Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Glob Chang Biol ; 30(4): e17259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38655624

RESUMO

Nature-based climate solutions (NCS) are championed as a primary tool to mitigate climate change, especially in forested regions capable of storing and sequestering vast amounts of carbon. New England is one of the most heavily forested regions in the United States (>75% forested by land area), and forest carbon is a significant component of climate mitigation policies. Large infrequent disturbances, such as hurricanes, are a major source of uncertainty and risk for policies relying on forest carbon for climate mitigation, especially as climate change is projected to alter the intensity and extent of hurricanes. To date, most research into disturbance impacts on forest carbon stocks has focused on fire. Here, we show that a single hurricane in the region can down between 121 and 250 MMTCO2e or 4.6%-9.4% of the total aboveground forest carbon, much greater than the carbon sequestered annually by New England's forests (16 MMTCO2e year-1). However, emissions from hurricanes are not instantaneous; it takes approximately 19 years for downed carbon to become a net emission and 100 years for 90% of the downed carbon to be emitted. Reconstructing hurricanes with the HURRECON and EXPOS models across a range of historical and projected wind speeds, we find that an 8% and 16% increase in hurricane wind speeds leads to a 10.7- and 24.8-fold increase in the extent of high-severity damaged areas (widespread tree mortality). Increased wind speed also leads to unprecedented geographical shifts in damage, both inland and northward, into heavily forested regions traditionally less affected by hurricanes. Given that a single hurricane can emit the equivalent of 10+ years of carbon sequestered by forests in New England, the status of these forests as a durable carbon sink is uncertain. Understanding the risks to forest carbon stocks from disturbances is necessary for decision-makers relying on forests as a NCS.


Assuntos
Mudança Climática , Tempestades Ciclônicas , Florestas , New England , Carbono/análise , Sequestro de Carbono , Modelos Teóricos
2.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33753558

RESUMO

Tornadoes cause damage, injury, and death when intense winds impact structures. Quantifying the strength and extent of such winds is critical to characterizing tornado hazards. Ratings of intensity and size are based nearly entirely on postevent damage surveys [R. Edwards et al., Bull. Am. Meteorol. Soc. 94, 641-653 (2013)]. It has long been suspected that these suffer low bias [C. A. Doswell, D. W. Burgess, Mon. Weather Rev. 116, 495-501 (1988)]. Here, using mapping of low-level tornado winds in 120 tornadoes, we prove that supercell tornadoes are typically much stronger and wider than damage surveys indicate. Our results permit an accurate assessment of the distribution of tornado intensities and sizes and tornado wind hazards, based on actual wind-speed observations, and meaningful comparisons of the distribution of tornado intensities and sizes with theoretical predictions. We analyze data from Doppler On Wheels (DOW) radar measurements of 120 tornadoes at the time of peak measured intensity. In striking contrast to conventional damage-based climatologies, median tornado peak wind speeds are ∼60 m⋅s-1, capable of causing significant, Enhanced Fujita Scale (EF)-2 to -3, damage, and 20% are capable of the most intense EF-4/EF-5 damage. National Weather Service (NWS) EF/wind speed ratings are 1.2 to 1.5 categories (∼20 m⋅s-1) lower than DOW observations for tornadoes documented by both the NWS and DOWs. Median tornado diameter is 250 to 500 m, with 10 to 15% >1 km. Wind engineering tornado-hazard-model predictions and building wind resistance standards may require upward adjustment due to the increased wind-damage risk documented here.

3.
Glob Chang Biol ; 26(8): 4178-4196, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32449267

RESUMO

Climate change induces multiple abiotic and biotic risks to forests and forestry. Risks in different spatial and temporal scales must be considered to ensure preconditions for sustainable multifunctional management of forests for different ecosystem services. For this purpose, the present review article summarizes the most recent findings on major abiotic and biotic risks to boreal forests in Finland under the current and changing climate, with the focus on windstorms, heavy snow loading, drought and forest fires and major insect pests and pathogens of trees. In general, the forest growth is projected to increase mainly in northern Finland. In the south, the growing conditions may become suboptimal, particularly for Norway spruce. Although the wind climate does not change remarkably, wind damage risk will increase especially in the south, because of the shortening of the soil frost period. The risk of snow damage is anticipated to increase in the north and decrease in the south. Increasing drought in summer will boost the risk of large-scale forest fires. Also, the warmer climate increases the risk of bark beetle outbreaks and the wood decay by Heterobasidion root rot in coniferous forests. The probability of detrimental cascading events, such as those caused by a large-scale wind damage followed by a widespread bark beetle outbreak, will increase remarkably in the future. Therefore, the simultaneous consideration of the biotic and abiotic risks is essential.


Assuntos
Agricultura Florestal , Taiga , Animais , Mudança Climática , Ecossistema , Finlândia , Florestas , Noruega
4.
J Environ Manage ; 268: 110298, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32383659

RESUMO

In recent years, forest damage caused by typhoons has occurred frequently in Hokkaido, northern Japan. According to predictive reports, a typhoon's intensity increases and it then maintains its intensity as it moves north. The relationship between this prediction and forest damage is not clear, but the importance of dealing with forest damage is increasing. Therefore, to consider the countermeasures in forest management, we evaluated the influence of planting density and thinning on timber yield and resistance to wind damage in Japanese larch (Larix kaempferi), which is one of the main tree species used for afforestation in northern Japan. In this study, the following three management types were investigated: sparse (ST: relative yield index < 0.8), middle (MT: relative yield index < 0.9), and dense (DT: unthinned). To assess resistance to wind damage, the critical wind speed required to overturn and break the trunks of trees was calculated using a mechanistic model. Furthermore, timber volumes were estimated from a stand age of 10-50 years using the Yield Prediction System. The management type and planting density (1500-2500 trees ha-1) affected resistance to wind damage. Scenarios with ST and low planting density (1500 trees ha-1) showed a high resistance. In contrast, total timber volumes for scenarios varied from approximately 440 to 630 m3 depending on the site index (SI = 22, 25, and 28) at a stand age of 50 years. The merchantable log volume of the final cutting varied from approximately 210 to 470 m3 depending on the management type, planting density, and SI. There was a negative linear correlation between the log volume and resistance to wind damage. Therefore, it is important to balance both the decreased wind damage risk and higher timber yield or to prioritize them.


Assuntos
Larix , Ecossistema , Florestas , Japão , Árvores , Vento
5.
J Exp Bot ; 70(14): 3439-3451, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30698795

RESUMO

With few exceptions, terrestrial plants are anchored to substrates by roots that experience bending and twisting forces resulting from gravity- and wind-induced forces. Mechanical failure occurs when these forces exceed the flexural or torsional tolerance limits of stems or roots, or when roots are dislodged from their substrate. The emphasis of this review is on the general principles of anchorage, how the mechanical failure of root anchorage can be averted, and recommendations for future research.


Assuntos
Raízes de Plantas/química , Fenômenos Biomecânicos , Biofísica , Gravitação , Raízes de Plantas/crescimento & desenvolvimento , Vento
6.
Glob Chang Biol ; 21(8): 3021-35, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25703827

RESUMO

Wind is the major abiotic disturbance in New Zealand's planted forests, but little is known about how the risk of wind damage may be affected by future climate change. We linked a mechanistic wind damage model (ForestGALES) to an empirical growth model for radiata pine (Pinus radiata D. Don) and a process-based growth model (cenw) to predict the risk of wind damage under different future emissions scenarios and assumptions about the future wind climate. The cenw model was used to estimate site productivity for constant CO2 concentration at 1990 values and for assumed increases in CO2 concentration from current values to those expected during 2040 and 2090 under the B1 (low), A1B (mid-range) and A2 (high) emission scenarios. Stand development was modelled for different levels of site productivity, contrasting silvicultural regimes and sites across New Zealand. The risk of wind damage was predicted for each regime and emission scenario combination using the ForestGALES model. The sensitivity to changes in the intensity of the future wind climate was also examined. Results showed that increased tree growth rates under the different emissions scenarios had the greatest impact on the risk of wind damage. The increase in risk was greatest for stands growing at high stand density under the A2 emissions scenario with increased CO2 concentration. The increased productivity under this scenario resulted in increased tree height, without a corresponding increase in diameter, leading to more slender trees that were predicted to be at greater risk from wind damage. The risk of wind damage was further increased by the modest increases in the extreme wind climate that are predicted to occur. These results have implications for the development of silvicultural regimes that are resilient to climate change and also indicate that future productivity gains may be offset by greater losses from disturbances.


Assuntos
Mudança Climática , Modelos Teóricos , Pinus/crescimento & desenvolvimento , Vento , Florestas , Nova Zelândia
7.
Plants (Basel) ; 13(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273861

RESUMO

Coarse roots and the root plate play an important role in tree resistance to uprooting. In this study, a qualitative mechanistic model was developed to analyze coniferous tree resistance to uprooting in relation to tree morphological characteristics. The sizes of the crown, stem, and root plate of twenty sample spruces and twenty sample Korean pines were individually measured for this purpose. Using Ground Penetrating Radar (GPR), the coarse root distribution and root plate size were detected. In the qualitative mechanistic model, a larger crown area increased the overturning moment, while higher DBH and root plate mass increased the resistance moment. The resistance coefficient (Rm) was calculated by comparing resistive and overturning moments, classifying samples into three uprooting hazard levels. Trees with smaller crown areas, larger stems, and root plates tend to have higher resistance to uprooting, as indicated by higher Rm values. This qualitative mechanistic model provides a useful tool for assessing coniferous standing tree uprooting resistance.

8.
Ecol Evol ; 13(10): e10574, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37809357

RESUMO

Tropical cyclones are among the major climatic disasters threatening human survival and development. They are also responsible in part for forest taxonomic composition and dynamics and may lead to catastrophic succession between ecosystems. In this study, we aimed to investigate the extensiveness and severity of the effect caused by Typhoon Hato among the three primary plant communities in Macau, China, including Guia Hill, Taipa Grande, and Ka Ho. The plants' damage was classified into seven categories, ranging from Degree 6, which represents the most severe damage, to Degree 0, which represents almost no damage. The impact of Typhoon Hato was evaluated at different levels, including sample plots, species, DBH, and community structure. Our results show that the sub-climax community of Guia Hill was most disturbed, with the highest damage index (DI) of 55.28%. Similarly, the Ka Ho shoreline shrub community was also considerably influenced, with a DI of 48.14%. By contrast, the managed secondary forest around Taipa Grande was the least affected, with a DI of 32.66%. Additionally, from the tree layer perspective, the tall trees at Guia Hill canopy layer were directly affected by wind, while the dense understory layer suffered from severe secondary damage due to the fallen trees and branches. For Taipa Grande, the dominant species in the canopy layer were shorter and had less direct damage; the secondary damage was also small as a consequence. Ka Ho had more dwarfed and multibranched species surviving from the sea breeze since Ka Ho was close to the sea. The dense plant structure in Ka Ho protected plants from being easily broken by typhoons, but some twigs and leaves were lost. Some less damaged local species and easily recovered species found in this study could inform the selection of wind-resistant species for the typhoon-affected communities.

9.
Plants (Basel) ; 11(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35567175

RESUMO

In Northern Europe, the ongoing winter warming along with increasing precipitation shortens the periods for which soil is frozen, which aggravates the susceptibility of forest stands to wind damage under an increasing frequency of severe wind events via the reduction in soil-root anchorage. Such processes are recognized to be explicit in moist and loose soils, such as deep peat, while stands on dry mineral soils are considered more stable. In the hemiboreal forest zone in the Eastern Baltics, silver birch (Betula pendula Roth.) is an economically important species widespread on mineral and peat soils. Although birch is considered to be less prone to wind loading during dormant periods, wind damage arises under moist and non-frozen soil conditions. Static tree-pulling tests were applied to compare the mechanical stability of silver birch on frozen and non-frozen freely draining mineral and drained deep peat soils. Basal bending moment, stem strength, and soil-root plate volume were used as stability proxies. Under frozen soil conditions, the mechanical stability of silver birch was substantially improved on both soils due to boosted soil-root anchorage and a concomitant increase in stem strength. However, a relative improvement in soil-root anchorage by frozen conditions was estimated on mineral soil, which might be attributed to root distribution. The soil-root plates on the mineral soil were narrower, providing lower leverage, and thus freezing conditions had a higher effect on stability. Accordingly, silver birch on peat soil had an overall higher estimated loading resistance, which suggested its suitability for forest regeneration on loose and moist soils within the Eastern Baltic region. Nevertheless, adaptive forest management supporting individual tree stability is still encouraged.

10.
Front Plant Sci ; 13: 994429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388505

RESUMO

High-tech sensors, energy harvesters, and robots are increasingly being developed for operation on plant leaves. This introduces an extra load which the leaf must withstand, often under further dynamic forces like wind. Here, we took the example of mechanical energy harvesters that consist of flat artificial "leaves" fixed on the petioles of N. oleander, converting wind energy into electricity. We developed a combined experimental and computational approach to describe the static and dynamic mechanics of the natural and artificial leaves individually and join them together in the typical energy harvesting configuration. The model, in which the leaves are torsional springs with flexible petioles and rigid lamina deforming under the effect of gravity and wind, enables us to design the artificial device in terms of weight, flexibility, and dimensions based on the mechanical properties of the plant leaf. Moreover, it predicts the dynamic motions of the leaf-artificial leaf combination, causing the mechanical-to-electrical energy conversion at a given wind speed. The computational results were validated in dynamic experiments measuring the electrical output of the plant-hybrid energy harvester. Our approach enables us to design the artificial structure for damage-safe operation on leaves (avoiding overloading caused by the interaction between leaves and/or by the wind) and suggests how to improve the combined leaf oscillations affecting the energy harvesting performance. We furthermore discuss how the mathematical model could be extended in future works. In summary, this is a first approach to improve the adaptation of artificial devices to plants, advance their performance, and to counteract damage by mathematical modelling in the device design phase.

11.
J R Soc Interface ; 16(155): 20190116, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31164076

RESUMO

The relationship between form and function in trees is the subject of a longstanding debate in forest ecology and provides the basis for theories concerning forest ecosystem structure and metabolism. Trees interact with the wind in a dynamic manner and exhibit natural sway frequencies and damping processes that are important in understanding wind damage. Tree-wind dynamics are related to tree architecture, but this relationship is not well understood. We present a comprehensive view of natural sway frequencies in trees by compiling a dataset of field measurement spanning conifers and broadleaves, tropical and temperate forests. The field data show that a cantilever beam approximation adequately predicts the fundamental frequency of conifers, but not that of broadleaf trees. We also use structurally detailed tree dynamics simulations to test fundamental assumptions underpinning models of natural frequencies in trees. We model the dynamic properties of greater than 1000 trees using a finite-element approach based on accurate three-dimensional model trees derived from terrestrial laser scanning data. We show that (1) residual variation, the variation not explained by the cantilever beam approximation, in fundamental frequencies of broadleaf trees is driven by their architecture; (2) slender trees behave like a simple pendulum, with a single natural frequency dominating their motion, which makes them vulnerable to wind damage and (3) the presence of leaves decreases both the fundamental frequency and the damping ratio. These findings demonstrate the value of new three-dimensional measurements for understanding wind impacts on trees and suggest new directions for improving our understanding of tree dynamics from conifer plantations to natural forests.


Assuntos
Florestas , Modelos Biológicos , Árvores/fisiologia , Vento
12.
J Insect Behav ; 30(3): 273-286, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680193

RESUMO

Studies on spiders in their natural habitats are necessary for determining the full range of plasticity in their web-building behaviour. Plasticity in web design is hypothesised to be important for spiders building in habitats where environmental conditions cause considerable web damage. Here we compared web characteristics of the orb spider Metellina mengei (Araneae, Tetragnathidae) in two different forest habitats differing in their wind exposure. We found a notable lack of differences in web geometry, orientation and inclination between webs built along an exposed forest edge and those built inside the forest, despite marked differences in wind speed. This suggests that M. mengei did not exhibit web-building plasticity in response to wind in the field, contrasting with the findings of laboratory studies on other species of orb spiders. Instead, differences in prey capture and wind damage trade-offs between habitats may provide an explanation for our results, indicating that different species employ different strategies to cope with environmental constraints.

13.
Plant Sci ; 245: 94-118, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26940495

RESUMO

Land plants have adapted to survive under a range of wind climates and this involve changes in chemical composition, physical structure and morphology at all scales from the cell to the whole plant. Under strong winds plants can re-orientate themselves, reconfigure their canopies, or shed needles, leaves and branches in order to reduce the drag. If the wind is too strong the plants oscillate until the roots or stem fail. The mechanisms of root and stem failure are very similar in different plants although the exact details of the failure may be different. Cereals and other herbaceous crops can often recover after wind damage and even woody plants can partially recovery if there is sufficient access to water and nutrients. Wind damage can have major economic impacts on crops, forests and urban trees. This can be reduced by management that is sensitive to the local site and climatic conditions and accounts for the ability of plants to acclimate to their local wind climate. Wind is also a major disturbance in many plant ecosystems and can play a crucial role in plant regeneration and the change of successional stage.


Assuntos
Desenvolvimento Vegetal , Vento , Aclimatação/fisiologia , Movimentos do Ar , Fenômenos Biomecânicos , Folhas de Planta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA