Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Sensors (Basel) ; 23(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37571584

RESUMO

This paper assessed the variability of radiofrequency exposure among road users in urban settings due to vehicle-to-vehicle (V2V) communication operating at 5.9 GHz. The study evaluated the absorbed dose of radiofrequencies using whole-body specific absorption rate (SAR) in human models spanning different age groups, from children to adults. To overcome limitations of previous studies, we developed a novel hybrid procedure that combines deterministic and stochastic approaches, enabling assessment across multiple urban layouts. Real urban conditions and varying propagation scenarios were considered in SAR calculations. By varying the road user's position within 1.5-300 m from transmitting cars, the SAR distribution was determined. Median SAR remained consistently low, around 0.70 mW/kg, even with multiple transmitting cars and multiple emitting antennas, using maximum power allowed in US (44.8 dBm). The 99th percentile of SAR distribution varied based on body mass, decreasing for heavier models (typically adults) and increasing with the number of transmitting cars and antennas. The highest absorbed dose (73 mW/kg) occurred in a child model. The SAR consistently remained below the 80 mW/kg limit for whole-body exposure to electromagnetic fields in the 100 kHz-300 GHz range.


Assuntos
Campos Eletromagnéticos , Ondas de Rádio , Criança , Adulto , Humanos , Reprodução , Automóveis
2.
Entropy (Basel) ; 25(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38136499

RESUMO

We consider a point process (PP) generated by superimposing an independent Poisson point process (PPP) on each line of a 2D Poisson line process (PLP). Termed PLP-PPP, this PP is suitable for modeling networks formed on an irregular collection of lines, such as vehicles on a network of roads and sensors deployed along trails in a forest. Inspired by vehicular networks in which vehicles connect with their nearest wireless base stations (BSs), we consider a random bipartite associator graph in which each point of the PLP-PPP is associated with the nearest point of an independent PPP through an edge. This graph is equivalent to the partitioning of PLP-PPP by a Poisson Voronoi tessellation (PVT) formed by an independent PPP. We first characterize the exact distribution of the number of points of PLP-PPP falling inside the ball centered at an arbitrary location in R2 as well as the typical point of PLP-PPP. Using these distributions, we derive cumulative distribution functions (CDFs) and probability density functions (PDFs) of kth contact distance (CD) and the nearest neighbor distance (NND) of PLP-PPP. As intermediate results, we present the empirical distribution of the perimeter and approximate distribution of the length of the typical chord of the zero-cell of this PVT. Using these results, we present two close approximations of the distribution of node degree of the random bipartite associator graph. In a vehicular network setting, this result characterizes the number of vehicles connected to each BS, which models its load. Since each BS has to distribute its limited resources across all the vehicles connected to it, a good statistical understanding of load is important for an efficient system design. Several applications of these new results to different wireless network settings are also discussed.

3.
Sensors (Basel) ; 22(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35009873

RESUMO

Many group key management protocols have been proposed to manage key generation and distribution of vehicular communication. However, most of them suffer from high communication and computation costs due to the complex elliptic curve and bilinear pairing cryptography. Many shared secret protocols have been proposed using polynomial evaluation and interpolation to solve the previous complexity issues. This paper proposes an efficient centralized threshold shared secret protocol based on the Shamir secret sharing technique and supporting key authentication using Hashed Message Authentication Code Protocol (HMAC). The proposed protocol allows the group manager to generate a master secret key for a group of n vehicles and split this key into secret shares; each share is distributed securely to every group member. t-of-n vehicles must recombine their secret shares and recover the original secret key. The acceptance of the recovered key is based on the correctness of the received HMAC signature to verify the group manager's identity and ensure the key confidentiality. The proposed protocol is unconditionally secure and unbreakable using infinite computing power as t, or more than t secret shares are required to reconstruct the key. In contrast, attackers with t-1 secret shares cannot leak any information about the original secret key. Moreover, the proposed protocol reduces the computation cost due to using polynomial evaluation to generate the secret key and interpolation to recover the secret key, which is very simple and lightweight compared with the discrete logarithm computation cost in previous protocols. In addition, utilizing a trusted group manager that broadcasts some public information is important for the registered vehicles to reconstruct the key and eliminate secure channels between vehicles. The proposed protocol reduces the communication cost in terms of transmitted messages between vehicles from 2(t-1) messages in previous shared secret protocols to zero messages. Moreover, it reduces the received messages at vehicles from 2t to two messages. At the same time, it allows vehicles to store only a single secret share compared with other shared secret protocols that require storage of t secret shares. The proposed protocol security level outperforms the other shared secret protocols security, as it supports key authentication and confidentiality using HMAC that prevents attackers from compromising or faking the key.


Assuntos
Segurança Computacional , Confidencialidade , Algoritmos
4.
Sensors (Basel) ; 22(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35161992

RESUMO

Heterogeneous vehicular communication on the Internet of connected vehicle (IoV) environment is an emerging research theme toward achieving smart transportation. It is an evolution of the existing vehicular ad hoc network architecture due to the increasingly heterogeneous nature of the various existing networks in road traffic environments that need to be integrated. The existing literature on vehicular communication is lacking in the area of network optimization for heterogeneous network environments. In this context, this paper proposes a heterogeneous network model for IoV and service-oriented network optimization. The network model focuses on three key networking entities: vehicular cloud, heterogeneous communication, and smart use cases as clients. Most traffic-related data-oriented computations are performed at cloud servers for making intelligent decisions. The connection component enables handoff-centric network communication in heterogeneous vehicular environments. The use-case-oriented smart traffic services are implemented as clients for the network model. The model is tested for various service-oriented metrics in heterogeneous vehicular communication environments with the aim of affirming several service benefits. Future challenges and issues in heterogeneous IoV environments are also highlighted.


Assuntos
Meios de Transporte , Humanos
5.
Sensors (Basel) ; 22(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35336388

RESUMO

The future of Autonomous Vehicles (AVs) will experience a breakthrough when collective intelligence is employed through decentralized cooperative systems. A system capable of controlling all AVs crossing urban intersections, considering the state of all vehicles and users, will be able to improve vehicular flow and end accidents. This type of system is known as Autonomous Intersection Management (AIM). AIM has been discussed in different articles, but most of them have not considered the communication latency between the AV and the Intersection Manager (IM). Due to the lack of works studying the impact that the communication network can have on the decentralized control of AVs by AIMs, this paper presents a novel latency-aware deep reinforcement learning-based AIM for the 5G communication network, called AIM5LA. AIM5LA is the first AIM that considers the inherent latency of the 5G communication network to adapt the control of AVs using Multi-Agent Deep Reinforcement Learning (MADRL), thus obtaining a robust and resilient multi-agent control policy. Beyond considering the latency history experienced, AIM5LA predicts future latency behavior to provide enhanced security and improve traffic flow. The results demonstrate huge safety improvements compared to other AIMs, eliminating collisions (on average from 27 to 0). Further, AIM5LA provides comparable results in other metrics, such as travel time and intersection waiting time, while guaranteeing to be collision-free, unlike the other AIMs. Finally, compared to other traffic light-based control systems, AIM5LA can reduce waiting time by more than 99% and time loss by more than 95%.


Assuntos
Conscientização , Aprendizagem
6.
Sensors (Basel) ; 21(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34960331

RESUMO

A quad-element multiple-input-multiple-output (MIMO) antenna with ultra-wideband (UWB) performance is presented in this paper. The MIMO antenna consists of four orthogonally arranged microstrip line-fed hexagonal monopole radiators and a modified ground plane. In addition, E-shaped and G-shaped stubs are added to the radiator to achieve additional resonances at 1.5 GHz and 2.45 GHz. The reliability of the antenna in the automotive environment is investigated, with housing effects taken into account. The housing effects show that the antenna performs consistently even in the presence of a large metal object. The proposed MIMO antenna has potential for various automotive applications, including vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-everything (V2X), intelligent transport system (ITS), automatic vehicle identifier, and RFID-based electronic toll collection.

7.
Sensors (Basel) ; 22(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009631

RESUMO

Current vehicular systems require real-time information to keep drivers safer and more secure on the road. In addition to the radio frequency (RF) based communication technologies, Visible Light Communication (VLC) has emerged as a complementary way to enable wireless access in intelligent transportation systems (ITS) with a simple design and low-cost deployment. However, integrating VLC in vehicular networks poses some fundamental challenges. In particular, the limited coverage range of the VLC access points and the high speed of vehicles create time-limited links that the existing handover procedures of VLC networks can not be accomplished timely. Therefore, this paper addresses the problem of designing a vehicular VLC network that supports high mobility users. We first modify the traditional VLC network topology to increase uplink reliability. Then, a low-latency handover scheme is proposed to enable mobility in a VLC network. Furthermore, we validate the functionality of the proposed VLC network design method by using system-level simulations of a vehicular tunnel scenario. The analysis and the results show that the proposed method provides a steady connection, where the vehicular node is available more than 99% of the time regardless of the number of vehicular nodes on this network. Additionally, the system is able to achieve a Frame-Error-Rate (FER) performance lower than 10-3.

8.
Sensors (Basel) ; 21(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34833782

RESUMO

In an effort to reach accident-free milestones or drastically reduce/eliminate road fatalities rates and traffic congestion and to create disruptive, transformational mobility systems and services, different parties (e.g., automakers, universities, governments, and road traffic regulators) have collaborated to research, develop, and test connected vehicle (CV) technologies. CVs create new data-rich environments and are considered key enablers for many applications and services that will make our roads safer, less congested, and more eco-friendly. A deeper understanding of the CV technologies will pave the way to avoid setbacks and will help in developing more innovative applications and breakthroughs. In the CV paradigm, vehicles become smarter by communicating with nearby vehicles, connected infrastructure, and the surroundings. This connectivity will be substantial to support different features and systems, such as adaptive routing, real-time navigation, and slow and near real-time infrastructure. Further examples include environmental sensing, advanced driver-assistance systems, automated driving systems, mobility on demand, and mobility as a service. This article provides a comprehensive review on CV technologies including fundamental challenges, state-of-the-art enabling technologies, innovative applications, and potential opportunities that can benefit automakers, customers, and businesses. The current standardization efforts of the forefront enabling technologies, such as Wi-Fi 6 and 5G-cellular technologies are also reviewed. Different challenges in terms of cooperative computation, privacy/security, and over-the-air updates are discussed. Safety and non-safety applications are described and possible future opportunities that CV technology brings to our life are also highlighted.


Assuntos
Acidentes de Trânsito , Condução de Veículo , Segurança , Tecnologia
9.
Sensors (Basel) ; 21(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477934

RESUMO

5G-Vehicle-to-Everything (5G-V2X) supports high-reliability and low latency autonomous services and applications. Proposing an efficient security solution that supports multi-zone broadcast authentication and satisfies the 5G requirement is a critical challenge. In The 3rd Generation Partnership Project (3GPP) Release 16 standard, for Cellular- Vehicle-to-Everything (C-V2X) single-cell communication is suggested to reuse the IEEE1609.2 security standard that utilizes the Public Key Infrastructure (PKI) cryptography. PKI-based solutions provide a high-security level, however, it suffers from high communication and computation overhead, due to the large size of the attached certificate and signature. In this study, we propose a light-weight Multi-Zone Authentication and Privacy-Preserving Protocol (MAPP) based on the bilinear pairing cryptography and short-size signature. MAPP protocol provides three different authentication methods that enable a secure broadcast authentication over multiple zones of large-scale base stations, using a single message and a single short signature. We also propose a centralized dynamic key generation method for multiple zones. We implemented and analyzed the proposed key generation and authentication methods using an authentication simulator and a bilinear pairing library. The proposed methods significantly reduce the signature generation time by 16 times-80 times, as compared to the previous methods. Additionally, the proposed methods significantly reduced the signature verification time by 10 times-16 times, as compared to the two previous methods. The three proposed authentication methods achieved substantial speed-up in the signature generation time and verification time, using a short bilinear pairing signature.

10.
Sensors (Basel) ; 21(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34372357

RESUMO

Vehicle-to-vehicle communication is a promising paradigm that enables all vehicles in the traffic road to communicate with each other to enhance traffic performance and increase road safety. Through vehicle-to-vehicle (V2V) communication, vehicles can understand the traffic conditions based on the information sent among vehicles on the road. Due to the potential delay caused by traffic jams, emergency vehicles may not be able to reach their destination in the required time, leading to severe losses. The case is more severe especially in developing countries where no emergency-vehicle-dedicated lanes are allocated. In this study, a new emergency vehicle route-clarifying strategy is proposed. The new clarifying strategy is based on vehicular traffic management in different interference medium scenarios. The proposed model aims, through V2V communication, to find the nearest vehicle with which to communicate. This vehicle plays an important role in reducing the travel time: as the emergency message is received, this vehicle will immediately communicate with all the neighboring vehicles on the road. Based on V2V communications, all the vehicles in the road will clear from the lane in the road for the emergency vehicle can safely reach its destination with the minimum possible travel time. The maximum distance between the emergency vehicle and the nearest vehicle was determined under different channel conditions. The proposed strategy applied an optimization technique to find the varied road traffic parameters. The proposed traffic management strategy was evaluated and examined through different assumptions and several simulation scenarios. The obtained results validated the effectiveness and the accuracy of the proposed model, and also indicated significant improvement in the network's performance in terms of packet delivery ratio (PDR) and average end-to-end delay (E2E).


Assuntos
Comunicação , Viagem , Simulação por Computador
11.
Sensors (Basel) ; 20(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197501

RESUMO

The emerging SDVN (Software Defined Vehicular Network) paradigm promises to bring flexibility and efficient resource utilization to vehicular networks, enabling the emergence of novel Intelligent Transportation Services. However, as it was initially designed with wired network in mind, applying the SDN paradigm to a vehicular context faces new challenges related to the peculiar characteristics of this network (high node mobility and node density, and the presence of wireless links). In this paper, we focus on one of the critical architectural elements of SDVN, namely, the SDN Controller Placement, and promote the use of dynamic placement methods that take into account the dynamicity of vehicular networks' topology. We also describe the different approaches towards a dynamic controller placement and also propose an ILP (Integer Linear Programming) based dynamic placement method that adaptively readjusts the number and placement of controllers according to road traffic fluctuations. The proposed method is evaluated using a realistic traffic trace from Luxembourg City. Simulation results show that our approach outperforms the static approach as proposed in the literature.

12.
Sensors (Basel) ; 20(4)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102245

RESUMO

In this paper, we investigated a buffer-aided decode-and-forward (DF) wireless relaying system over fading channels, where the source and relay harvest radio-frequency (RF) energy from a power station for data transmissions. We derived exact expressions for end-to-end throughput considering half-duplex (HD) and full-duplex (FD) relaying schemes. The numerical results illustrate the throughput and energy efficiencies of the relaying schemes under different self-interference (SI) cancellation levels and relay deployment locations. It was demonstrated that throughput-optimal relaying is not necessarily energy efficiency-optimal. The results provide guidance on optimal relaying network deployment and operation under different performance criteria.

13.
Sensors (Basel) ; 19(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871260

RESUMO

The Internet of Vehicles (IoV) is attracting many researchers with the emergence of autonomous or smart vehicles. Vehicles on the road are becoming smart objects equipped with lots of sensors and powerful computing and communication capabilities. In the IoV environment, the efficiency of road transportation can be enhanced with the help of cost-effective traffic signal control. Traffic signal controllers control traffic lights based on the number of vehicles waiting for the green light (in short, vehicle queue length). So far, the utilization of video cameras or sensors has been extensively studied as the intelligent means of the vehicle queue length estimation. However, it has the deficiencies like high computing overhead, high installation and maintenance cost, high susceptibility to the surrounding environment, etc. Therefore, in this paper, we propose the vehicular communication-based approach for intelligent traffic signal control in a cost-effective way with low computing overhead and high resilience to environmental obstacles. In the vehicular communication-based approach, traffic signals are efficiently controlled at no extra cost by using the pre-equipped vehicular communication capabilities of IoV. Vehicular communications allow vehicles to send messages to traffic signal controllers (i.e., vehicle-to-infrastructure (V2I) communications) so that they can estimate vehicle queue length based on the collected messages. In our previous work, we have proposed a mechanism that can accomplish the efficiency of vehicular communications without losing the accuracy of traffic signal control. This mechanism gives transmission preference to the vehicles farther away from the traffic signal controller, so that the other vehicles closer to the stop line give up transmissions. In this paper, we propose a new mechanism enhancing the previous mechanism by selecting the vehicles performing V2I communications based on the concept of road sectorization. In the mechanism, only the vehicles within specific areas, called sectors, perform V2I communications to reduce the message transmission overhead. For the performance comparison of our mechanisms, we carry out simulations by using the Veins vehicular network simulation framework and measure the message transmission overhead and the accuracy of the estimated vehicle queue length. Simulation results verify that our vehicular communication-based approach significantly reduces the message transmission overhead without losing the accuracy of the vehicle queue length estimation.

14.
Sensors (Basel) ; 18(10)2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30274382

RESUMO

Vehicle to everything (V2X) has been deemed a promising technology due to its potential to achieve traffic safety and efficiency. This paper considers a V2X downlink system with a simultaneous wireless information and power transfer (SWIPT) system where the base station not only conveys data and energy to two types of wireless vehicular receivers, such as one hybrid power-splitting vehicular receiver, and multiple energy vehicular receivers, but also prevents information from being intercepted by the potential eavesdroppers (idle energy vehicular receivers). Both the base station and the energy vehicular receivers are equipped with multiple antennas, whereas the information vehicular receiver is equipped with a single antenna. In particular, the imperfect channel state information (CSI) and the practical nonlinear energy harvesting (EH) model are taken into account. The non-convex optimization problem is formulated to maximize the minimum harvested energy power among the energy vehicular receivers satisfying the lowest harvested energy power threshold at the information vehicular receiver and secure vehicular communication requirements. In light of the intractability of the optimization problem, the semidefinite relaxation (SDR) technique and variable substitutions are applied, and the optimal solution is proven to be tight. A number of results demonstrate that the proposed robust secure beamforming scheme has better performance than other schemes.

15.
IEEE trans Intell Transp Syst ; 19(3): 996-1014, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29881331

RESUMO

With the remarkable progress of cooperative communication technology in recent years, its transformation to vehicular networking is gaining momentum. Such a transformation has brought a new research challenge in facing the realization of cooperative vehicular networking (CVN). This paper presents a comprehensive survey of recent advances in the field of CVN. We cover important aspects of CVN research, including physical, medium access control, and routing protocols, as well as link scheduling and security. We also classify these research efforts in a taxonomy of cooperative vehicular networks. A set of key requirements for realizing the vision of cooperative vehicular networks is then identified and discussed. We also discuss open research challenges in enabling CVN. Lastly, the paper concludes by highlighting key points of research and future directions in the domain of CVN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA