Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.956
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 171(4): 771-782.e11, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056341

RESUMO

CLYBL encodes a ubiquitously expressed mitochondrial enzyme, conserved across all vertebrates, whose cellular activity and pathway assignment are unknown. Its homozygous loss is tolerated in seemingly healthy individuals, with reduced circulating B12 levels being the only and consistent phenotype reported to date. Here, by combining enzymology, structural biology, and activity-based metabolomics, we report that CLYBL operates as a citramalyl-CoA lyase in mammalian cells. Cells lacking CLYBL accumulate citramalyl-CoA, an intermediate in the C5-dicarboxylate metabolic pathway that includes itaconate, a recently identified human anti-microbial metabolite and immunomodulator. We report that CLYBL loss leads to a cell-autonomous defect in the mitochondrial B12 metabolism and that itaconyl-CoA is a cofactor-inactivating, substrate-analog inhibitor of the mitochondrial B12-dependent methylmalonyl-CoA mutase (MUT). Our work de-orphans the function of human CLYBL and reveals that a consequence of exposure to the immunomodulatory metabolite itaconate is B12 inactivation.


Assuntos
Carbono-Carbono Liases/metabolismo , Succinatos/metabolismo , Vitamina B 12/metabolismo , Carbono-Carbono Liases/química , Carbono-Carbono Liases/genética , Técnicas de Inativação de Genes , Humanos , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Modelos Moleculares
2.
Proc Natl Acad Sci U S A ; 121(14): e2315568121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530900

RESUMO

Methanogenic archaea inhabiting anaerobic environments play a crucial role in the global biogeochemical material cycle. The most universal electrogenic reaction of their methane-producing energy metabolism is catalyzed by N    5-methyl-tetrahydromethanopterin: coenzyme M methyltransferase (MtrABCDEFGH), which couples the vectorial Na+ transport with a methyl transfer between the one-carbon carriers tetrahydromethanopterin and coenzyme M via a vitamin B12 derivative (cobamide) as prosthetic group. We present the 2.08 Šcryo-EM structure of Mtr(ABCDEFG)3 composed of the central Mtr(ABFG)3 stalk symmetrically flanked by three membrane-spanning MtrCDE globes. Tetraether glycolipids visible in the map fill gaps inside the multisubunit complex. Putative coenzyme M and Na+ were identified inside or in a side-pocket of a cytoplasmic cavity formed within MtrCDE. Its bottom marks the gate of the transmembrane pore occluded in the cryo-EM map. By integrating Alphafold2 information, functionally competent MtrA-MtrH and MtrA-MtrCDE subcomplexes could be modeled and thus the methyl-tetrahydromethanopterin demethylation and coenzyme M methylation half-reactions structurally described. Methyl-transfer-driven Na+ transport is proposed to be based on a strong and weak complex between MtrCDE and MtrA carrying vitamin B12, the latter being placed at the entrance of the cytoplasmic MtrCDE cavity. Hypothetically, strongly attached methyl-cob(III)amide (His-on) carrying MtrA induces an inward-facing conformation, Na+ flux into the membrane protein center and finally coenzyme M methylation while the generated loosely attached (or detached) MtrA carrying cob(I)amide (His-off) induces an outward-facing conformation and an extracellular Na+ outflux. Methyl-cob(III)amide (His-on) is regenerated in the distant active site of the methyl-tetrahydromethanopterin binding MtrH implicating a large-scale shuttling movement of the vitamin B12-carrying domain.


Assuntos
Mesna , Metiltransferases , Mesna/metabolismo , Metiltransferases/metabolismo , Metilação , Vitamina B 12/metabolismo , Metano/metabolismo , Amidas , Vitaminas
3.
J Biol Chem ; 300(5): 107289, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636663

RESUMO

Vitamin B12 (cobalamin or Cbl) functions as a cofactor in two important enzymatic processes in human cells, and life is not sustainable without it. B12 is obtained from food and travels from the stomach, through the intestine, and into the bloodstream by three B12-transporting proteins: salivary haptocorrin (HC), gastric intrinsic factor, and transcobalamin (TC), which all bind B12 with high affinity and require proteolytic degradation to liberate Cbl. After intracellular delivery of dietary B12, Cbl in the aquo/hydroxocobalamin form can coordinate various nucleophiles, for example, GSH, giving rise to glutathionylcobalamin (GSCbl), a naturally occurring form of vitamin B12. Currently, there is no data showing whether GSCbl is recognized and transported in the human body. Our crystallographic data shows for the first time the complex between a vitamin B12 transporter and GSCbl, which compared to aquo/hydroxocobalamin, binds TC equally well. Furthermore, sequence analysis and structural comparisons show that TC recognizes and transports GSCbl and that the residues involved are conserved among TCs from different organisms. Interestingly, haptocorrin and intrinsic factor are not structurally tailored to bind GSCbl. This study provides new insights into the interactions between TC and Cbl.


Assuntos
Glutationa , Ratos , Transcobalaminas , Vitamina B 12 , Animais , Cristalografia por Raios X , Glutationa/metabolismo , Glutationa/análogos & derivados , Glutationa/química , Ligação Proteica , Transcobalaminas/metabolismo , Transcobalaminas/química , Vitamina B 12/metabolismo , Vitamina B 12/análogos & derivados , Vitamina B 12/química
4.
J Biol Chem ; 300(9): 107662, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39128713

RESUMO

Propionic acid links the oxidation of branched-chain amino acids and odd-chain fatty acids to the TCA cycle. Gut microbes ferment complex fiber remnants, generating high concentrations of short chain fatty acids, acetate, propionate and butyrate, which are shared with the host as fuel sources. Analysis of vitamin B12-dependent propionate utilization in skin biopsy samples has been used to characterize and diagnose underlying inborn errors of cobalamin (or B12) metabolism. In these cells, the B12-dependent enzyme, methylmalonyl-CoA mutase (MMUT), plays a central role in funneling propionate to the TCA cycle intermediate, succinate. Our understanding of the fate of propionate in other cell types, specifically, the involvement of the ß-oxidation-like and methylcitrate pathways, is limited. In this study, we have used [14C]-propionate tracing in combination with genetic ablation or inhibition of MMUT, to reveal the differential utilization of the B12-dependent and independent pathways for propionate metabolism in fibroblast versus colon cell lines. We demonstrate that itaconate can be used as a tool to investigate MMUT-dependent propionate metabolism in cultured cell lines. While MMUT gates the entry of propionate carbons into the TCA cycle in fibroblasts, colon-derived cell lines exhibit a quantitatively significant or exclusive reliance on the ß-oxidation-like pathway. Lipidomics and metabolomics analyses reveal that propionate elicits pleiotropic changes, including an increase in odd-chain glycerophospholipids, and perturbations in the purine nucleotide cycle and arginine/nitric oxide metabolism. The metabolic rationale and the regulatory mechanisms underlying the differential reliance on propionate utilization pathways at a cellular, and possibly tissue level, warrant further elucidation.

5.
Cell Mol Life Sci ; 81(1): 397, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261351

RESUMO

Inflammatory bowel diseases (IBDs) are immune chronic diseases characterized by recurrent episodes, resulting in continuous intestinal barrier damage and intestinal microbiota dysbiosis. Safe strategies aimed at stabilizing and reducing IBDs recurrence have been vigorously pursued. Here, we constructed a recurrent intestinal injury Drosophila model and found that vitamin B12 (VB12), an essential co-factor for organism physiological functions, could effectively protect the intestine and reduce dextran sulfate sodium-induced intestinal barrier disruption. VB12 also alleviated microbial dysbiosis in the Drosophila model and inhibited the growth of gram-negative bacteria. We demonstrated that VB12 could mitigate intestinal damage by activating the hypoxia-inducible factor-1 signaling pathway in injured conditions, which was achieved by regulating the intestinal oxidation. In addition, we also validated the protective effect of VB12 in a murine acute colitis model. In summary, we offer new insights and implications for the potential supportive role of VB12 in the management of recurrent IBDs flare-ups.


Assuntos
Sulfato de Dextrana , Modelos Animais de Doenças , Microbioma Gastrointestinal , Fator 1 Induzível por Hipóxia , Mucosa Intestinal , Transdução de Sinais , Vitamina B 12 , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Vitamina B 12/farmacologia , Vitamina B 12/metabolismo , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Transdução de Sinais/efeitos dos fármacos , Sulfato de Dextrana/toxicidade , Fator 1 Induzível por Hipóxia/metabolismo , Colite/metabolismo , Colite/induzido quimicamente , Colite/microbiologia , Colite/patologia , Colite/tratamento farmacológico , Disbiose/microbiologia , Disbiose/metabolismo , Camundongos Endogâmicos C57BL , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Drosophila/metabolismo
6.
Crit Rev Biochem Mol Biol ; 57(2): 133-155, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608838

RESUMO

Methyl-Cobalamin (Cbl) derives from dietary vitamin B12 and acts as a cofactor of methionine synthase (MS) in mammals. MS encoded by MTR catalyzes the remethylation of homocysteine to generate methionine and tetrahydrofolate, which fuel methionine and cytoplasmic folate cycles, respectively. Methionine is the precursor of S-adenosyl methionine (SAM), the universal methyl donor of transmethylation reactions. Impaired MS activity results from inadequate dietary intake or malabsorption of B12 and inborn errors of Cbl metabolism (IECM). The mechanisms at the origin of the high variability of clinical presentation of impaired MS activity are classically considered as the consequence of the disruption of the folate cycle and related synthesis of purines and pyrimidines and the decreased synthesis of endogenous methionine and SAM. For one decade, data on cellular and animal models of B12 deficiency and IECM have highlighted other key pathomechanisms, including altered interactome of MS with methionine synthase reductase, MMACHC, and MMADHC, endoplasmic reticulum stress, altered cell signaling, and genomic/epigenomic dysregulations. Decreased MS activity increases catalytic protein phosphatase 2A (PP2A) and produces imbalanced phosphorylation/methylation of nucleocytoplasmic RNA binding proteins, including ELAVL1/HuR protein, with subsequent nuclear sequestration of mRNAs and dramatic alteration of gene expression, including SIRT1. Decreased SAM and SIRT1 activity induce ER stress through impaired SIRT1-deacetylation of HSF1 and hypomethylation/hyperacetylation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), which deactivate nuclear receptors and lead to impaired energy metabolism and neuroplasticity. The reversibility of these pathomechanisms by SIRT1 agonists opens promising perspectives in the treatment of IECM outcomes resistant to conventional supplementation therapies.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Sirtuína 1 , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Animais , Ácido Fólico , Mamíferos/metabolismo , Metionina , Sirtuína 1/genética , Sirtuína 1/metabolismo , Vitamina B 12/genética , Vitamina B 12/metabolismo , Vitaminas
7.
Curr Issues Mol Biol ; 46(8): 9082-9092, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39194754

RESUMO

Skin radiance is crucial for enhancing facial attractiveness and is negatively affected by factors like hyperpigmentation and aging-related changes. Current treatments often lack comprehensive solutions for improving skin radiance. This study aimed to develop a cosmetic formula that enhances skin radiance by reducing hyperpigmentation and improving skin regeneration by targeting specific receptors-the endothelin receptor type B (EDNRB) for hyperpigmentation and the adiponectin receptor 1 (ADIPOR1) for sagging and wrinkles. To achieve this, we used artificial intelligence technologies to screen and select ingredients with an affinity for EDNRB and ADIPOR1. Vitamin B12 (VitB12) was identified as a molecule that targets EDNRB, which is involved in melanogenesis. Adenosine triphosphate (ATP) targets ADIPOR1, which is associated with skin regeneration. VitB12 successfully inhibited intracellular calcium elevation and melanogenesis induced by endothelin-1. In contrast, ATP increased the mRNA expression of collagen and elastin and promoted wound healing. Moreover, the VitB12 and ATP complex significantly increased the expression of hyaluronan synthases, which are crucial for skin hydration. Furthermore, in human participants, the application of the VitB12 and ATP complex to one-half of the face significantly improved skin radiance, elasticity, and texture. Our findings provide valuable insights for the development of skincare formulations.

8.
Br J Haematol ; 204(3): 1047-1053, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38087805

RESUMO

Sickle cell disease (SCD) is associated with high rates of undernutrition and stunting. Undernutrition in combination with chronic haemolysis may lead to deficiencies in micronutrients necessary for erythropoiesis. Here we examined selected levels of ferritin, vitamins B2 , B6 , B9 and B12 , and vitamin C that were measured in blood samples from 820 SCD patients from Tanzania with no history of hospital admission, infections or painful episodes in the previous 30 days. We studied children (0-8 years), early adolescents (9-14 years), late adolescents (15-17 years) and adults (≥18 years). Severely low levels of vitamin B12 were observed across the four age groups. Despite the lowered vitamin B12 concentrations, total homocysteine concentrations were normal across both genders in all age groups. We found no significant gender-related differences between the other measured micronutrients. In this large SCD population, spanning the whole life cycle, a low level of vitamin B12 was consistently found across both genders and all age groups. Given the pivotal role of vitamin B12 in cellular metabolism, particularly in erythropoiesis, more studies are required to unravel how to better detect clinically relevant vitamin B12 deficiency among SCD patients, and thus to identify more precisely those who need supplementation of vitamin B12 .


Assuntos
Anemia Falciforme , Desnutrição , Adulto , Criança , Adolescente , Humanos , Masculino , Feminino , Vitamina B 12 , Ácido Fólico , Tanzânia , Estudos de Coortes , Vitaminas , Micronutrientes
9.
Br J Haematol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030927

RESUMO

A young adult African American female presented with normocytic microangiopathic haemolytic anaemia, elevated lactate dehydrogenase and thrombocytopenia. The patient responded to therapeutic plasma exchanges (TPE) for presumed thrombotic microangiopathy caused by thrombotic thrombocytopenic purpura (TTP). After relapsing, the patient was found to have pancytopenia, megaloblastic bone marrow and low vitamin B12 consistent with pernicious anaemia, which improved with intramuscular B12 and discontinuation of TPE. B12-deficient macrocytosis was not seen at presentation due to concomitant alpha-thalassaemia. Initial clinical/laboratory improvement is attributed to B12 present in TPE plasma. B12 deficiency can mimic TTP. Vigilance is needed regarding atypical presentations of pernicious anaemia.

10.
Br J Haematol ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39128484

RESUMO

The case report by Dwyre et al. shows that vitamin B12 deficiency may be misdiagnosed as acute thrombotic thrombocytopenic purpura. Together with similar observations, this underlines that acquired vitamin B12 deficiency-besides the inherited disorder of intracellular cobalamin metabolism, cbl C disease-should be listed as a separate entity of the thrombotic microangiopathies. Commentary on: Dwyre et al. Microangiopathic thrombocytopenia caused by vitamin B12 deficiency responding to plasma exchange. Br J Haematol 2024 (Online ahead of print). doi: 10.1111/bjh.19625.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA