Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 244: 117422, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866529

RESUMO

The current methods of treating organic waste suffer from limited resource usage and low product value. Research and development of value-added products emerges as an unavoidable trend for future growth. Electro-fermentation (EF) is a technique employed to stimulate cell proliferation, expedite microbial metabolism, and enhance the production of value-added products by administering minute voltages or currents in the fermentation system. This method represents a novel research direction lying at the crossroads of electrochemistry and biology. This article documents the current progress of EF for a range of value-added products, including gaseous fuels, organic acids, and other organics. It also presents novel value-added products, such as 1,3-propanediol, 3-hydroxypropionic acid, succinic acid, acrylic acid, and lysine. The latest research trends suggest a focus on EF for cogeneration of value-added products, studying microbial community structure and electroactive bacteria, exploring electron transfer mechanisms in EF systems, developing effective methods for nutrient recovery of nitrogen and phosphorus, optimizing EF conditions, and utilizing biosensors and artificial neural networks in this area. In this paper, an analysis is conducted on the challenges that currently exist regarding the selection of conductive materials, optimization of electrode materials, and development of bioelectrochemical system (BES) coupling processes in EF systems. The aim is to provide a reference for the development of more efficient, advanced, and value-added EF technologies. Overall, this paper aims to provide references and ideas for the development of more efficient and advanced EF technology.


Assuntos
Reatores Biológicos , Ácido Succínico , Fermentação , Compostos Orgânicos , Tecnologia
2.
Environ Res ; 242: 117796, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040178

RESUMO

Anaerobic fermentation of organic waste to produce volatile fatty acids (VFAs) production is a relatively mature technology. VFAs can be used as a cheap and readily available carbon source by photosynthetic bacteria (PSB) to produce high value-added products, which are widely used in various applications. To better enhance the VFAs obtained from organic wastes for PSB to produce high value-added products, a comprehensive review is needed, which is currently not available. This review systematically summarizes the current status of microbial proteins, H2, poly-ß-hydroxybutyrate (PHB), coenzyme Q10 (CoQ10), and 5-aminolevulinic acid (ALA) production by PSB utilizing VFAs as a carbon resource. Meanwhile, the metabolic pathways involved in the H2, PHB, CoQ10, and 5-ALA production by PSB were deeply explored. In addition, a systematic resource utilization pathway for PSB utilizing VFAs from anaerobic fermentation of organic wastes to produce high value-added products was proposed. Finally, the current challenges and priorities for future research were presented, such as the screening of efficient PSB strains, conducting large-scale experiments, high-value product separation, recovery, and purification, and the mining of metabolic pathways for the VFA utilization to generate high value-added products by PSB.


Assuntos
Ácidos Graxos Voláteis , Bactérias Gram-Negativas , Ácidos Graxos Voláteis/metabolismo , Fermentação , Anaerobiose , Bactérias Gram-Negativas/metabolismo , Carbono/metabolismo , Reatores Biológicos , Concentração de Íons de Hidrogênio , Esgotos
3.
Environ Res ; 254: 119168, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38762007

RESUMO

The multiple microalgal collaborative treatment of domestic wastewater has been extensively investigated, but its whole life cycle tracking and consequent potential have not been fully explored. Herein, a dual microalgal system was employed for domestic wastewater treatment, tracking the variation in microalgal growth and pollutants removal from shake flask scale to 18 L photobioreactors scales. The results showed that Chlorella sp. HL and Scenedesmus sp. LX1 combination had superior growth and water purification performance, and the interspecies soluble algal products promoted their growth. Through microalgae mixing ratio and inoculum size optimized, the highest biomass yield (0.42 ± 0.03 g/L) and over 91 % N, P removal rates were achieved in 18 L photobioreactor. Harvested microalgae treated in different forms all promoted wheat growth and suppressed yellow leaf rate. This study provided data support for the whole process tracking of dual microalgal system in treating domestic wastewater and improving wheat growth.


Assuntos
Chlorella , Microalgas , Triticum , Eliminação de Resíduos Líquidos , Águas Residuárias , Triticum/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos/métodos , Chlorella/crescimento & desenvolvimento , Scenedesmus/crescimento & desenvolvimento , Biomassa , Fotobiorreatores , Purificação da Água/métodos , Poluentes Químicos da Água/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-39003244

RESUMO

Growing environmental concerns and the need to adopt a circular economy have highlighted the importance of waste valorization for resource recovery. Microbial consortia-enabled biotechnologies have made significant developments in the biomanufacturing of valuable resources from waste biomass that serve as suitable alternatives to petrochemical-derived products. These microbial consortia-based processes are designed following a top-down or bottom-up engineering approach. The top-down approach is a classical method that uses environmental variables to selectively steer an existing microbial consortium to achieve a target function. While high-throughput sequencing has enabled microbial community characterization, the major challenge is to disentangle complex microbial interactions and manipulate the structure and function accordingly. The bottom-up approach uses prior knowledge of the metabolic pathway and possible interactions among consortium partners to design and engineer synthetic microbial consortia. This strategy offers some control over the composition and function of the consortium for targeted bioprocesses, but challenges remain in optimal assembly methods and long-term stability. In this review, we present the recent advancements, challenges, and opportunities for further improvement using top-down and bottom-up approaches for microbiome engineering. As the bottom-up approach is relatively a new concept for waste valorization, this review explores the assembly and design of synthetic microbial consortia, ecological engineering principles to optimize microbial consortia, and metabolic engineering approaches for efficient conversion. Integration of top-down and bottom-up approaches along with developments in metabolic modeling to predict and optimize consortia function are also highlighted. ONE-SENTENCE SUMMARY: This review highlights the microbial consortia-driven waste valorization for biomanufacturing through top-down and bottom-up design approaches and describes strategies, tools, and unexplored opportunities to optimize the design and stability of such consortia.


Assuntos
Biomassa , Consórcios Microbianos , Microbiota , Engenharia Metabólica , Biotecnologia/métodos , Redes e Vias Metabólicas , Bactérias/genética , Bactérias/metabolismo
5.
Ecotoxicol Environ Saf ; 277: 116369, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678793

RESUMO

Understanding the new insight on conversion of organic waste into value-added products can improve the environmental activities driven by microorganisms and return the nutrients to environment and earth. Here, we comprehensively review the available knowledge on application of garbage enzyme (GE) for different environmental activities including waste activated sludge, composting process, landfill leachate treatment, soil remediation and wastewater treatment with special focus on their efficiency. To identify peer-reviewed studies published in English-language journals, a comprehensive search was performed across multiple electronic databases including Scopus, Web of Science, Pubmed, and Embase. The search was conducted systematically using relevant keywords. The eligible studies were analyzed to extract data and information pertaining to components of GE, fermentation process operational parameters, type of hydrolytic enzymes and improved environmental performance. The findings derived from this current review demonstrated that GE produced from the fruit and vegetable peels, molasses or brown sugar (carbon source), and water within fermentation process contain different hydrolytic enzymes in order to facilitate the organic waste degradation. Therefore, GE can be considered as a promising and efficient pathway in order to improve the environmental activities depended on microorganism including, composting, wastewater and leachate treatment and bioremediation process.


Assuntos
Biodegradação Ambiental , Enzimas , Resíduos de Alimentos , Compostagem , Enzimas/metabolismo , Fermentação , Esgotos/microbiologia , Águas Residuárias/química
6.
J Environ Manage ; 351: 119988, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181686

RESUMO

Microplastics are found ubiquitous in the natural environment and are an increasing source of worry for global health. Rapid industrialization and inappropriate plastic waste management in our daily lives have resulted in an increase in the amount of microplastics in the ecosystem. Microplastics that are <150 µm in size could be easily ingested by living beings and cause considerable toxicity. Microplastics can aggregate in living organisms and cause acute, chronic, carcinogenic, developmental, and genotoxic damage. As a result, a sustainable approach to reducing, reusing, and recycling plastic waste is required to manage microplastic pollution in the environment. However, there is still a significant lack of effective methods for managing these pollutants. As a result, the purpose of this review is to convey information on microplastic toxicity and management practices that may aid in the reduction of microplastic pollution. This review further insights on how plastic trash could be converted as value-added products, reducing the load of accumulating plastic wastes in the environment, and leading to a beneficial endeavor for humanity.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Microplásticos , Plásticos , Ecossistema , Poluição Ambiental/prevenção & controle , Poluentes Químicos da Água/análise , Monitoramento Ambiental
7.
Molecules ; 29(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893350

RESUMO

This review addresses the critical issue of a rapidly increasing worldwide waste stream and the need for sustainable management. The paper proposes an integrated transformation toward a next-generation methanization process, which leads not only to treating waste but also to converting it into higher value compounds and greener energy. Although the current and commonly used anaerobic digestion process is useful for biogas production, it presents limitations of resource exploitation and some negative environmental impacts. Focusing on the acidogenic stage in waste stream processing, the paper discusses the recent strategies to enhance the recovery of volatile fatty acids (VFAs). These acids serve as precursors for synthesizing a variety of biochemicals and biofuels, offering higher value products than solely energy recovery and soil fertilizers. Additionally, the importance of recycling the fermentation residues back into the biorefinery process is highlighted. This recycling not only generates additional VFAs but also contributes to generating clean energy, thereby enhancing the overall sustainability and efficiency of the waste management system. Moreover, the review discusses the necessity to integrate life cycle assessment (LCA) and techno-economic analysis (TEA) to evaluate the environmental impacts, sustainability, and processing costs of the proposed biorefinery.


Assuntos
Biocombustíveis , Ácidos Graxos Voláteis , Ácidos Graxos Voláteis/metabolismo , Metano/metabolismo , Anaerobiose , Fermentação , Gerenciamento de Resíduos/métodos , Reciclagem
8.
J Sci Food Agric ; 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073106

RESUMO

Coconut palm (Cocos nucifera) is a treasured tree of the tropics, with every part put to use. The edible portions are loaded with diverse nutrients and nutraceutical ingredients. While the unique mineral profile of the liquid endosperm, the low-glycemic inflorescence sap (neera) and the medium-chain triglyceride fraction of coconut oil are better recognized, other fractions such as the haustorium remain underexplored. Overall, it is evident that, globally, the present status of coconut value addition is conventional, limited to a handful of products, and novel products hold a promising scope. A massive fraction of global coconut production goes for culinary and religious purposes. In the article, value-added products from coconut are classified into conventional and non-conventional products, with the latter in focus. Based on the part from which it is collected, all products have been categorized as haustorium-based, inflorescence-based, kernel-based and water-based products. For each non-conventional product introduced, its production approach and unique application range are highlighted. Given its health-promoting capabilities, characteristic sensorial attributes, wide application range and technological advancements, coconuts are increasingly being recognized around the world, even in regions that do not cultivate them; this applies to non-food products as well. In the context of value-added products from coconuts, this decade has witnessed a surge in research and commercial interest considering the inclusion of coconut as an ingredient in several food and nutraceutical products. The future will certainly consider regulatory protocols and standards, better documentation of the health impact of coconut-based diets, and the sustainability of coconut production, processing and consumption. © 2024 Society of Chemical Industry.

9.
Compr Rev Food Sci Food Saf ; 23(3): e13359, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38720571

RESUMO

The recent increase in the harvesting and industrial processing of tropical fruits such as pineapple and papaya is leading to unavoidable amounts of byproducts rich in valuable compounds. Given the significance of the chemical composition of these byproducts, new research avenues are opening up to exploit them in the food industry. In this sense, the revalorization of pineapple and papaya byproducts is an emerging trend that is encouraging the full harnessing of these tropical fruits, offering the opportunity for developing innovative value-added products. Therefore, the main aim of this review is to provide an overview of the state of the art of the current valorization applications of pineapple and papaya byproducts in the field of food industry. For that proposal, comprehensive research of valorization applications developed in the last years has been conducted using scientific databases, databases, digital libraries, and scientific search engines. The latest valorization applications of pineapple and papaya byproducts in the food industry have been systematically revised and gathered with the objective of synthesizing and critically analyzing existing scientific literature in order to contribute to the advancement of knowledge in the field of tropical byproduct revalorization providing a solid foundation for further research and highlighting scientific gaps and new challenges that should be addressed in the future.


Assuntos
Ananas , Carica , Frutas , Carica/química , Ananas/química , Frutas/química , Indústria Alimentícia , Manipulação de Alimentos/métodos
10.
Angew Chem Int Ed Engl ; 63(32): e202401746, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38757221

RESUMO

Over 79 % of 6.3 billion tonnes of plastics produced from 1950 to 2015 have been disposed in landfills or found their way to the oceans, where they will reside for up to hundreds of years before being decomposed bringing upon significant dangers to our health and ecosystems. Plastic photoreforming offers an appealing alternative by using solar energy and water to transform plastic waste into value-added chemical commodities, while simultaneously producing green hydrogen via the hydrogen evolution reaction. This review aims to provide an overview of the underlying principles of emerging plastic photoreforming technologies, highlight the challenges associated with experimental protocols and performance assessments, discuss recent global breakthroughs on the photoreforming of plastics, and propose perspectives for future research. A critical assessment of current plastic photoreforming studies shows a lack of standardised conditions, hindering comparison amongst photocatalyst performance. Guidelines to establish a more accurate evaluation of materials and systems are proposed, with the aim to facilitate the translation of promising fundamental discovery in photocatalysts design.

11.
Small ; 19(24): e2208272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36922907

RESUMO

Electrochemical dinitrogen (N2 ) reduction to ammonia (NH3 ) coupled with methanol electro-oxidation is presented in the current work. Here, methanol oxidation reaction (MOR) is proposed as an alternative anode reaction to oxygen evolution reaction (OER) to accomplish electrons-induced reduction of N2 to NH3 at cathode and oxidation of methanol at anode in alkaline media thereby reducing the overall cell voltage for ammonia production. Cobalt pyrophosphate micro-flowers assembled by nanosheets are synthesized via a surfactant-assisted sonochemical approach. By virtue of structural and morphological advantages, the maximum Faradaic efficiency of 43.37% and NH3 yield rate of 159.6 µg h-1 mgca -1 is achieved at a potential of -0.2 V versus RHE. The proposed catalyst is shown to also exhibit a very high activity (100 mA mg-1 at 1.48 V), durability (2 h) and production of value-added formic acid at anode (2.78 µmol h-1 mgcat -1 and F.E. of 59.2%). The overall NH3 synthesis is achieved at a reduced cell voltage of 1.6 V (200 mV less than NRR-OER coupled NH3 synthesis) when OER at anode is replaced with MOR and a high NH3 yield rate of 95.2 µg h-1 mgcat -1 and HCOOH formation rate of 2.53 µmol h-1 mg-1 are witnessed under full-cell conditions.

12.
Chemistry ; 29(49): e202300583, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367498

RESUMO

Electrocatalytic CO2 reduction reaction (CO2 RR) is a promising and green approach for reducing atmospheric CO2 concentration and achieving high-valued conversion of CO2 under the carbon-neutral policy. In CO2 RR, the dual-site metal catalysts (DSMCs) have received wide attention for their ingenious design strategies, abundant active sites, and excellent catalytic performance attributed to the synergistic effect between dual-site in terms of activity, selectivity and stability, which plays a key role in catalytic reactions. This review provides a systematic summary and detailed classification of DSMCs for CO2 RR, describes the mechanism of synergistic effects in catalytic reactions, and also introduces in situ characterization techniques commonly used in CO2 RR. Finally, the main challenges and prospects of dual-site metal catalysts and even multi-site catalysts for CO2 recycling are analyzed. It is believed that based on the understanding of bimetallic site catalysts and synergistic effects in CO2 RR, well-designed high-performance, low-cost electrocatalysts are promising for achieving CO2 conversion, electrochemical energy conversion and storage in the future.

13.
Chem Rec ; 23(4): e202200294, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36850030

RESUMO

Chemical upcycling of waste plastics into high-value-added products is one of the most effective, cost-efficient, and environmentally beneficial solutions. Many studies have been published over the past few years on the topic of recycling plastics into usable materials through a process called catalytic pyrolysis. There is a significant research gap that must be bridged in order to use catalytic pyrolysis of waste plastics to produce high-value products. This review focuses on the enhanced catalytic pyrolysis of waste plastics to produce jet fuel, diesel oil, lubricants, aromatic compounds, syngas, and other gases. Moreover, the reaction mechanism, a brief and critical comparison of different catalytic pyrolysis studies, as well as the techno-feasibility analysis of waste plastic pyrolysis and the proposed catalytic plastic pyrolysis setup for commercialization is also covered.

14.
Crit Rev Food Sci Nutr ; 63(23): 6344-6378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35144492

RESUMO

Artocarpus heterophyllus Lam. (Family Moraceae), is a tropical tree, native to India and common in Asia, Africa, and several regions in South America. The fruit is commonly known as jackfruit which is one of the largest edible fruits in the world. Jackfruits comprises a wide range of nutrients, including minerals, carbohydrates, volatile compounds, proteins, and vitamins. The fruit, bark, leaves, and roots are endowed with therapeutic attributes and are utilized in the many traditional medicinal systems for the management of various ailments. Fruit and seeds are commonly used to prepare various food items, including sauce, ice creams, jams, jellies, and marmalades. Due to unique texture, jackfruit is becoming a popular meat substitute. Based on preclinical studies, jackfruit exhibits antimicrobial, antioxidant, anti-melanin, antidiabetic, anti-inflammatory, immunomodulatory, antiviral, anthelmintic, wound-healing, and antineoplastic activities. Clinical studies reveal that the leaves possess antidiabetic action in healthy and insulin-independent diabetic individuals. Despite numerous health benefits, regrettably, jackfruit has not been properly utilized in a marketable scale in areas where it is produced. This review delivers an updated, comprehensive, and critical evaluation on the nutritional value, phytochemical profiling, pharmacological attributes and underlying mechanisms of action to explore the full potential of jackfruit in health and disease.


Assuntos
Artocarpus , Humanos , Artocarpus/química , Frutas/química , Sementes , Antioxidantes/análise , Hipoglicemiantes/análise
15.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811640

RESUMO

Nowadays, fruits are gaining high demand due to their promising advantages on human health. Astonishingly, their by-products, that is, seeds and peels, account for 10-35% of fruit weight and are usually thrown as waste after consumption or processing. But it is neglected that fruit seeds also have functional properties and nutritional value, and thus could be utilized for dietary and therapeutic purposes, ultimately reducing the waste burden on the environment. Owing to these benefits, researchers have started to assess the nutritional value of different fruits seeds, in addition to the chemical composition in various bioactive constituents, like carotenoids (lycopene), flavonoids, proteins (bioactive peptides), vitamins, etc., that have substantial health benefits and can be used in formulating different types of food products with noteworthy functional and nutraceutical potential. The current review aims to comprehend the known information of nutritional and phytochemical profiling of non-edible fruits seeds, viz. apple, apricot, avocado, cherry, date, jamun, litchi, longan, mango, and papaya. Additionally, clinical studies conducted on these selected non-edible fruit seed extracts, their safety issues and their enrichment in food products as well as animal feed has also been discussed. This review aims to highlight the potential applications of the non-edible fruit seeds in developing new food products and also provide a viable alternative to reduce the waste disposal issue faced by agro-based industries.

16.
Environ Res ; 217: 114758, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36400225

RESUMO

The concept of zero waste discharge has been gaining importance in recent years towards attaining a sustainable environment. Fruit processing industries generate millions of tons of byproducts like fruit peels and seeds, and their disposal poses an environmental threat. The concept of extracting value-added bioactive compounds from bio-waste is an excellent opportunity to mitigate environmental issues. To date, significant research has been carried out on the extraction of essential biomolecules, particularly polysaccharides from waste generated by fruit processing industries. In this review article, we aim to summarize the different extraction methodologies, characterization methods, and biomedical applications of polysaccharides extracted from seeds and peels of different fruit sources. The review also focuses on the general scheme of extraction of polysaccharides from fruit waste with special emphasis on various methods used in extraction. Also, the various types of polysaccharides obtained from fruit processing industrial wastes are explained in consonance with the important techniques related to the structural elucidation of polysaccharides obtained from seed and peel waste. The use of seed polysaccharides as pharmaceutical excipients and the application of peel polysaccharides possessing biological activities are also elaborated.


Assuntos
Resíduos Industriais , Eliminação de Resíduos , Resíduos Industriais/análise , Frutas/química , Sementes , Polissacarídeos/análise
17.
Environ Res ; 216(Pt 2): 114400, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265604

RESUMO

Biowaste, produced from nature, is preferred to be a good source of carbon and ligninolytic machinery for many microorganisms. They are complex biopolymers composed of lignin, cellulose, and hemicellulose traces. This biomass can be depolymerized to its nano-dimensions to gain exceptional properties useful in the field of cosmetics, pharmaceuticals, high-strength materials, etc. Nano-sized biomass derivatives overcome the inherent drawbacks of the parent material and offer promises as a potential material for a wide range of applications with their unique traits such as low-toxicity, biocompatibility, biodegradability and environmentally friendly nature with versatility. This review focuses on the production of value-added products feasible from nanocellulose, nano lignin, and xylan nanoparticles which is quite a novel study of its kind. Dawn of nanotechnology has converted bio waste by-products (hemicellulose and lignin) into useful precursors for many commercial products. Nano-cellulose has been employed in the fields of electronics, cosmetics, drug delivery, scaffolds, fillers, packaging, and engineering structures. Xylan nanoparticles and nano lignin have numerous applications as stabilizers, additives, textiles, adhesives, emulsifiers, and prodrugs for many polyphenols with an encapsulation efficiency of 50%. This study will support the potential development of composites for emerging applications in all aspects of interest and open up novel paths for multifunctional biomaterials in nano-dimensions for cosmetic, drug carrier, and clinical applications.


Assuntos
Lignina , Xilanos , Lignina/química , Celulose/química , Biomassa
18.
Environ Res ; 237(Pt 1): 116943, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619627

RESUMO

The current study analyzed the high heating values (HHVs) of various waste biomass materials intending to the effective management and more sustainable consumption of waste as clean energy source. Various biomass waste samples including date leaves, date branches, coconut leaves, grass, cooked macaroni, salad, fruit and vegetable peels, vegetable scraps, cooked food waste, paper waste, tea waste, and cardboard were characterized for proximate analysis. The results revealed that all the waste biomass were rich in organic matter (OM). The total OM for all waste biomass ranged from 79.39% to 98.17%. Likewise, the results showed that all the waste biomass resulted in lower ash content and high fixed carbon content associated with high fuel quality. Based on proximate analysis, various empirical equations (HHV=28.296-0.2887(A)-656.2/VM, HHV=18.297-0.4128(A)+35.8/FC and HHV=22.3418-0.1136(FC)-0.3983(A)) have been tested to predict HHVs. It was observed that the heterogeneous nature of various biomass waste considerably affects the HHVs and hence has different fuel characteristics. Similarly, the HHVs of waste biomass were also determined experimentally using the bomb calorimeter, and it was observed that among all the selected waste biomass, the highest HHVs (21.19 MJ kg-1) resulted in cooked food waste followed by cooked macaroni (20.25 MJ kg-1). The comparison revealed that experimental HHVs for the selected waste biomass were slightly deviated from the predicted HHVs. Based on HHVs, various thermochemical and biochemical technologies were critically overviewed to assess the suitability of waste biomass to energy products. It has been emphasized that valorizing waste-to-energy technologies provides the dual benefits of sustainable management and production of cleaner energy to reduce fossil fuels dependency. However, the key bottleneck in commercializing waste-to-energy systems requires proper waste collection, sorting, and continuous feedstock supply. Moreover, related stakeholders should be involved in designing and executing the decision-making process to facilitate the global recognition of waste biorefinery concept.

19.
Mar Drugs ; 21(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37367683

RESUMO

Shell wastes pose environmental and financial burdens to the shellfish industry. Utilizing these undervalued shells for commercial chitin production could minimize their adverse impacts while maximizing economic value. Shell chitin conventionally produced through harsh chemical processes is environmentally unfriendly and infeasible for recovering compatible proteins and minerals for value-added products. However, we recently developed a microwave-intensified biorefinery that efficiently produced chitin, proteins/peptides, and minerals from lobster shells. Lobster minerals have a calcium-rich composition and biologically originated calcium is more biofunctional for use as a functional, dietary, or nutraceutical ingredient in many commercial products. This has suggested a further investigation of lobster minerals for commercial applications. In this study, the nutritional attributes, functional properties, nutraceutical effects, and cytotoxicity of lobster minerals were analyzed using in vitro simulated gastrointestinal digestion combined with growing bone (MG-63), skin (HaCaT), and macrophage (THP-1) cells. The calcium from the lobster minerals was found to be comparable to that of a commercial calcium supplement (CCS, 139 vs. 148 mg/g). In addition, beef incorporated with lobster minerals (2%, w/w) retained water better than that of casein and commercial calcium lactate (CCL, 21.1 vs. 15.1 and 13.3%), and the lobster mineral had a considerably higher oil binding capacity than its rivals (casein and CCL, 2.5 vs. 1.5 and 1.0 mL/g). Notably, the lobster mineral and its calcium were far more soluble than the CCS (98.4 vs. 18.6% for the products and 64.0 vs. 8.5% for their calcium) while the in vitro bioavailability of lobster calcium was 5.9-fold higher compared to that of the commercial product (11.95 vs. 1.99%). Furthermore, supplementing lobster minerals in media at ratios of 15%, 25%, and 35% (v/v) when growing cells did not induce any detectable changes in cell morphology and apoptosis. However, it had significant effects on cell growth and proliferation. The responses of cells after three days of culture supplemented with the lobster minerals, compared to the CCS supplementation, were significantly better with the bone cells (MG-63) and competitively quick with the skin cells (HaCaT). The cell growth reached 49.9-61.6% for the MG-63 and 42.9-53.4% for the HaCaT. Furthermore, the MG-63 and HaCaT cells proliferated considerably after seven days of incubation, reaching 100.3% for MG-63 and 115.9% for HaCaT with a lobster mineral supplementation of 15%. Macrophages (THP-1 cells) treated for 24 h with lobster minerals at concentrations of 1.24-2.89 mg/mL had no detectable changes in cell morphology while their viability was over 82.2%, far above the cytotoxicity threshold (<70%). All these results indicate that lobster minerals could be used as a source of functional or nutraceutical calcium for commercial products.


Assuntos
Cálcio , Nephropidae , Animais , Bovinos , Cálcio/metabolismo , Nephropidae/metabolismo , Caseínas/metabolismo , Disponibilidade Biológica , Solubilidade , Minerais , Quitina/metabolismo
20.
Molecules ; 28(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110796

RESUMO

Coffee waste is often viewed as a problem, but it can be converted into value-added products if managed with clean technologies and long-term waste management strategies. Several compounds, including lipids, lignin, cellulose and hemicelluloses, tannins, antioxidants, caffeine, polyphenols, carotenoids, flavonoids, and biofuel can be extracted or produced through recycling, recovery, or energy valorization. In this review, we will discuss the potential uses of by-products generated from the waste derived from coffee production, including coffee leaves and flowers from cultivation; coffee pulps, husks, and silverskin from coffee processing; and spent coffee grounds (SCGs) from post-consumption. The full utilization of these coffee by-products can be achieved by establishing suitable infrastructure and building networks between scientists, business organizations, and policymakers, thus reducing the economic and environmental burdens of coffee processing in a sustainable manner.


Assuntos
Antioxidantes , Polifenóis , Lignina , Flavonoides , Cafeína , Resíduos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA