Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 902
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biotechnol ; 24(1): 51, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090578

RESUMO

This study explores the potential antibacterial applications of zinc oxide nanoparticles (ZnO NPs) enhanced with silver (Ag) using plant gel (ZnO-AgO NPs). The problem addressed is the increasing prevalence of pathogenic bacteria and the need for new, effective antimicrobial agents. ZnO NPs possess distinctive physicochemical properties that enable them to selectively target bacterial cells. Their small size and high surface area-to-volume ratio allow efficient cellular uptake and interaction with bacterial cells. In this study, the average size of the synthesized ZnO-Ag nanoparticles was 77.1 nm, with a significant standard deviation of 33.7 nm, indicating a wide size distribution. The nanoparticles demonstrated remarkable antibacterial efficacy against gram-negative and gram-positive bacteria, with inhibition zones of 14.33 mm for E. coli and 15.66 mm for B. subtilis at a concentration of 300 µg/ml. Minimum inhibitory concentrations (MIC) were determined to be 100 µg/ml for E. coli and 75 µg/ml for S. saprophyticus. Additionally, ZnO-Ag NPs exhibited excellent biocompatibility, making them appropriate for various pharmacological uses. This study utilizes Ferula latisecta gels, offering a sustainable and eco-friendly approach to nanoparticle synthesis. Incorporating of Ag into ZnO NPs significantly enhances their antimicrobial properties, with the combined results showing great inhibition effects on pathogenic microbes. The findings suggest that ZnO-Ag NPs could be a promising candidate for addressing the challenges posed by drug-resistant bacterial infections and enhancing antimicrobial treatments.


Assuntos
Antibacterianos , Ferula , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Óxido de Zinco , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Bactérias Gram-Positivas/efeitos dos fármacos , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Ferula/química , Géis/química , Géis/farmacologia , Escherichia coli/efeitos dos fármacos
2.
BMC Plant Biol ; 24(1): 788, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39164648

RESUMO

Salinity stress is one of the most important stress barriers to crop production worldwide. Developing and implementing new strategies against salinity stress is critical for increasing agricultural productivity and supporting sustainable farming. Elicitors such as nanoparticles and Salicylic acid have recently been used potentially for better product yield. Therefore, in our research the Salvia virgata plant was exposed to salinity (NaCl) stress, and zinc oxide nanoparticles (ZnONP), salicylic acid (SA), and the ZnONP + SA combination were applied to plants divided into different groups. While salinity stress decreased the amount of chlorophyll a, chlorophyll b, and carotenoid pigments, SA, ZnONP, and SA + ZnONP elicitors combined with salinity stress enhanced the content of all three pigments. While salt stress raised MDA, H2O2, total phenolic, total flavonoid, soluble sugar and proline content, elicitor applications enhanced proline, soluble sugar, total phenolic and total flavonoid content more. Additionally, the application of NaCl + SA + ZnONP increased proline content by 21.55% and sugar content by 15.73% compared to NaCl application, while decreasing MDA content by 42.28% and H2O2 levels by 42.34%, thereby alleviating the plant's salt stress. It was revealed that DPPH, ABTS, and CUPRAC antioxidant activity sequence used to determine the total antioxidant activity displayed similarities, and it was found as NaCI + ZnONP > NaCI + SA > NaCI + SA + ZnONP > NaCI > Control. Furthermore, all elicitor applications increased CAT, GR, APX, and SOD enzyme activities while reducing oxidative stress in S. virgata plants. When all the data were evaluated, it was confirmed that SA and ZnONP had a synergistic effect and that SA and ZnONP have the potential to support plant development and growth under salinity. SA and ZnONP applications may have the capacity to least the detrimental impacts of salinity stress on plants. However, further research is needed to investigate the effectiveness of SA and ZnONPs in ameliorating salinity or different stress factors in various other plants.


Assuntos
Antioxidantes , Ácido Salicílico , Estresse Salino , Salvia , Antioxidantes/metabolismo , Salvia/fisiologia , Salvia/efeitos dos fármacos , Salvia/metabolismo , Ácido Salicílico/metabolismo , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Carotenoides/metabolismo , Flavonoides/metabolismo
3.
Small ; : e2403702, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087377

RESUMO

This research addresses challenges with silver nanowires (Ag NWs) as transparent conductive electrodes (TCEs) and heaters in commercial devices. Here, zinc oxide nanoparticles (ZnO NPs) are first reported as a protective layer for Ag NWs. Multi-physics simulations confirm enhanced thermal stability due to improved heat dissipation, temperature distribution, and thermal conductivity from ZnO. When Ag NWs are surrounded by air, heat transfers mainly through convection and radiation because of air's low conduction coefficient. Encasing Ag NWs in ZnO enhances heat transfer to the ZnO surface, accelerating cooling and dissipating more heat into the atmosphere via convection. The results show composite's efficiency in the Joule effect, maintaining a consistent temperature of 78 °C for 700 s after 500 bending cycles, a significant improvement over Ag NWs operating for only 5 s at 80 °C. Additionally, the composite film exhibited exceptional performance, including a sheet resistance of 9.8 Ω sq-1 and an optical transmittance of 96.96 %, outperforming Ag NWs, which have a sheet resistance of 12 Ω sq-1 and a transmittance of 94.11%. The combination of enhanced electrical, thermal, and mechanical stability, along with impressive optical properties, makes Ag NWs/ZnO NPs a promising candidate for transparent conductive electrode materials in various applications.

4.
BMC Microbiol ; 24(1): 290, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39095741

RESUMO

INTRODUCTION: Hormesis describes an inverse dose-response relationship, whereby a high dose of a toxic compound is inhibitory, and a low dose is stimulatory. This study explores the hormetic response of low concentrations of zinc oxide nanoparticles (ZnO NPs) toward Pseudomonas aeruginosa. METHOD: Samples of P. aeruginosa, i.e. the reference strain, ATCC 27,853, together with six strains recovered from patients with cystic fibrosis, were exposed to ten decreasing ZnO NPs doses (0.78-400 µg/mL). The ZnO NPs were manufactured from Peganum harmala using a chemical green synthesis approach, and their properties were verified utilizing X-ray diffraction and scanning electron microscopy. A microtiter plate technique was employed to investigate the impact of ZnO NPs on the growth, biofilm formation and metabolic activity of P. aeruginosa. Real-time polymerase chain reactions were performed to determine the effect of ZnO NPs on the expression of seven biofilm-encoding genes. RESULT: The ZnO NPs demonstrated concentration-dependent bactericidal and antibiofilm efficiency at concentrations of 100-400 µg/mL. However, growth was significantly stimulated at ZnO NPs concentration of 25 µg/mL (ATCC 27853, Pa 3 and Pa 4) and at 12.5 µg/mL and 6.25 µg/mL (ATCC 27853, Pa 2, Pa 4 and Pa 5). No significant positive growth was detected at dilutions < 6.25 µg/mL. similarly, biofilm formation was stimulated at concentration of 12.5 µg/mL (ATCC 27853 and Pa 1) and at 6.25 µg/mL (Pa 4). At concentration of 12.5 µg/mL, ZnO NPs upregulated the expression of LasB ( ATCC 27853, Pa 1 and Pa 4) and LasR and LasI (ATCC 27853 and Pa 1) as well as RhII expression (ATCC 27853, Pa 2 and Pa 4). CONCLUSION: When exposed to low ZnO NPs concentrations, P. aeruginosa behaves in a hormetic manner, undergoing positive growth and biofilm formation. These results highlight the importance of understanding the response of P. aeruginosa following exposure to low ZnO NPs concentrations.


Assuntos
Antibacterianos , Biofilmes , Hormese , Pseudomonas aeruginosa , Óxido de Zinco , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Óxido de Zinco/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Hormese/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/química , Nanopartículas/química , Fibrose Cística/microbiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Difração de Raios X , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Relação Dose-Resposta a Droga
5.
Nanotechnology ; 35(20)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38330456

RESUMO

This study evaluated the efficacy of phytogenic silver and zinc nanoparticles in improving heat resilience in various wheat varieties. The silver and zinc nanoparticles were synthesized using plant leaf extract and characterized using various techniques. Four wheat varieties (DBW187, Black Wheat, DBW 50, and PBW 621) were subjected to field trials. The random block design was used, and nanoparticles in different concentrations were applied at various growth stages and morphologically, and yield parameters were recorded. UV-vis spectroscopy spectral analysis showed peaks for Ag nanoparticles at 420 nm wavelength and Zn nanoparticles at 240 and 350 nm wavelength, depicting the preliminary confirmation of nanoparticle synthesis. Electron microscopic analysis (TEM and SEM) provided morphological insights and confirmed synthesis of fine-sized particle mostly in a range between 10 and 60 nm. Energy dispersive x-ray analysis confirmed the elemental composition of the synthesized nanoparticles, with Ag and Zn elements detected in their respective samples. It also confirmed the oxide nature of synthesized ZnNPs. Dynamic light scattering analysis provided size distribution profiles, indicating average sizes of approximately 61.8 nm for Ag nanoparticles and 46.5 nm for Zn nanoparticles. The concentrations of Ag and Zn nanoparticles in the samples were found to be 196.3 ppm and 115.14 ppm, respectively, through atomic absorption spectroscopic analysis. Fourier transform infrared spectroscopy analysis revealed characteristic functional groups present in the nanoparticles. The results of field experiments established that Ag nanoparticles at 75 ppm concentration exhibited the most significant enhancements in plant growth. Conversely, Zn nanoparticles at a 100 ppm concentration demonstrated the most substantial improvements in the growth and yield of heat-stressed wheat varieties. The study concludes that optimized concentrations of silver and zinc nanoparticles can effectively improve heat stress resilience in wheat. These findings are promising to enhance abiotic stress resilience in crops.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Resiliência Psicológica , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Triticum , Zinco , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos
6.
Nanotechnology ; 35(33)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38746972

RESUMO

Traditional therapies often struggle with specificity and resistance in case of cancer treatments. It is therefore important to investigate new approaches for cancer treatment based on nanotechnology. Zinc oxide nanoparticles (ZnONPs) are known to exhibit anti-cancer properties by inducing oxidative stress, apoptosis, and cell cycle arrest. Methotrexate (MTX) a known anti-folate shows specificity to folate receptors and interrupts healthy functioning of cells. This study proposes the use of previously characterized biocompatible Methotrexate loaded Zinc oxide nanoparticles (MTX-ZnONPs) as a dual action therapeutic strategy against breast cancer cell lines, MCF-7 (MTX-sensitive) and MDA-MB-231 (MTX-resistant). To elucidate the cytotoxicity mechanism of MTX-ZnONPs an in depthIn vitrostudy was carried out.In vitroassays, including cell cycle analysis, apoptosis assay, and western blot analysis to study the protein expression were performed. Results of these assays, further supported the anti-cancer activity of MTX-ZnONPs showing apoptotic and necrotic activity in MCF-7 and MDA-MB-231 cell line respectively.In vivoacute oral toxicity study to identify the LD50in animals revealed no signs of toxicity and mortality up to 550 mg kg-1body weight of animal, significantly higher LD50values than anticipated therapeutic levels and safety of the synthesized nanosystem. The study concludes that MTX-ZnONPs exhibit anti-cancer potential against breast cancer cells offering a promising strategy for overcoming resistance.


Assuntos
Apoptose , Neoplasias da Mama , Metotrexato , Óxido de Zinco , Metotrexato/farmacologia , Metotrexato/química , Metotrexato/administração & dosagem , Humanos , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Células MCF-7 , Apoptose/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos
7.
Environ Sci Technol ; 58(22): 9875-9886, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38722770

RESUMO

Zinc oxide nanoparticles (ZnO NPs) cause biotoxicity and pose a potential ecological threat; however, their effects on plant metabolism and eco-corona evolution between NPs and organisms remain unclear. This study clarified the molecular mechanisms underlying physiological and metabolic responses induced by three different ZnO NPs with different sizes and hydrophobicity in sprouts (Vigna radiata) and explored the critical regulation of eco-corona formation in root-nano systems. Results indicated that smaller-sized ZnO inhibited root elongation by up to 37.14% and triggered oxidative burst and apoptosis. Metabolomics confirmed that physiological maintenance after n-ZnO exposure was mainly attributed to the effective stabilization of nitrogen fixation and defense systems by biotransformation of the flavonoid pathway. Larger-sized or hydrophobic group-modified ZnO exhibited low toxicity in sprouts, with 0.89-fold upregulation of citrate in central carbon metabolism. This contributed to providing energy for resistance to NP stress through amino acid and carbon/nitrogen metabolism, accompanied by changes in membrane properties. Notably, smaller-sized and hydrophobic NPs intensely stimulated the release of root metabolites, forming corona complexes with exudates. The hydrogen-bonded wrapping mechanism in protein secondary structure and hydrophobic interactions of heterogeneous functional groups drove eco-corona formation, along with the corona evolution intensity of n-ZnO > s-ZnO > b-ZnO based on higher (α-helix + 3-turn helix)/ß-sheet ratios. This study provides crucial insight into metabolic and eco-corona evolution in bionano fates.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Óxido de Zinco , Vigna/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/toxicidade
8.
Biometals ; 37(4): 773-801, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38286956

RESUMO

The resistance of pathogenic microorganisms to antibiotics is one of the main problems of world health. Of particular concern are multidrug-resistant (MDR) bacteria. Infections caused by these microorganisms affect the appearance of acute or chronic diseases. In this regard, modern technologies, such as nanomaterials (NMs), especially promising nanoparticles (NPs), can possess antimicrobial properties or improve the effectiveness and delivery of known antibiotics. Their diversity and characteristics, combined with surface functionalization, enable multivalent interactions with microbial biomolecules. This article presents an overview of the most current research on replacing antibiotics with NPs, including the prospects and risks involved.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana
9.
Bioorg Chem ; 145: 107225, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402797

RESUMO

The study presents a significant advancement in drug delivery and therapeutic efficacy through the successful synthesis of Gliricidia sepium(Jacq.) Kunth. ex. Walp., stem zinc oxide nanoparticles(GSS ZnONPs). The phenolic compounds present in Gliricidia sepium stem (GSS) particularly vanillic acid, apegnin-7-O-glucoside, syringic acid, and p-coumaric acid which were identified by HPLC. These compounds shown antioxidant and anti-inflammatory properties. GSS ZnONPs demonstrate pronounced gastroprotective effects against ethanol-induced gastritis, evidenced by the reduction in gastric lesions and mucosal injury upon its treatment. Histopathological evaluation and immunohistochemical analysis of nuclear factor erythroid 2-related factor 2 (Nrf2) expression further validate these results, revealing the amelioration of ethanol-induced gastritis and improved gastric tissue condition due to their treatment. Noteworthy is the dose-dependent response of GSS ZnONPs, showcasing their efficacy even at lower doses against ethanol-induced gastritis which is confirmed by different biomarkers. These findings have substantial implications for mitigating dosage-related adverse effects while preserving therapeutic benefits, offering a more favorable treatment approach. This study aims to investigate the potential gastroprotective activity of GSS ZnONPs against gastritis.


Assuntos
Gastrite , Úlcera Gástrica , Óxido de Zinco , Ratos , Animais , Etanol , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia
10.
Environ Res ; 252(Pt 3): 119047, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704006

RESUMO

Pharmaceuticals and personal care products (PPCPs) are emerging contaminants in aqueous systems, posing threat to both human health and environment. In prior research, predominant focus has been on examining various adsorbents for removing PPCPs from single-pollutant systems. However, no study has delved into simultaneous adsorption of PPCPs multi-pollutant mixture. This study evaluates performance of Azadirachta indica leaf extract-based green-synthesized ZnO nanoparticles coated on spent tea waste activated carbon (ZTAC) for removing sulfadiazine (SZN) and acetaminophen (ACN). Adsorption investigations were conducted in single-component (ACN/SZN) and binary-component (ACN + SZN) systems. The synthesized ZTAC was characterized using SEM, XRD, FTIR, EDX, porosimetry and pHpzc analysis. The study examines impact of time (1-60 min), dose (0.2-4 g/L), pH (2-12) and PPCPs concentration (1-100 mg/L) on ACN and SZN removal. Various kinetic and isotherm models were employed to elucidate mechanisms involved in sorption of PPCPs. Furthermore, synergistic and antagonistic aspects of sorption process in multi-component system were investigated. ZTAC, characterized by its crystalline nature and surface area of 980.85 m2/g, exhibited maximum adsorption capacity of 47.39 mg/g for ACN and 34.01 mg/g for SZN under optimal conditions of 15 min, 3 g/L and pH 7. Langmuir isotherm and pseudo-second-order kinetic model best-fitted the experimental data indicating chemisorption mechanism. Removal of ACN and SZN on ZTAC demonstrated synergistic nature, signifying cooperative adsorption. Overall, valorization of ZTAC offers effective and efficient adsorbent for elimination of PPCPs from wastewater.


Assuntos
Azadirachta , Extratos Vegetais , Folhas de Planta , Poluentes Químicos da Água , Óxido de Zinco , Azadirachta/química , Óxido de Zinco/química , Extratos Vegetais/química , Folhas de Planta/química , Adsorção , Poluentes Químicos da Água/química , Carvão Vegetal/química , Cosméticos/química , Preparações Farmacêuticas/química , Química Verde/métodos , Chá/química , Nanopartículas Metálicas/química
11.
Environ Res ; 258: 119450, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901812

RESUMO

The fruit Pyrus communis, owing to its presence of phenolics and flavonoids, was chosen for its nanoparticle's reducing and stabilizing properties. Furthermore, the zinc metal may be nano-absorbed by the human body. As a result, the study involves synthesizing zinc oxide nanoparticles (ZnO NPs) from P. communis fruit extract using the green method. The synthesized nanoparticle was examined with a UV-visible spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Dynamic Light Scattering (DLS). When absorption studies were performed with a UV-visible spectrophotometer, the nanoparticle exhibited a blue shift. The FTIR spectrum revealed the molecular groups present in both the fruit extract and metal. In the SEM analysis, the ZnO NPs appeared as spherical particles, agglomerated together, and of nano-size. The larger size of the ZnO NPs in DLS can be attributed to their ability to absorb water. After characterization, nanoparticles were tested for anti-diabetic (α-amylase and yeast glucose uptake activity) and anti-microbial properties. The α-amylase inhibition percentage was 46.46 ± 0.15% for 100 µg/mL, which was comparable to the acarbose inhibition percentage of 50.58 ± 0.67% at the same concentration. The yeast glucose uptake activity was 64.24 ± 0.80% at 20 mM glucose concentration, which was comparable to the standard of 78.03 ± 0.80. The nanoparticle was more effective against Gram-negative bacteria Shigella sp. and Salmonella typhi than against Gram-positive bacteria Bacillus cereus and Streptococcus pneumoniae.


Assuntos
Frutas , Hipoglicemiantes , Nanopartículas Metálicas , Extratos Vegetais , Pyrus , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Frutas/química , Nanopartículas Metálicas/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Pyrus/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Testes de Sensibilidade Microbiana
12.
BMC Vet Res ; 20(1): 137, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575964

RESUMO

OBJECTIVES: Fasciolosis is of significant economic and public health importance worldwide. The lack of a successful vaccine and emerging resistance in flukes to the drug of choice, triclabendazole, has initiated the search for alternative approaches. In recent years, metallic nanoparticles have been extensively investigated for their anthelmintic effects. This study investigates the in vitro anthelmintic activity of copper oxide and zinc oxide nanoparticles against Fasciola hepatica. METHODS: The in vitro study was based on egg hatchability test (EHA), adult motility inhibition tests, DNA damage, ROS levels, as well as several biomarkers of oxidative stress, including glutathione peroxidase (GSH) and glutathione S-transferase (GST), superoxide dismutase (SOD) and malondialdehyde (MDA). For this purpose, different concentrations of copper oxide nanoparticles (CuO-NPs) and Zinc oxide nanoparticles (ZnO-NPs) (1, 4, 8, 12, and 16 ppm) were used to evaluate the anthelmintic effect on different life stages, including egg and adults of Fasciola hepatica, over 24 h. RESULTS: In vitro treatment of F. hepatica worms with both CuO-NPs and ZnO-NPs could significantly increase ROS production and oxidative stress induction (decreased SOD, GST and GSH and increased MDA) compared to control group. CONCLUSIONS: Based on the results, it seems that CuO-NPs and ZnO-NPs may be effective in the control and treatment of F. hepatica infection. Further research is needed to investigate their potential for in vivo use in the treatment of parasitic infections.


Assuntos
Anti-Helmínticos , Fasciola hepatica , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais , Óxido de Zinco/farmacologia , Cobre/farmacologia , Espécies Reativas de Oxigênio , Estresse Oxidativo , Anti-Helmínticos/farmacologia , Dano ao DNA , Superóxido Dismutase/metabolismo , Biomarcadores
13.
J Nanobiotechnology ; 22(1): 312, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840221

RESUMO

Zinc oxide nanoparticles (ZNPs) are widely used in sunscreens and nanomedicines, and it was recently confirmed that ZNPs can penetrate stratum corneum into deep epidermis. Therefore, it is necessary to determine the impact of ZNPs on epidermis. In this study, ZNPs were applied to mouse skin at a relatively low concentration for one week. As a result, desmosomes in epidermal tissues were depolymerized, epidermal mechanical strain resistance was reduced, and the levels of desmosomal cadherins were decreased in cell membrane lysates and increased in cytoplasmic lysates. This finding suggested that ZNPs promote desmosomal cadherin endocytosis, which causes desmosome depolymerization. In further studies, ZNPs were proved to decrease mammalian target of rapamycin complex 1 (mTORC1) activity, activate transcription factor EB (TFEB), upregulate biogenesis of lysosome-related organelle complex 1 subunit 3 (BLOC1S3) and consequently promote desmosomal cadherin endocytosis. In addition, the key role of mTORC1 in ZNP-induced decrease in mechanical strain resistance was determined both in vitro and in vivo. It can be concluded that ZNPs reduce epidermal mechanical strain resistance by promoting desmosomal cadherin endocytosis via the mTORC1-TFEB-BLOC1S3 axis. This study helps elucidate the biological effects of ZNPs and suggests that ZNPs increase the risk of epidermal fragmentation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Caderinas , Endocitose , Epiderme , Alvo Mecanístico do Complexo 1 de Rapamicina , Óxido de Zinco , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Endocitose/efeitos dos fármacos , Camundongos , Caderinas/metabolismo , Epiderme/metabolismo , Epiderme/efeitos dos fármacos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Desmossomos/metabolismo , Nanopartículas/química , Estresse Mecânico
14.
Food Microbiol ; 122: 104559, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839223

RESUMO

Listeria monocytogenes is a concerning foodborne pathogen incriminated in soft cheese and meat-related outbreaks, highlighting the significance of applying alternative techniques to control its growth in food. In the current study, eco-friendly zinc oxide nanoparticles (ZnO-NPs) were synthesized using Rosmarinus officinalis, Punica granatum, and Origanum marjoram extracts individually. The antimicrobial efficacy of the prepared ZnO-NPs against L. monocytogenes was assessed using the agar well diffusion technique. Data indicated that ZnO-NPs prepared using Origanum marjoram were the most effective; therefore, they were used for the preparation of gelatin-based bionanocomposite coatings. Furthermore, the antimicrobial efficacy of the prepared gelatin-based bionanocomposite coatings containing eco-friendly ZnO-NPs was evaluated against L. monocytogenes in Talaga cheese (an Egyptian soft cheese) and camel meat during refrigerated storage at 4 ± 1 oC. Talaga cheese and camel meat were inoculated with L. monocytogenes, then coated with gelatin (G), gelatin with ZnO-NPs 1% (G/ZnO-NPs 1%), and gelatin with ZnO-NPs 2% (G/ZnO-NPs 2%). Microbiological examination showed that the G/ZnO-NPs 2% coating reduced L. monocytogenes count in the coated Talaga cheese and camel meat by 2.76 ± 0.19 and 2.36 ± 0.51 log CFU/g, respectively, by the end of the storage period. Moreover, G/ZnO-NPs coatings controlled pH changes, reduced water losses, and improved the sensory characteristics of Talaga cheese and camel meat, thereby extending their shelf life. The obtained results from this study indicate that the application of gelatin/ZnO-NPs 2% bionanocomposite coating could be used in the food industry to control L. monocytogenes growth, improve quality, and extend the shelf life of Talaga cheese and camel meat.


Assuntos
Camelus , Queijo , Armazenamento de Alimentos , Gelatina , Listeria monocytogenes , Nanocompostos , Óxido de Zinco , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Queijo/microbiologia , Gelatina/química , Gelatina/farmacologia , Animais , Nanocompostos/química , Conservação de Alimentos/métodos , Carne/microbiologia , Microbiologia de Alimentos , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Punica granatum/química , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Rosmarinus/química , Refrigeração , Extratos Vegetais/farmacologia , Extratos Vegetais/química
15.
Ecotoxicol Environ Saf ; 281: 116616, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917589

RESUMO

The urgent need to address the severe environmental risk posed by chromium-contaminated industrial wastewater necessitates the development of eco-friendly cleanup methodologies. Utilizing the Ficus benghalensis plant extracts, the present study aims to develop green zinc oxide nanoparticles for the removal of Cr metal ions from wastewater. The leaves of Ficus benghalensis, often known as the banyan tree, were used to extract a solution for synthesizing ZnO NPs. These nanoparticles were developed with the goal of efficiently eliminating chromium (Cr) from industrial effluents. Batch studies were carried out to assess the efficiency of these synthesized ZnO NPs in treating leather industrial effluent, with aiming for optimal chromium removal. This involved measuring the nanoparticles' capacity to adsorb Cr ions from wastewater samples by comparing chromium levels before and after treatment. Removal efficiency for Cr was estimated through the batches such as optimization of pH, contact time, initial Cr concentration and sorbent dose of ZnO NPs were of the batches. These synthesized ZnO NPs were found to be successful in lowering chromium levels in wastewater to meet permissible limit. The nanoparticles exhibited their highest absorption capacity, reaching 94 % (46 mg/g) at pH 4, with a contact time of 7 hours with the optimum sorbent dose of 0.6 g/L. Hence, the excellent adsorption capabilities of these nanoparticles, together with their environmentally benign manufacturing technique, provide a long-term and efficient solution for chromium-contaminated wastewater treatment. Its novel nature has the potential to significantly improve the safety and cleanliness of water ecosystems, protecting the both i.e. human health and the environment.


Assuntos
Cromo , Ficus , Química Verde , Extratos Vegetais , Águas Residuárias , Poluentes Químicos da Água , Óxido de Zinco , Óxido de Zinco/química , Ficus/química , Cromo/análise , Cromo/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Extratos Vegetais/química , Química Verde/métodos , Resíduos Industriais/análise , Adsorção , Nanopartículas Metálicas/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Nanopartículas/química , Folhas de Planta/química
16.
Ultrastruct Pathol ; 48(1): 42-55, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38085153

RESUMO

Recent advancements in nanotechnology has opened up enormous possibilities in diverse sectors such as industries, agriculture, environmental remediation, electronics, medicine and varied industries. Among metal oxide nanoparticles zinc oxide nanoparticles has gained considerable attention due to their fascinating physiochemical properties. Rapid growth in the use of zinc oxide nanoparticles (ZnONPs) in daily household products, food and feed additives, biological products, medicine, as antimicrobial agents, electronics and agriculture, creates serious toxic potential risks of these engineered nanoparticles on living organisms. The aim of present study was to assess the effects of synthesized chemical ZnONPs and green ZnONPs on testicular tissue of Capra hircus (goat) in vitro. The reproductive stress was analyzed by ultrastructural damage, change in frequency of apoptotic cells and alteration in steroidogenic enzyme activity. The transmission electron micrographs of testicular cells after treatment with chemical and green ZnONPs at three doses (10 µg/ml, 20 µg/ml and 30 µg/ml) for exposure duration 4 h and 8 h illustrated that chemical nanoparticles induced more alterations, identified as ruptured nuclear membrane, condensation and margination of chromatin material in somatic cells and germ cells in the seminiferous tubules, presence of apoptotic bodies in nucleus of spermatocytes and spermatids, reduction in number of cell organelles, vacuolization and hyalinization of cytoplasm. Maximum damage was observed after treatment of testicular tissues with 30 µg/ml of chemical ZnONPs for 8 h exposure duration. However, the green ZnONPs were found to be less toxic as evidenced by few apoptotic characteristics in testicular cells. The results of fluorescence assay by acridine orange staining showed significant increase in the percentage of apoptotic cells in chemical treated groups as compared to green and control groups. Decreased enzyme activity of 3ß-Hydroxysteroid dehydrogenase and 17ß-Hydroxysteroid dehydrogenase was assayed in chemical ZnONPs than green ZnONPs treated groups. Our results confirm that chemical ZnONPs are significantly more toxic in comparison to green ZnONPs and adversely affects the male fertility.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Masculino , Animais , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Testículo , Cabras , Nanopartículas/toxicidade , Nanopartículas/química , Nanopartículas Metálicas/toxicidade
17.
Bioprocess Biosyst Eng ; 47(8): 1163-1182, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38491194

RESUMO

Alternanthera sessilis (AS) leaf extract was used to synthesize zinc oxide nanoparticles (ZnO NPs). Bioanalytical characterization techniques such as X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) confirmed the formation of crystalline ZnO NPs with average sizes of 40 nm. The AS-ZnO NPs antimicrobial activity was analyzed under dark (D) and white light (WL) conditions. The improved antimicrobial activity was observed against Escherichia coli, Staphylococcus aureus and Bacillus subtilis at the minimal inhibitory concentration (MIC) of 125 and 62.5 µg/mL under WL than the D at 125 and 250 µg/mL for E. coli, B. subtilis, and Pseudomonas aeruginosa, respectively. In contrast, the growth of P. aeruginosa and S. aureus was not completely inhibited until 1 mg/mL AS-ZnO NPs under WL and D. Similarly, AS-ZnO NPs displayed a weaker inhibitory effect against carbapenem-sensitive P. aeruginosa (CSPA) and carbapenem-resistant P. aeruginosa (CRPA) strains of PAC023, PAC041 and PAC032, PAC045 under D. Interestingly, the distinct inhibitory effect was recorded against CSPA PAC041 and CRPA PAC032 in which the bacteria growth was inhibited 99.9% at 250, 500 µg/mL under WL. The cytotoxicity results suggested AS-ZnO NPs demonstrated higher toxicity to MCF-7 breast cancer cells than the RAW264.7 macrophage cells. Further, AS-ZnO NPs exhibited higher catalytic potential against tetracycline hydrochloride (TC-H) degradation at 65.6% and 60.8% under WL than the dark at 59.35% and 48.6% within 120 min. Therefore, AS-ZnO NPs can be used to design a photo-improved antimicrobial formulation and environmental catalyst for removing TC-H from wastewater.


Assuntos
Antineoplásicos , Pseudomonas aeruginosa , Tetraciclina , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Tetraciclina/farmacologia , Tetraciclina/química , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanopartículas Metálicas/química , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Farmacorresistência Bacteriana , Células RAW 264.7 , Nanopartículas/química
18.
Bioprocess Biosyst Eng ; 47(8): 1259-1269, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38526617

RESUMO

This study emphasized on the synthesis of zinc oxide nanoparticles (ZnO NPs) in an environmentally friendly manner from the extract of Catharanthus roseus leaves and its antibacterial assessment against the pneumonia-causing pathogen Klebsiella pneumoniae. This simple and convenient phytosynthesis approach is found to be beneficial over conventional methods, wherein plants serve as excellent reducing, capping, and stabilizing agents that enables the formation of ZnO NPs without the use of harmful chemicals. The formation of ZnO NPs was confirmed through several characterization techniques such as UV-visible spectroscopy, XRD, FT-IR, SEM, HR-TEM, and EDX. XRD analysis revealed high polycrystallinity with crystallite size of approximately 13 nm. SEM and HR-TEM revealed the hexagonal structure of ZnO NPs with the particle size range of 20-50 nm. The EDX shows the elemental purity without any impurity. Furthermore, the antibacterial efficacy by the technique of disc diffusion exhibited clear inhibition zones in ZnO NPs-treated discs. In addition, 125 µg/mL of ZnO NP concentration showed minimum inhibition by the microbroth dilution method. The potent inhibitory activity was further validated with trypan blue dye exclusion and fluorescence microscopy. Finally, SEM examination confirmed the efficient antibacterial potential of ZnO NPs through disruption of the intact morphology of Klebsiella pneumoniae.


Assuntos
Antibacterianos , Catharanthus , Klebsiella pneumoniae , Nanopartículas Metálicas , Óxido de Zinco , Klebsiella pneumoniae/efeitos dos fármacos , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Catharanthus/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Difração de Raios X
19.
Bioprocess Biosyst Eng ; 47(8): 1393-1407, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942827

RESUMO

The most prevalent form of inflammatory bowel disease (IBD), ulcerative colitis (UC), is characterized by persistent inflammation of the colorectal mucosa. It is asymptomatic, whereas Crohn's disease (CD) causes patchy lesions in the gastrointestinal tract. Men and women suffer equally from ulcerative colitis, which usually strikes in the second and third decades of life and becomes more common in senior citizens. In the present study, we produced zinc oxide nanoparticles using the natural herbal plant, Cassia alata. Zinc oxide nanoparticles have remarkable antimicrobial and antitumor benefits in the field of biomedical science. Furthermore, the synthesized zinc oxide nanoparticles (ZnO NPs) were characterized using UV, XRD, FTIR, and SEM analyses. The XRD analysis confirmed the crystallite nature and purity of the synthesized nanoparticles. Zinc oxide nanoparticles with a uniform size and partially agglomerated morphology were verified by SEM analysis. We investigated the protective effects of environmentally friendly zinc oxide nanoparticles in dextran sodium sulfate-induced ulcerative colitis mouse models. Green synthesized Cassia alata zinc oxide nanoparticles (CA ZnO NPs) reversed weight loss, disease activity index, colon shortening, and colon histological damage. Zinc oxide nanoparticles reduce hypersensitivity, oxidative stress, and inflammation, and protect the mucosal layer. Green synthesized CA ZnO NPs demonstrated protection against dextran sodium sulfate-induced ulcerative colitis via anti-inflammatory activity.


Assuntos
Cassia , Colite Ulcerativa , Sulfato de Dextrana , Modelos Animais de Doenças , Nanopartículas Metálicas , Óxido de Zinco , Animais , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Camundongos , Cassia/química , Nanopartículas Metálicas/química , Nanopartículas/química , Masculino , Extratos Vegetais/química , Extratos Vegetais/farmacologia
20.
Cell Tissue Bank ; 25(1): 167-185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37103688

RESUMO

Mesenchymal stem cells with tissue repair capacity involve in regenerative medicine. MSCs can promote bone repair when employed with nano scaffolds/particles. Here, the MTT and Acridine Orange assay enabled the cytotoxic concentration of Zinc oxide nanoparticles and Polyurethane evaluation. Following culturing adipose tissue-derived MSCs, ADSCs' proliferation, growth, and osteogenic differentiation in the presence of PU with and without ZnO NPs is tracked by a series of biological assays, including Alkaline Phosphatase activity, Calcium deposition, alizarin red staining, RT-PCR, scanning electron microscope, and immunohistochemistry. The results showed boosted osteogenic differentiation of ADSCs in the presence of 1% PU scaffold and ZnO NPS and can thus apply as a new bone tissue engineering matrix. The expression level of Osteonectin, Osteocalcin, and Col1 increased in PU-ZnO 1% on the 7th and 14th days. There was an increase in the Runx2 gene expression on the 7th day of differentiation in PU-ZnO 1%, while it decreased on day 14th. In conclusion, Polyurethane nano scaffolds supported the MSCs' growth and rapid osteogenic differentiation. The PU-ZnO helps not only with cellular adhesion and proliferation but also with osteogenic differentiation.


Assuntos
Células-Tronco Mesenquimais , Nanocompostos , Nanopartículas , Óxido de Zinco , Osteogênese , Óxido de Zinco/farmacologia , Óxido de Zinco/metabolismo , Alicerces Teciduais , Poliuretanos , Diferenciação Celular , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA