Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 165(7): 1762-1775, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27315483

RESUMO

Maternal obesity during pregnancy has been associated with increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Here, we report that maternal high-fat diet (MHFD) induces a shift in microbial ecology that negatively impacts offspring social behavior. Social deficits and gut microbiota dysbiosis in MHFD offspring are prevented by co-housing with offspring of mothers on a regular diet (MRD) and transferable to germ-free mice. In addition, social interaction induces synaptic potentiation (LTP) in the ventral tegmental area (VTA) of MRD, but not MHFD offspring. Moreover, MHFD offspring had fewer oxytocin immunoreactive neurons in the hypothalamus. Using metagenomics and precision microbiota reconstitution, we identified a single commensal strain that corrects oxytocin levels, LTP, and social deficits in MHFD offspring. Our findings causally link maternal diet, gut microbial imbalance, VTA plasticity, and behavior and suggest that probiotic treatment may relieve specific behavioral abnormalities associated with neurodevelopmental disorders. VIDEO ABSTRACT.


Assuntos
Transtorno do Espectro Autista/microbiologia , Dieta Hiperlipídica , Microbioma Gastrointestinal , Obesidade/complicações , Comportamento Social , Animais , Disbiose/fisiopatologia , Feminino , Vida Livre de Germes , Abrigo para Animais , Limosilactobacillus reuteri , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocitocina/análise , Ocitocina/metabolismo , Gravidez , Área Tegmentar Ventral
2.
J Neurosci ; 43(44): 7276-7293, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37684032

RESUMO

The parabrachial nucleus (PBN) interfaces between taste and feeding systems and is also an important hub for relaying distress information and threats. Despite that the PBN sends projections to the ventral tegmental area (VTA), a heterogeneous brain region that regulates motivational behaviors, the function of the PBN-to-VTA connection remains elusive. Here, by using male mice in several behavioral paradigms, we discover that VTA-projecting PBN neurons are significantly engaged in contextual fear, restraint or mild stress but not palatable feeding, visceral malaise, or thermal pain. These results suggest that the PBN-to-VTA input may relay negative emotions under threat. Consistent with this notion, optogenetic activation of PBN-to-VTA glutamatergic input results in aversion, which is sufficient to override palatable feeding. Moreover, in a palatable food-reinforced operant task, we demonstrate that transient optogenetic activation of PBN-to-VTA input during food reward retrieval disengages instrumental food-seeking behaviors but spares learned action-outcome association. By using an activity-dependent targeting approach, we show that VTA DA neurons are disengaged by the PBN afferent activation, implicating that VTA non-DA neurons may mediate PBN afferent regulation. We further show that optogenetic activation of VTA neurons functionally recruited by the PBN input results in aversion, dampens palatable feeding, and disengages palatable food self-administration behavior. Finally, we demonstrate that transient activation of VTA glutamatergic, but not GABAergic, neurons recapitulates the negative regulation of the PBN input on food self-administration behavior. Together, we reveal that the PBN-to-VTA input conveys negative affect, likely through VTA glutamatergic neurons, to disengage instrumental food-seeking behaviors.SIGNIFICANCE STATEMENT The PBN receives multiple inputs and thus is well positioned to route information of various modalities to engage different downstream circuits to attend or respond accordingly. We demonstrate that the PBN-to-VTA input conveys negative affect and then triggers adaptive prioritized responses to address pertinent needs by withholding ongoing behaviors, such as palatable food seeking or intake shown in the present study. It has evolutionary significance because preparing to cope with stressful situations or threats takes priority over food seeking to promote survival. Knowing how appropriate adaptive responses are generated will provide new insights into circuitry mechanisms of various coping behaviors to changing environmental stimuli.


Assuntos
Núcleos Parabraquiais , Área Tegmentar Ventral , Camundongos , Masculino , Animais , Área Tegmentar Ventral/fisiologia , Núcleos Parabraquiais/fisiologia , Alimentos , Neurônios GABAérgicos , Emoções , Recompensa
3.
Synapse ; 78(1): e22284, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37996987

RESUMO

Dopamine (DA) is involved in stress and stress-related illnesses, including many psychiatric disorders. Corticotropin-releasing factor (CRF) plays a role in stress responses and targets the ventral midbrain DA system, which is composed of DA and non-DA cells, and divided into specific subregions. Although CRF inputs to the midline A10 nuclei ("classic VTA") are known, in monkeys, CRF-containing terminals are also highly enriched in the expanded A10 parabrachial pigmented nucleus (PBP) and in the A8 retrorubral field subregions. We characterized CRF-labeled synaptic terminals on DA (tyrosine hydroxylase, TH+) and non-DA (TH-) cell types in the PBP and A8 regions using immunoreactive electron microscopy (EM) in male and female macaques. CRF labeling was present mostly in axon terminals, which mainly contacted TH-negative dendrites in both subregions. Most CRF-positive terminals had symmetric profiles. In both PBP and A8, CRF symmetric (putative inhibitory) synapses onto TH-negative dendrites were significantly greater than asymmetric (putative excitatory) profiles. This overall pattern was similar in males and females, despite shifts in the size of these effects between regions depending on sex. Because stress and gonadal hormone shifts can influence CRF expression, we also did hormonal assays over a 6-month time period and found little variability in basal cortisol across similarly housed animals at the same age. Together our findings suggest that at baseline, CRF-positive synaptic terminals in the primate PBP and A8 are poised to regulate DA indirectly through synaptic contacts onto non-DA neurons.


Assuntos
Benzenoacetamidas , Hormônio Liberador da Corticotropina , Dopamina , Piperidonas , Humanos , Animais , Masculino , Feminino , Dopamina/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Macaca/metabolismo , Terminações Pré-Sinápticas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
4.
J Transl Med ; 21(1): 543, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580725

RESUMO

BACKGROUND: The ventral tegmental area (VTA) contains heterogeneous cell populations. The dopaminergic neurons in VTA play a central role in reward and cognition, while CamKIIα-positive neurons, composed mainly of glutamatergic and some dopaminergic neurons, participate in the reward learning and locomotor activity behaviors. The differences in brain-wide functional and structural networks between these two neuronal subtypes were comparatively elucidated. METHODS: In this study, we applied a method combining Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and fMRI to assess the cell type-specific modulation of whole-brain neural networks. rAAV encoding the cre-dependent hM3D was injected into the right VTA of DAT-cre or CamKIIα-cre transgenic rats. The global brain activities elicited by DREADD stimulation were then detected using BOLD-fMRI. Furthermore, the cre-dependent antegrade transsynaptic viral tracer H129ΔTK-TT was applied to label the outputs of VTA neurons. RESULTS: We found that DREADD stimulation of dopaminergic neurons induced significant BOLD signal changes in the VTA and several VTA-related regions including mPFC, Cg and Septum. More regions responded to selective activation of VTA CamKIIα-positive neurons, resulting in increased BOLD signals in VTA, Insula, mPFC, MC_R (Right), Cg, Septum, Hipp, TH_R, PtA_R, and ViC_R. Along with DREADD-BOLD analysis, further neuronal tracing identified multiple cortical (MC, mPFC) and subcortical (Hipp, TH) brain regions that are structurally and functionally connected by VTA dopaminergic and CamKIIα-positive neurons. CONCLUSIONS: Our study dissects brain-wide structural and functional networks of two neuronal subtypes in VTA and advances our understanding of VTA functions.


Assuntos
Imageamento por Ressonância Magnética , Área Tegmentar Ventral , Ratos , Animais , Área Tegmentar Ventral/diagnóstico por imagem , Área Tegmentar Ventral/fisiologia , Imageamento por Ressonância Magnética/métodos , Encéfalo , Neurônios Dopaminérgicos/fisiologia
5.
Cell Mol Life Sci ; 79(6): 341, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35660973

RESUMO

In Lesch-Nyhan disease (LND), deficiency of the purine salvage enzyme hypoxanthine guanine phosphoribosyl transferase (HGprt) leads to a characteristic neurobehavioral phenotype dominated by dystonia, cognitive deficits and incapacitating self-injurious behavior. It has been known for decades that LND is associated with dysfunction of midbrain dopamine neurons, without overt structural brain abnormalities. Emerging post mortem and in vitro evidence supports the hypothesis that the dopaminergic dysfunction in LND is of developmental origin, but specific pathogenic mechanisms have not been revealed. In the current study, HGprt deficiency causes specific neurodevelopmental abnormalities in mice during embryogenesis, particularly affecting proliferation and migration of developing midbrain dopamine (mDA) neurons. In mutant embryos at E14.5, proliferation was increased, accompanied by a decrease in cell cycle exit and the distribution and orientation of dividing cells suggested a premature deviation from their migratory route. An abnormally structured radial glia-like scaffold supporting this mDA neuronal migration might lie at the basis of these abnormalities. Consequently, these abnormalities were associated with an increase in area occupied by TH+ cells and an abnormal mDA subpopulation organization at E18.5. Finally, dopaminergic innervation was disorganized in prefrontal and decreased in HGprt deficient primary motor and somatosensory cortices. These data provide direct in vivo evidence for a neurodevelopmental nature of the brain disorder in LND. Future studies should not only focus the specific molecular mechanisms underlying the reported neurodevelopmental abnormalities, but also on optimal timing of therapeutic interventions to rescue the DA neuron defects, which may also be relevant for other neurodevelopmental disorders.


Assuntos
Síndrome de Lesch-Nyhan , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Mesencéfalo/metabolismo , Camundongos
6.
J Neurosci ; 40(2): 382-394, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31694965

RESUMO

Expectation interacting with nociceptive input can shape the perception of pain. It has been suggested that reward-related expectations are associated with the activation of the ventral tegmental area (VTA), which projects to the striatum (e.g., nucleus accumbens [NAc]) and prefrontal cortex (e.g., rostral anterior cingulate cortex [rACC]). However, the role of these projection pathways in encoding expectancy effects on pain remains unclear. In this study, we leveraged a visual cue conditioning paradigm with a long pain anticipation period and collected magnetic resonance imaging (MRI) data from 30 healthy human subjects (14 females). At the within-subject level, whole-brain functional connectivity (FC) analyses showed that the mesocortical pathway (VTA-rACC FC) and the mesolimbic pathway (VTA-NAc FC) were enhanced with positive expectation but inhibited with negative expectation during pain anticipation period. Mediation analyses revealed that cue-based expectancy effects on pain were mainly mediated by the VTA-NAc FC, and structural equation modeling showed that VTA-based FC influenced pain perception by modulating pain-evoked brain responses. At the between-subject level, multivariate pattern analyses demonstrated that gray matter volumes in the VTA, NAc, and rACC were able to predict the magnitudes of conditioned pain responses associated with positive and/or negative expectations across subjects. Our results therefore advance the current understanding of how the reward system is linked to the interaction between expectation and pain. Furthermore, they provide precise functional and structural information on mesocorticolimibic pathways that encode within-subject and between-subject variability of expectancy effects on pain.SIGNIFICANCE STATEMENT Studies have suggested that reward-related expectation is associated with the activation of the VTA, which projects to the striatum and prefrontal cortex. However, the role of these projection pathways in encoding expectancy effects on pain remains unclear. Using multimodality MRI and a visual cue conditioning paradigm, we found that the functional connectivity and gray matter volumes in key regions (the VTA, NAc, and rostral ACC) within the mesocorticolimbic pathways encoded expectancy effects on pain. Our results advance the current understanding of how the reward system is linked to the interaction between expectation and pain, and provide precise functional and structural information on mesocorticolimbic pathways that encode expectancy effects on pain.


Assuntos
Antecipação Psicológica/fisiologia , Encéfalo/fisiologia , Vias Neurais/fisiologia , Percepção da Dor/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Recompensa , Adulto Jovem
7.
Int J Mol Sci ; 22(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668515

RESUMO

Depression, the most prevalent psychiatric disorder in the Western world, is characterized by increased negative affect (i.e., depressed mood, cost value increase) and reduced positive affect (i.e., anhedonia, reward value decrease), fatigue, loss of appetite, and reduced psychomotor activity except for cases of agitative depression. Some forms, such as post-partum depression, have a high risk for suicidal attempts. Recent studies in humans and in animal models relate major depression occurrence and reoccurrence to alterations in dopaminergic activity, in addition to other neurotransmitter systems. Imaging studies detected decreased activity in the brain reward circuits in major depression. Therefore, the location of dopamine receptors in these circuits is relevant for understanding major depression. Interestingly, in cortico-striatal-dopaminergic pathways within the reward and cost circuits, the expression of dopamine and its contribution to reward are modulated by endocannabinoid receptors. These receptors are enriched in the striosomal compartment of striatum that selectively projects to dopaminergic neurons of substantia nigra compacta and is vulnerable to stress. This review aims to show the crosstalk between endocannabinoid and dopamine receptors and their vulnerability to stress in the reward circuits, especially in corticostriatal regions. The implications for novel treatments of major depression are discussed.


Assuntos
Corpo Estriado/metabolismo , Transtorno Depressivo Maior/metabolismo , Neurônios Dopaminérgicos/metabolismo , Endocanabinoides/metabolismo , Parte Compacta da Substância Negra/metabolismo , Corpo Estriado/patologia , Transtorno Depressivo Maior/patologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Parte Compacta da Substância Negra/patologia
8.
J Neurochem ; 154(2): 218-234, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32096869

RESUMO

Dopaminergic (DAergic) neurons of the midbrain ventral tegmental area (VTA) are known to regulate the hypothalamic-pituitary-adrenal (HPA) axis but have no direct projections to the paraventricular nucleus (PVN) of the hypothalamus. This study investigated whether VTA DAergic afferents modulate glutamatergic transmission-dependent GABAergic neurons in dorsolateral bed nucleus of stria terminalis (dlBNST) to affect the activity of the HPA-axis. Herein, we demonstrate that systemic administration of the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or the VTA-injection of 1-methyl-4-phenylpyridinium ion (MPP+) in male mice (MPTP-mice and MPP+mice) caused a decline of tyrosine hydroxylase positive (TH+) cells in VTA with a reduction in TH+fibers in the dlBNST. MPTP-mice and MPP+mice displayed a clear increase in serum levels of corticosterone (CORT) and adrenocorticotropic hormone, corticotropin-releasing hormone (CRH) expression, and CRH neuron activity in PVN. The presynaptic glutamate release, glutamatergic synaptic transmission and induction of long-term potentiation in dlBNST of MPTP-mice were suppressed, and these effects were rescued by a D1-like DAergic receptor (D1R) agonist and mimicked in control dlBNST by blockade of D1R. MPTP-mice exhibited low expression of glutamic acid decarboxylase and dysfunction of the excitatory-dependent GABAergic circuit in dlBNST, and these effects were recovered by the administration of D1R agonist. Furthermore, either dlBNST-injection of D1R agonist or PVN-injection of GABAA receptor (GABAA R) agonist could correct the increased secretion and expression of CRH in MPTP-mice. The results indicate that the DAergic afferents from VTA enhance excitatory-dependent activation of GABAergic neurons in dlBNST, which suppress the activity of the HPA-axis.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Vias Neurais/metabolismo , Neurônios Aferentes/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198225

RESUMO

Schizophrenia is a multifactorial developmental neuropsychiatric disorder. This study examined the interplay of maternal infection and postweaning social isolation, which are prenatal and postnatal risk factors, respectively. Pregnant mice received poly I:C or saline injection on gestation day 9 and the pups were weaned at postnatal day 28. After weaning, male offspring were randomly assigned into group-rearing and isolation-rearing groups. In their adulthood, we performed behavioral tests and characterized the histochemical features of their mesocorticolimbic structures. The sociability and anxiety levels were not affected by either manipulation, but synergistic effects of the two hits on stress-coping behavior was observed. Either of the single manipulations caused defects in sensorimotor gating, novel object recognition and spatial memory tests, but the combination of the two hits did not further exacerbate the disabilities. Prenatal infection increased the number of dopaminergic neurons in midbrain, whereas postweaning isolation decreased the GABAergic neurons in cortex. Single manipulation reduced the dendritic complexity and spine densities of neurons in the medial prefrontal cortex (mPFC) and dentate gyrus. Our results support the current perspective that disturbances in brain development during the prenatal or postnatal period influence the structure and function of the brain and together augment the susceptibility to mental disorders, such as schizophrenia.


Assuntos
Giro Denteado/fisiopatologia , Mesencéfalo/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Esquizofrenia/etiologia , Animais , Giro Denteado/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/patologia , Masculino , Mesencéfalo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Poli I-C/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fatores de Risco , Esquizofrenia/fisiopatologia
10.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917038

RESUMO

Daily agonistic interactions of mice are an effective experimental approach to elucidate the molecular mechanisms underlying the excitation of the brain neurons and the formation of alternative social behavior patterns. An RNA-Seq analysis was used to compare the ventral tegmental area (VTA) transcriptome profiles for three groups of male C57BL/6J mice: winners, a group of chronically winning mice, losers, a group of chronically defeated mice, and controls. The data obtained show that both winners and defeated mice experience stress, which however, has a more drastic effect on defeated animals causing more significant changes in the levels of gene transcription. Four genes (Nrgn, Ercc2, Otx2, and Six3) changed their VTA expression profiles in opposite directions in winners and defeated mice. It was first shown that Nrgn (neurogranin) expression was highly correlated with the expression of the genes involved in dopamine synthesis and transport (Th, Ddc, Slc6a3, and Drd2) in the VTA of defeated mice but not in winners. The obtained network of 31 coregulated genes, encoding proteins associated with nervous system development (including 24 genes associated with the generation of neurons), may be potentially useful for studying their role in the VTA dopaminergic neurons maturation under the influence of social stress.


Assuntos
Comportamento Agonístico/fisiologia , Predomínio Social , Área Tegmentar Ventral/metabolismo , Animais , Estudos de Casos e Controles , Análise por Conglomerados , Dopamina/biossíntese , Perfilação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL
11.
Addict Biol ; 22(6): 1743-1755, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27549591

RESUMO

Nicotine, a major psychoactive component of tobacco smoke, alters gamma-aminobutyric acid (GABA) modulation of dopamine neurons in the ventral tegmental area (VTA). Changes in structural neuroplasticity can occur in GABAergic parvalbumin (PRV) positive neurons, which are enveloped by structures of the extracellular matrix called perineuronal nets (PNNs). In the current study, rats were trained to self-administer intravenous nicotine (0.03 mg/kg/infusion) for 21 days in 1-hour daily sessions with an incrementing fixed ratio requirement; a control group received saline infusions. At either 45 minutes or 72 hours after the last session, immunofluorescence measurements for PNNs, PRV and c-Fos were conducted. In VTA, nicotine self-administration reduced the number of PRV+ cells surrounded by PNNs at 45 minutes, as well as reducing the intensity of PNNs, suggesting a remodeling of GABA interneurons in this region; the number of PRV+ cells surrounded by PNNs was also reduced at 72 hours. A similar reduction of PNNs occurred in orbitofrontal cortex (OFC) but not in medial prefrontal cortex (prelimbic or infralimbic), 45 minutes after the last session; PNNs were not detected in nucleus accumbens (shell or core). The reduction of PNNs in VTA and OFC was unrelated to c-Fos + cells, as the percent of wisteria floribunda agglutinin + cells co-expressing c-Fos was decreased in OFC but not in VTA. Thus, nicotine self-administration remodeled PNNs surrounding GABA interneurons in VTA and its indirect connections to OFC, suggesting a new possible molecular target where nicotine-induced neuroplasticity takes place. PNN manipulations may prevent or reverse the different stages of tobacco addiction.


Assuntos
Estimulantes Ganglionares/farmacologia , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Matriz Extracelular/efeitos dos fármacos , Imunofluorescência , Estimulantes Ganglionares/administração & dosagem , Masculino , Modelos Animais , Plasticidade Neuronal/efeitos dos fármacos , Nicotina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Autoadministração
12.
Hum Brain Mapp ; 37(7): 2369-84, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26991474

RESUMO

INTRODUCTION: The habenula (Hb) is postulated to play a critical role in reward and aversion processing across species, including humans, and has been increasingly implicated in depression. However, technical constraints have limited in vivo investigation of the human Hb, and its function remains poorly characterized. We sought to overcome these challenges by examining the whole-brain resting-state functional connectivity of the Hb and its possible relationship to depressive symptomatology using the high-resolution WU-Minn Human Connectome Project (HCP) dataset. METHODS: Anatomical and resting-state functional MRI data from 50 healthy subjects with low or high subclinical depression scores (n = 25 each) were analyzed. Using novel semi-automated segmentation and optimization techniques, we generated individual-specific Hb seeds and calculated whole-brain functional connectivity for the entire cohort and the contrast of high vs. low depression groups. RESULTS: In the entire cohort, the Hb exhibited significant connectivity with key brainstem structures (i.e., ventral tegmental area, substantia nigra, pons) as well as the anterior and posterior cingulate cortices, precuneus, thalamus, and sensorimotor cortex. Multiple regions showed differential Hb connectivity based on subclinical depression scores, including the amygdala, insula, and prefrontal, mid-cingulate, and entorhinal cortices. CONCLUSIONS: Hb connectivity findings converged on areas associated with salience processing, sensorimotor systems, and the default mode network. We also detected substantial Hb-brainstem connectivity, consistent with prior histological and animal research. High and low subclinical depression groups exhibited differences in Hb connectivity with multiple regions previously linked to depression, suggesting the relationship between these structures as a potential target for future research and treatment. Hum Brain Mapp 37:2369-2384, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Depressão/fisiopatologia , Habenula/fisiologia , Habenula/fisiopatologia , Adulto , Estudos de Coortes , Conectoma , Depressão/diagnóstico por imagem , Feminino , Habenula/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Vias Neurais/fisiopatologia , Reconhecimento Automatizado de Padrão , Descanso
14.
Addict Biol ; 19(3): 380-91, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23163242

RESUMO

A single exposure to drugs of abuse produces an NMDAR (N-methyl-D-aspartate receptor)-dependent synaptic potentiation at excitatory synapses of dopamine (DA) neurons in the ventral tegmental area (VTA) of the midbrain. All addictive drugs can increase DA concentrations in projection areas of the midbrain, including the hippocampus. Hippocampal DA release subsequently modulates hippocampal plasticity and drug-associated memories. Using in vivo electrophysiological recording techniques in anesthetized rats, we show that systemic injection of morphine induced hippocampal synaptic potentiation in a dose-dependent manner. Intra-VTA but not intra-hippocampus injection of morphine evoked this potentiation. Local hippocampal dopamine D1 receptors (D1R) are required in the morphine-induced synaptic potentiation and conditioned place preference (CPP). Moreover, both NMDAR activation in the VTA and VTA/hippocampus dopaminergic connections are essential for the morphine-evoked potentiation and CPP. These findings suggest that NMDAR signalings in the midbrain play a key role in regulating dopamine-mediated hippocampal synaptic plasticity underlying drug-induced associative memory.


Assuntos
Hipocampo/fisiologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia , Analgésicos Opioides/farmacologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Dopamina/farmacologia , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Potenciais Evocados/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Morfina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos
15.
Front Psychiatry ; 15: 1396376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774434

RESUMO

Neurofunctional coupling between the dopaminergic midbrain (i.e., ventral tegmental area, VTA) and higher-order visual regions may contribute to food craving, leading to the onset or maintenance of obesity. We recently showed that the VTA resting-state functional connectivity with the occipitotemporal cortex, at the level of the fusiform gyrus (FFG), was specifically associated with trait food craving and the implicit bias for food images, suggesting that VTA-FFG connectivity may reflect the association between the visual representations of food and its motivational properties. To further test this hypothesis, this time we studied task-based functional connectivity in twenty-eight healthy-weight participants while imagining eating their most liked high-calorie (HC) or least liked low-calorie food (LC) or drinking water (control condition). Trait food craving scores were used to predict changes in task-based functional connectivity of the VTA during imagery of HC compared to LC foods (relative to the control condition). Trait food craving was positively associated with the functional connectivity of the VTA with the left FFG: people with higher trait food craving scores show stronger VTA-FFG connectivity, specifically for the imagery of the liked HC foods. This association was not linked to the quality of imagery nor to state measures of craving, appetite, or thirst. These findings emphasize the contribution of the functional coupling between dopaminergic midbrain and higher-order visual regions to food craving, suggesting a neurofunctional mechanism by which the mental representations of the HC food we like can become much more salient if not irresistible.

16.
Quant Imaging Med Surg ; 14(7): 4735-4748, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39022244

RESUMO

Background: Apathy, characterized by diminished goal-directed behaviors, frequently occurs in patients with Parkinson's disease (PD). The dopamine-releasing neurons of the ventral tegmental area (VTA) have been closely related to this behavioral disruption and project widely to the corticolimbic areas, yet their functional and structural connectivity in regard to other brain regions remain unknown in patients with PD and pure apathy (PD-PA). This study thus aimed to characterize the alterations of functional connectivity (FC) of the VTA and white matter structural connectivity in PD-PA. Methods: In this study, 29 patients with PD-PA, 37 with PD but not pure apathy (PD-NPA), and 28 matched healthy controls (HCs) underwent T1-weighted, resting state functional magnetic resonance imaging, and diffusion tensor imaging scans. Patients of this cross-sectional retrospective study were consecutively recruited from The First Affiliated Hospital of Nanjing Medical University between April 2017 and October 2021. Meanwhile, HCs were consecutively recruited from the local community and the Health Examination Center of our hospital. An analysis of covariance and a general linear model were respectively conducted to investigate the functional and structural connectivity among three groups. The tract-based spatial statistics (TBSS) approach was used to investigate the white matter structural connectivity. Results: Patients with PD-PA showed reduced FC of the VTA with the left medial superior frontal gyrus (SFGmed) when compared to the patients with PD-NPA [t=-3.67; voxel-level P<0.001; cluster-level family-wise error-corrected P (PFWE)<0.05]. Relative to the HCs, patients with PD-PA demonstrated reduced FC of the VTA with the left SFGmed (t=-4.98; voxel-level P<0.001; cluster-level PFWE<0.05), right orbital superior frontal gyrus (SFGorb) (t=-5.08; voxel-level P<0.001; cluster-level PFWE<0.05), and right middle frontal gyrus (MFG) (t=-5.08; voxel-level P<0.001; cluster-level PFWE<0.05). Moreover, the reductions in VTA FC with the left SFGmed were associated with severe apathy symptoms in patients with PD-PA (r=-0.600; P=0.003). However, a TBSS approach did not reveal any significant differences in fiber tracts between the three groups. Conclusions: This study identified reduced FC within the mesocortical network (VTA-SFGmed) of patients with PD-PA. These findings may provide valuable information for administering neuromodulation therapies in the alleviation of apathy symptoms in those with PD.

17.
Mol Neurobiol ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180695

RESUMO

Alcohol Use Disorder (AUD), characterized by repeated alcohol consumption and withdrawal symptoms, poses a significant public health issue. Alcohol-induced impairment of the intestinal barrier results in alterations in intestinal permeability and the composition of the intestinal microbiota. Such alterations lead to a reduced relative abundance of intestinal lactic acid bacteria. However, the role of gut microbiota in alcohol consumption is not yet fully understood. In this study, we explore the mechanism by which gut microbiota regulates alcohol consumption, specifically using extracellular vesicles derived from Lactobacillus plantarum (L-EVs). L-EVs were administered to Sprague-Dawley rats either through intraperitoneal injection or microinjection into the ventral tegmental area (VTA), resulting in a significant reduction in alcohol consumption 72 hours after withdrawal. The observed reduction was akin to the effect of an intra-VTA microinjection of Brain-Derived Neurotrophic Factor (BDNF). Intriguingly, the microinjection of K252a (a Trk B antagonist) into the VTA blocked the reducing effect of L-EVs on alcohol consumption. The intraperitoneal injection of L-EVs restored the diminished BDNF expression in the VTA of alcohol-dependent rats. Furthermore, L-EVs rescued the low BDNF expression in alcohol-incubated PC12 cells. In conclusion, our study demonstrates that L-EVs attenuated alcohol consumption by enhancing BDNF expression in alcohol-dependent rats, thus suggesting the significant therapeutic potential of L-EVs in preventing excessive alcohol consumption.

18.
Front Mol Neurosci ; 17: 1347228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384279

RESUMO

Repeated exposure to psychostimulants such as methamphetamine (METH) induces neuronal adaptations in the mesocorticolimbic dopamine system, including the ventral tegmental area (VTA). These changes lead to persistently enhanced neuronal activity causing increased dopamine release and addictive phenotypes. A factor contributing to increased dopaminergic activity in this system appears to be reduced GABAB receptor-mediated neuronal inhibition in the VTA. Dephosphorylation of serine 783 (Ser783) of the GABAB2 subunit by protein phosphatase 2A (PP2A) appears to trigger the downregulation GABAB receptors in psychostimulant-addicted rodents. Therefore, preventing the interaction of GABAB receptors with PP2A using an interfering peptide is a promising strategy to restore GABAB receptor-mediated neuronal inhibition. We have previously developed an interfering peptide (PP2A-Pep) that inhibits the GABAB receptors/PP2A interaction and thereby restores receptor expression under pathological conditions. Here, we tested the hypothesis that restoration of GABAB receptor expression in the VTA of METH addicted mice reduce addictive phenotypes. We found that the expression of GABAB receptors was significantly reduced in the VTA and nucleus accumbens but not in the hippocampus and somatosensory cortex of METH-addicted mice. Infusion of PP2A-Pep into the VTA of METH-addicted mice restored GABAB receptor expression in the VTA and inhibited METH-induced locomotor sensitization as assessed in the open field test. Moreover, administration of PP2A-Pep into the VTA also reduced drug seeking behavior in the conditioned place preference test. These observations underscore the importance of VTA GABAB receptors in controlling addictive phenotypes. Furthermore, this study illustrates the value of interfering peptides targeting diseases-related protein-protein interactions as an alternative approach for a potential development of selective therapeutic interventions.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38856764

RESUMO

Mesolimbic dopamine (DA) transmission is believed to play a critical role in mediating reward responses to drugs of abuse, including alcohol (EtOH). The neurobiological mechanisms underlying EtOH-seeking behavior and dependence are not fully understood, and abstinence remains the only effective way to prevent alcohol use disorders (AUDs). Here, we developed novel RGS6fl/fl; DAT-iCreER mice to determine the role of RGS6 in DA neurons on EtOH consumption, reward, and relapse behaviors. We found that RGS6 is expressed in DA neurons in both human and mouse ventral tegmental area (VTA), and that RGS6 loss in mice upregulates DA transporter (DAT) expression in VTA DA neuron synaptic terminals. Remarkably, loss of RGS6 in DA neurons significantly reduced EtOH consumption, preference, and reward in a manner indistinguishable from that seen in RGS6-/- mice. Strikingly, RGS6 loss from DA neurons before or after EtOH behavioral reward is established significantly reduced (~ 50%) re-instatement of reward following extinguishment, demonstrating distinct roles of RGS6 in promoting reward and relapse susceptibility to EtOH. These studies identify DA neurons as the locus of RGS6 action in promoting EtOH consumption, preference, reward, and relapse. RGS6 is unique among R7 RGS proteins in promoting rather than suppressing behavioral responses to drugs of abuse and to modulate EtOH behavioral reward. This is a result of RGS6's pre-synaptic actions that we hypothesize promote VTA DA transmission by suppressing GPCR-Gαi/o-DAT signaling in VTA DA neurons. These studies identify RGS6 as a potential therapeutic target for behavioral reward and relapse to EtOH.

20.
Biomedicines ; 12(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39062166

RESUMO

Exercise has increasingly been recognized as an adjunctive therapy for alcohol-use disorder (AUD), yet our understanding of its underlying neurological mechanisms remains limited. This knowledge gap impedes the development of evidence-based exercise guidelines for AUD treatment. Chronic ethanol (EtOH) exposure has been shown to upregulate and sensitize kappa opioid receptors (KORs) in the nucleus accumbens (NAc), which is innervated by dopamine (DA) neurons in the midbrain ventral tegmental area (VTA), which may contribute to AUD-related behaviors. In this study, we investigated the impact of voluntary exercise in EtOH-dependent mice on EtOH consumption, KOR and delta opioid receptor (DOR) expression in the NAc and VTA, and functional effects on EtOH-induced alterations in DA release in the NAc. Our findings reveal that voluntary exercise reduces EtOH consumption, reduces KOR and enhances DOR expression in the NAc, and modifies EtOH-induced adaptations in DA release, suggesting a competitive interaction between exercise-induced and EtOH-induced alterations in KOR expression. We also found changes to DOR expression in the NAc and VTA with voluntary exercise but no significant changes to DA release. These findings elucidate the complex interplay of AUD-related neurobiological processes, highlighting the potential for exercise as a therapeutic intervention for AUD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA