. Although OA is a known inhibitor of the serine/threonine protein phosphatase 2A, the mechanisms behind OA-induced carcinogenesis are not fully understood. Here, we investigated the influence of OA on the ß-catenin-dependent Wnt-signaling pathway, addressing a major oncogenic pathway relevant for tumor development. We analyzed OA-mediated effects on ß-catenin and its biological function, cellular localization, post-translational modifications, and target gene expression in human HepaRG hepatocarcinoma cells treated with non-cytotoxic concentrations up to 50 nM. We detected concentration- and time-dependent effects of OA on the phosphorylation state, cellular redistribution as well as on the amount of transcriptionally active ß-catenin. These findings were confirmed by quantitative live-cell imaging of U2OS cells stably expressing a green fluorescent chromobody which specifically recognize hypophosphorylated ß-catenin. Finally, we demonstrated that nuclear translocation of ß-catenin mediated by non-cytotoxic OA concentrations results in an upregulation of Wnt-target genes. In conclusion, our results show a significant induction of the canonical Wnt/ß-catenin-signaling pathway by OA in human liver cells. Our data contribute to a better understanding of the molecular mechanisms underlying OA-induced carcinogenesis.


Assuntos
Carcinógenos/toxicidade , Ácido Okadáico/toxicidade , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Carcinógenos/administração & dosagem , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Neoplasias Hepáticas/metabolismo , Ácido Okadáico/administração & dosagem , Fosforilação/efeitos dos fármacos , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos , Via de Sinalização Wnt/genética , beta Catenina/genética
16.
Toxicol Appl Pharmacol ; 345: 103-113, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29534881

RESUMO

HL1-hT1 cell line represents adult human liver stem cells (LSCs) immortalized with human telomerase reverse transcriptase. In this study, HL1-hT1 cells were found to express mesenchymal markers (vimentin, CD73, CD90/THY-1 and CD105) and an early hepatic endoderm marker FOXA2, while not expressing hepatic progenitor (HNF4A, LGR5, α-fetoprotein) or differentiated hepatocyte markers (albumin, transthyretin, connexin 32). In response to microcystin-LR (MC-LR), a time- and concentration-dependent formation of MC-positive protein bands in HL1-hT1 cells was observed. Cellular accumulation of MC-LR occurred most likely via mechanisms independent on organic anion transporting polypeptides (OATPs) or multidrug resistance (MDR) proteins, as indicated (a) by a gene expression analysis of 11 human OATP genes and 4 major MDR genes (MDR1/P-glycoprotein, MRP1, MRP2 and BCRP); (b) by non-significant effects of OATP or MDR1 inhibitors on MC-LR uptake. Accumulation of MC-positive protein bands in HL1-hT1 cells was associated neither with alterations of cell viability and growth, dysregulations of ERK1/2 and p38 kinases, reactive oxygen species formation, induction of double-stranded DNA breaks nor modulations of stress-inducible genes (ATF3, HSP5). It suggests that LSCs might have a selective, MDR1-independent, survival advantage and higher tolerance towards MC-induced cytotoxic, genotoxic or cancer-related events than differentiated adult hepatocytes, fetal hepatocyte or malignant liver cell lines. HL1-hT1 cells provide a valuable in vitro tool for studying effects of toxicants and pharmaceuticals on LSCs, whose important role in the development of chronic toxicities and liver diseases is being increasingly recognized.


Assuntos
Células-Tronco Adultas/efeitos dos fármacos , Carcinógenos/toxicidade , Fígado/efeitos dos fármacos , Microcistinas/toxicidade , Células-Tronco Adultas/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , Toxinas Marinhas
17.
Exp Cell Res ; 355(1): 47-56, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28327411

RESUMO

Clear Cell Renal Cell Carcinoma (CCRCC) is a lethal cancer with bad prognosis due to development of chemoresistance and recurrence of more aggressive tumors. Investigation of Gas6-mediated Axl signaling in CCRCC and endothelial cells reveals a Sunitinib resistant Gas6-Axl signaling that is sustained and enhanced and specifically triggers downstream AKT and PRAS40 activation in an intensified manner. Gas6-induced Axl signaling in presence of Sunitinib is also diversified displaying onset of Axl-dependent EGFR and METR activation and activation of classical MAPK pathways. Gas6+Sunitinib-adapted CCRCC cells present increased viability and decreased apoptosis and enhanced production of the multi-tumorigenic Osteopontin (OPN) and of one of its activator matrix metalloproteinase-7. Axl activity is necessary for CCRCC cell sphere formation and the ability of the cells to attach after non-adhesive growth. In addition, Gas6+Sunitinib-adapted CCRCC cells displayed enhanced migration and sphere formation, both mechanisms being Axl and OPN dependent. Altogether, this suggests that Sunitinib while targeting endothelial cells and tumor angiogenesis, simultaneously provides protumorigenic effects due to a constitutively, intensified and divergent Gas6-Axl system. IMPLICATIONS: Gas6-mediated Axl signaling, which is enhanced and diversified in the presence of Sunitinib possibly contributes to acquired chemoresistance, recurrence of aggressive disease and metastasis of CCRCC tumors. Therefore, combinatorial Axl-targeted therapy might be beneficial for CCRCC patients intended for Sunitinib treatment.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Indóis/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Renais/tratamento farmacológico , Proteínas Proto-Oncogênicas/metabolismo , Pirróis/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Indóis/química , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Pirróis/química , Relação Estrutura-Atividade , Sunitinibe , Células Tumorais Cultivadas , Receptor Tirosina Quinase Axl
18.
Acta Biochim Biophys Sin (Shanghai) ; 50(1): 98-105, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29206939

RESUMO

Transforming growth factor ß (TGF-ß) signaling either promotes or inhibits tumor formation and/or progression of many cancer types including squamous cell carcinoma (SCC). Canonical TGF-ß signaling is mediated by a number of downstream proteins including Smad family proteins. Alterations in either TGF-ß or Smad signaling can impact cancer. For instance, defects in TGF-ß type I and type II receptors (TGF-ßRI and TGF-ßRII) and in Smad2/3/4 could promote tumor development. Conversely, increased TGF-ß1 and activated TGF-ßRI and Smad3 have all been shown to have tumor-promoting effects in experimental systems of human and mouse SCCs. Among TGF-ß/Smad signaling, only TGF-ßRII or Smad4 deletion in mouse epithelium causes spontaneous SCC in the mouse model, highlighting the critical roles of TGF-ßRII and Smad4 in tumor suppression. Herein, we review the dual roles of the TGF-ß/Smad signaling pathway and related mechanisms in SCC, highlighting the potential benefits and challenges of TGF-ß/Smad-targeted therapies.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Bucais/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Animais , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/patologia , Humanos , Modelos Biológicos , Neoplasias Bucais/patologia , Neoplasias Cutâneas/patologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta
19.
Mol Carcinog ; 56(1): 94-105, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26894620

RESUMO

Adenocarcinoma accounts for ∼40% of lung cancer, equating to ∼88 500 new patients in 2015, most of who will succumb to this disease, thus, the public health burden is evident. Unfortunately, few early biomarkers as well as effective therapies exist, hence the need for novel targets in lung cancer treatment. We previously identified epiregulin (Ereg), an EGF-like ligand, as a biomarker in several mouse lung cancer models. In the present investigation we used a primary two-stage initiation/promotion model to test our hypothesis that Ereg deficiency would reduce lung tumor promotion in mice. We used 3-methylcholanthrene (initiator) or oil vehicle followed by multiple weekly exposures to butylated hydroxytoluene (BHT; promoter) in mice lacking Ereg (Ereg-/- ) and wildtype controls (BALB/ByJ; Ereg+/+ ) and examined multiple time points and endpoints (bronchoalveolar lavage analysis, tumor analysis, mRNA expression, ELISA, wound assay) during tumor promotion. At the early time points (4 and 12 wk), we observed significantly reduced amounts of inflammation (macrophages, PMNs) in the Ereg-/- mice compared to controls (Ereg+/+ ). At 20 wk, tumor multiplicity was also significantly decreased in the Ereg-/- mice versus controls (Ereg+/+ ). IL10 expression, an anti-inflammatory mediator, and downstream signaling events (Stat3) were significantly increased in the Ereg-/- mice in response to BHT, supporting both reduced inflammation and tumorigenesis. Lastly, wound healing was significantly increased with recombinant Ereg in both human and mouse lung epithelial cell lines. These results indicate that Ereg has proliferative potential and may be utilized as an early cancer biomarker as well as a novel potential therapeutic target. © 2016 Wiley Periodicals, Inc.


Assuntos
Adenocarcinoma/genética , Carcinogênese/genética , Epirregulina/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Pulmão/patologia , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Hidroxitolueno Butilado , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Deleção de Genes , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
20.
Mol Carcinog ; 56(1): 258-271, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27175940

RESUMO

The tumor suppressor p27, which is a member of the Cip/Kip family of Cyclin-dependent kinase inhibitory proteins (CKIs), controls anti-proliferative events. The post-translational addition of O-GlcNAc to p27 occurs in HEK293T and HCC (hepatocellular carcinoma) cell lines, and we identified Ser2, Ser106, Ser110, Thr157, and Thr198 as the glycosylation sites of p27 based on the Q-TOF spectrum. Here, immunoprecipitation analysis showed that Ser2 was O-GlcNAcylated and that this modification was associated with the increased phosphorylation of p27 at Ser10, ultimately resulting in p27 accumulation in the cytoplasm and increased p27 ubiquitination. In addition, O-GlcNAcylation at Ser2 suppressed Cyclin/CDK complex-p27 interactions by promoting the nuclear export of p27, thus facilitating cell cycle progression. Cell proliferation was negatively regulated when Ser2 of p27 was replaced with Ala. Furthermore, western blot and immunohistochemical analyses of HCC tissues and their corresponding nontumorous tissues were performed, and we found that O-GlcNAcylated p27 correlated with cell proliferation in HCC. Together, our results indicate that the dynamic interplay between O-GlcNAcylation and p27 phosphorylation coordinates and regulates cell proliferation in hepatocellular carcinoma. © 2016 Wiley Periodicals, Inc.


Assuntos
Acetilglucosamina/metabolismo , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/patologia , Carcinoma Hepatocelular/patologia , Feminino , Células HEK293 , Células Hep G2 , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Fosforilação , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA