Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104706, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37061000

RESUMO

Learning, memory, and cognition are thought to require synaptic plasticity, specifically including hippocampal long-term potentiation and depression (LTP and LTD). LTP versus LTD is induced by high-frequency stimulation versus low-frequency, but stimulating ß-adrenergic receptors (ßARs) enables LTP induction also by low-frequency stimulation (1 Hz) or theta frequencies (∼5 Hz) that do not cause plasticity by themselves. In contrast to high-frequency stimulation-LTP, such ßAR-LTP requires Ca2+-flux through L-type voltage-gated Ca2+-channels, not N-methyl-D-aspartate-type glutamate receptors. Surprisingly, we found that ßAR-LTP still required a nonionotropic scaffolding function of the N-methyl-D-aspartate-type glutamate receptor: the stimulus-induced binding of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) to its GluN2B subunit that mediates CaMKII movement to excitatory synapses. In hippocampal neurons, ß-adrenergic stimulation with isoproterenol (Iso) transformed LTD-type CaMKII movement to LTP-type movement, resulting in CaMKII movement to excitatory instead of inhibitory synapses. Additionally, Iso enabled induction of a major cell-biological feature of LTP in response to LTD stimuli: increased surface expression of GluA1 fused with super-ecliptic pHluorein. Like for ßAR-LTP in hippocampal slices, the Iso effects on CaMKII movement and surface expression of GluA1 fused with super-ecliptic pHluorein involved L-type Ca2+-channels and specifically required ß2-ARs. Taken together, these results indicate that Iso transforms LTD stimuli to LTP signals by switching CaMKII movement and GluN2B binding to LTP mode.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Potenciação de Longa Duração , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Receptores Adrenérgicos beta/metabolismo , Ácido D-Aspártico/metabolismo , Ácido D-Aspártico/farmacologia , Depressão Sináptica de Longo Prazo/fisiologia , Hipocampo/metabolismo , Sinapses/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
2.
J Neurochem ; 166(3): 534-546, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37332201

RESUMO

The neuroinflammatory process characterizing multiple sclerosis (MS) is associated with changes in excitatory synaptic transmission and altered central concentrations of the primary excitatory amino acid, L-glutamate (L-Glu). Recent findings report that cerebrospinal fluid (CSF) levels of L-Glu positively correlate with pro-inflammatory cytokines in MS patients. However, to date, there is no evidence about the relationship between the other primary excitatory amino acid, L-aspartate (L-Asp), its derivative D-enantiomer, D-aspartate, and the levels of pro-inflammatory and anti-inflammatory cytokines in the CSF of MS. In the present study, we measured by HPLC the levels of these amino acids in the cortex, hippocampus, cerebellum, and spinal cord of mice affected by experimental autoimmune encephalomyelitis (EAE). Interestingly, in support of glutamatergic neurotransmission abnormalities in neuroinflammatory conditions, we showed reduced L-Asp levels in the cortex and spinal cord of EAE mice and increased D-aspartate/total aspartate ratio within the cerebellum and spinal cord of these animals. Additionally, we found significantly decreased CSF levels of L-Asp in both relapsing-remitting (n = 157) MS (RR-MS) and secondary progressive/primary progressive (n = 22) (SP/PP-MS) patients, compared to control subjects with other neurological diseases (n = 40). Importantly, in RR-MS patients, L-Asp levels were correlated with the CSF concentrations of the inflammatory biomarkers G-CSF, IL-1ra, MIP-1ß, and Eotaxin, indicating that the central content of this excitatory amino acid, as previously reported for L-Glu, reflects a neuroinflammatory environment in MS. In keeping with this, we revealed that CSF L-Asp levels were positively correlated with those of L-Glu, highlighting the convergent variation of these two excitatory amino acids under inflammatory synaptopathy occurring in MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/metabolismo , Ácido Aspártico/líquido cefalorraquidiano , Ácido D-Aspártico/metabolismo , Medula Espinal/metabolismo , Encéfalo/metabolismo , Transmissão Sináptica , Aminoácidos Excitatórios/metabolismo , Ácido Glutâmico/metabolismo , Citocinas/metabolismo
3.
J Neurovirol ; 29(3): 358-363, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37171751

RESUMO

Hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide. In rare cases, HEV may generate neurologic lesions such as neuralgic amyotrophy, Guillain-Barré syndrome, and meningoencephalitis. Thirteen cases of HEV meningoencephalitis have been reported over 20 years. The clinical landscape varied from mild symptoms to coma and seizures. Most of patients were immunocompetent adults and spontaneously recovered. We report here the case of a 44-year-old immunocompetent adult with HEV meningoencephalitis presenting with aggressiveness and then coma. The evolution was spontaneously favorable without any specific treatment. This clinical case aims to draw attention on this emerging and probably under-recognized cause of meningoencephalitis.


Assuntos
Encefalite , Vírus da Hepatite E , Hepatite E , Meningoencefalite , Raiva , Adulto , Humanos , Anticorpos , Coma , Confusão , Ácido D-Aspártico , Hepatite E/diagnóstico
4.
Arch Biochem Biophys ; 750: 109809, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37925062

RESUMO

Amino acids exist in two chiral forms, namely L and D. Although l-amino acids are predominant in vivo, certain limited circumstances have reported the usage of d-amino acids. d-aspartate (Asp), among them, plays crucial physiological roles in living organisms and is biosynthesized from L-Asp by the enzyme named aspartate racemase (AspRase). D-Asp is known to accumulate in large amounts in the nervous system of cephalopods. To understand the function of D-Asp in nervous system in more detail, it is necessary to elucidate its metabolic pathway; however, AspRase gene has not been identified in cephalopods as in the case of mammals. In this study, we successfully identified a novel gene encoding AspRase from the optic ganglion of Japanese common squid Todarodes pacificus. Our discovery of the squid AspRase challenges the prevailing assumption that AspRases across different animals share similar structures. Surprisingly, the squid AspRase is a unique enzyme that differs significantly from known AspRases, being structurally and phylogenetically related to aspartate aminotransferase (AST) and possessing both AspRase and AST activities. The optimum pH and temperature for AspRase activity using L-Asp as a substrate are approximately 7.0 and 20 °C, respectively. Moreover, we have found that AspRase activity is enhanced in the presence of 2-oxoacids. These findings have far-reaching implications for the understanding of enzymology and suggest that yet-to-be-identified mammalian AspRases may also be phylogenetically related to AST, rather than conventional AspRases. Furthermore, our results provide valuable insights into the evolution of the D-Asp biosynthetic pathway.


Assuntos
Ácido D-Aspártico , Decapodiformes , Animais , Aminoácidos , Decapodiformes/genética
5.
Int J Legal Med ; 137(2): 437-443, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36648544

RESUMO

Age-at-death estimation is of great relevance for the identification of unknown deceased individuals. In skeletonised corpses, teeth and bones are theoretically available for age estimation, but in many cases, only single bones or even only bone fragments are available for examination. In these cases, conventional morphological methods may not be applicable, and the application of molecular methods may be considered. Protein-based molecular methods based on the D-aspartic acid (D-Asp) or pentosidine (Pen) content have already been successfully applied to bone samples. However, the impact of the analysed type of bone has not yet been systematically investigated, and it is still unclear whether data from samples of one skeletal region (e.g. skull) can also be used for age estimation for samples of other regions (e.g. femur). To address this question, D-Asp and Pen were analysed in bone samples from three skeletal regions (skull, clavicle, and rib), each from the same individual. Differences between the bone types were tested by t-test, and correlation coefficients (ρ) were calculated according to Spearman. In all types of bone, an age-dependent accumulation of D-Asp and Pen was observed. However, both parameters (D-Asp and Pen) exhibited significant differences between bone samples from different anatomical regions. These differences can be explained by differences in structure and metabolism in the examined bone types and have to be addressed in age estimation based on D-Asp and Pen. In future studies, bone type-specific training and test data have to be collected, and bone type-specific models have to be established.


Assuntos
Ácido D-Aspártico , Fraturas Ósseas , Humanos , Ácido D-Aspártico/análise , Proteínas , Crânio , Cadáver
6.
Acta Radiol ; 64(2): 760-768, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35532900

RESUMO

BACKGROUND: Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis secondary to central nervous system (CNS) infection is a unique subtype of the autoimmune-mediated disease, of which the imaging features are unclear. PURPOSE: To compare the brain magnetic resonance imaging (MRI) features between the anti-NMDAR encephalitis secondary to CNS infection and that without initial infection. MATERIAL AND METHODS: A total of 70 adult patients with anti-NMDAR encephalitis were retrospectively enrolled (24 in the post-infection group, 46 in the non-infection-related group). Their clinical and imaging features (lesion distribution, lesion shape, enhancement pattern, brain atrophy) were reviewed and summarized. Lesion distributions were compared between the two groups on lesion probability maps. RESULTS: The patients with normal brain MRI scans in the post-infection group were less than those in the non-infection related group (29% vs. 63%; P = 0.0113). Among the 24 patients in the post-infection group, visible lesions were shown at the anti-NMDAR encephalitis onset in 17 patients; lesion distribution was more diffuse than the non-infection-related group, showing higher lesion peak probabilities in the bilateral hippocampus, frontal lobe, temporal lobe, insula, and cingulate. The lesions with contrast enhancement were also more common in the post-infection group than the non-infection-related group (7/13 vs. 2/10). Brain atrophy was observed in eight patients in the post-infection group and three in the non-infection-related group. CONCLUSION: Anti-NMDAR encephalitis secondary to CNS infection has its imaging features-extensive lesion distribution, leptomeningeal enhancement, early atrophy, and necrosis-that could deepen the understanding of the pathophysiology and manifestation of the autoimmune encephalitis besides the classic type.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Infecções do Sistema Nervoso Central , Humanos , Adulto , Encefalite Antirreceptor de N-Metil-D-Aspartato/complicações , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico por imagem , Encefalite Antirreceptor de N-Metil-D-Aspartato/patologia , Ácido D-Aspártico , Estudos Retrospectivos , Ácido Aspártico , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Infecções do Sistema Nervoso Central/complicações , Infecções do Sistema Nervoso Central/patologia , Atrofia/complicações , Atrofia/patologia
7.
J Dairy Sci ; 106(3): 1533-1548, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36710180

RESUMO

A growing stream of research suggests that probiotic fermented milk has a good effect on nonalcoholic fatty liver disease. This work aimed to study the beneficial effects of Lactobacillus rhamnosus hsryfm 1301 fermented milk (fermented milk) on rats with nonalcoholic fatty liver disease induced by a high-fat diet. The results showed that the body weight and the serum levels of total cholesterol, total glyceride, low-density lipoprotein, alanine transaminase, aspartate aminotransferase, free fatty acid, and reactive oxygen species were significantly increased in rats fed a high-fat diet (M) for 8 wk, whereas high-density lipoprotein cholesterol and superoxide dismutase were significantly decreased. However, the body weight and the serum levels of total cholesterol, total glyceride, alanine transaminase, aspartate aminotransferase, free fatty acid, reactive oxygen species, interleukin-8, tumor necrosis factor-α, and interleukin-6 were significantly decreased with fermented milk (T) for 8 wk, and the number of fat vacuoles in hepatocytes was lower than that in the M group. There were significant differences in 19 metabolites in serum between the M group and the C group (administration of nonfermented milk) and in 17 metabolites between the T group and the M group. The contents of 7 different metabolites, glycine, glycerophosphocholine, 1,2-dioleoyl-sn-glycero-3-phosphocholine, thioetheramide-PC, d-aspartic acid, oleic acid, and l-glutamate, were significantly increased in the M group rat serum, and l-palmitoyl carnitine, N6-methyl-l-lysine, thymine, and 2-oxadipic acid were significantly decreased. In the T group rat serum, the contents of 8 different metabolites-1-O-(cis-9-octadecenyl)-2-O-acetyl-sn-glycero-3-phosphocholine, acetylcarnitine, glycine, glycerophosphocholine, 1,2-dioleoyl-sn-glycero-3-phosphocholine, d-aspartic acid, oleic acid, and l-glutamate were significantly decreased, whereas creatinine and thymine were significantly increased. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that 50 metabolic pathways were enriched in the M/C group and T/M group rat serum, of which 12 metabolic pathways were significantly different, mainly distributed in lipid metabolism, amino acid, and endocrine system metabolic pathways. Fermented milk ameliorated inflammation, oxygenation, and hepatocyte injury by regulating lipid metabolism, amino acid metabolic pathways, and related metabolites in the serum of rats with nonalcoholic fatty liver disease.


Assuntos
Lacticaseibacillus rhamnosus , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/veterinária , Leite/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Alanina Transaminase , Ácido Glutâmico , Ácido D-Aspártico/metabolismo , Ácido D-Aspártico/farmacologia , Ácido Oleico/metabolismo , Timina/metabolismo , Timina/farmacologia , Glicerídeos/metabolismo , Glicerídeos/farmacologia , Aspartato Aminotransferases , Peso Corporal , Glicina/metabolismo , Glicina/farmacologia , Colesterol/metabolismo , Dieta Hiperlipídica , Fígado/metabolismo
8.
Ecotoxicol Environ Saf ; 259: 115067, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244200

RESUMO

Cadmium (Cd), by producing oxidative stress and acting as an endocrine disruptor, is known to cause severe testicular injury, documented by histological and biomolecular alterations, such as decreased serum testosterone (T) level and impairment of spermatogenesis. This is the first report on the potential counteractive/preventive action of D-Aspartate (D-Asp), a well-known stimulator of T biosynthesis and spermatogenesis progression by affecting hypothalamic-pituitary-gonadal axis, in alleviating Cd effects in the rat testis. Our results confirmed that Cd affects testicular activity, as documented by the reduction of serum T concentration and of the protein levels of steroidogenesis (StAR, 3ß-HSD, and 17ß-HSD) and spermatogenesis (PCNA, p-H3, and SYCP3) markers. Moreover, higher protein levels of cytochrome C and caspase 3, together with the number of cells positive to TUNEL assay, indicated the intensification of the apoptotic process. D-Asp administered either simultaneously to Cd, or for 15 days before the Cd-treatment, reduced the oxidative stress induced by the metal, alleviating the consequent harmful effects. Interestingly, the preventive action of D-Asp was more effective than its counteractive effect. A possible explanation is that giving D-Asp for 15 days induces its significant uptake in the testes, reaching the concentrations necessary for optimum function. In summary, this report highlights, for the first time, the beneficial role played by D-Asp in both counteracting/preventing the adverse Cd effects in the rat testis, strongly encouraging further investigations to consider the potential value of D-Asp also in improving human testicular health and male fertility.


Assuntos
Cádmio , Testículo , Ratos , Humanos , Animais , Masculino , Cádmio/metabolismo , Ácido D-Aspártico/farmacologia , Ácido D-Aspártico/metabolismo , Espermatogênese , Estresse Oxidativo , Testosterona
9.
Appl Environ Microbiol ; 88(15): e0088322, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862682

RESUMO

The regulated uptake and consumption of d-amino acids by bacteria remain largely unexplored, despite the physiological importance of these compounds. Unlike other characterized bacteria, such as Escherichia coli, which utilizes only l-Asp, Acinetobacter baylyi ADP1 can consume both d-Asp and l-Asp as the sole carbon or nitrogen source. As described here, two LysR-type transcriptional regulators (LTTRs), DarR and AalR, control d- and l-Asp metabolism in strain ADP1. Heterologous expression of A. baylyi proteins enabled E. coli to use d-Asp as the carbon source when either of two transporters (AspT or AspY) and a racemase (RacD) were coexpressed. A third transporter, designated AspS, was also discovered to transport Asp in ADP1. DarR and/or AalR controlled the transcription of aspT, aspY, racD, and aspA (which encodes aspartate ammonia lyase). Conserved residues in the N-terminal DNA-binding domains of both regulators likely enable them to recognize the same DNA consensus sequence (ATGC-N7-GCAT) in several operator-promoter regions. In strains lacking AalR, suppressor mutations revealed a role for the ClpAP protease in Asp metabolism. In the absence of the ClpA component of this protease, DarR can compensate for the loss of AalR. ADP1 consumed l- and d-Asn and l-Glu, but not d-Glu, as the sole carbon or nitrogen source using interrelated pathways. IMPORTANCE A regulatory scheme was revealed in which AalR responds to l-Asp and DarR responds to d-Asp, a molecule with critical signaling functions in many organisms. The RacD-mediated interconversion of these isomers causes overlap in transcriptional control in A. baylyi. Our studies improve understanding of transport and regulation and lay the foundation for determining how regulators distinguish l- and d-enantiomers. These studies are relevant for biotechnology applications, and they highlight the importance of d-amino acids as natural bacterial growth substrates.


Assuntos
Acinetobacter , Regulação Bacteriana da Expressão Gênica , Acinetobacter/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Ácido D-Aspártico/genética , Ácido D-Aspártico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Nitrogênio/metabolismo , Peptídeo Hidrolases/metabolismo
10.
Mol Biol Rep ; 49(7): 5821-5829, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35716284

RESUMO

BACKGROUND: Peri-implantitis is the main cause of dental implant failure, which is associated with pyroptosis. The roles of D-aspartic acid (D-Asp) on pyroptosis and the mechanism of the protective effect of D-Asp on human gingival fibroblasts (HGFs) remain unknown. This study investigated the effects of D-Asp on the pyroptosis of HGFs induced by high mobility group box 1 protein (HMGB1). METHODS: The cytotoxic effects of D-Asp on HGFs was detected by Cell Counting Kit-8 assay, the membrane permeability was investigated by propidium iodide/ Hoechst 33,342 double staining, flow cytometry analysis, and lactate dehydrogenase releasing, The gene and protein expression levels were detected by real-time quantitative PCR, enzyme-linked immunosorbent assay, and Western blot, respectively. RESULTS: Cell viability analysis showed that D-Asp ≤ 30 mM had no cytotoxicity to HGFs. HMGB1 drastically raised the membrane permeability of HGFs, while 1/10/30 mM D-Asp suppressed the permeability and remained the integrity of the membrane. HMGB1 promoted the mRNA expression of NLRP3, caspase-1, GSDMD, IL-1ß, and IL-18, and the protein expression of IL-1ß, IL-18, caspase-1, GSDMD, and NLRP3. CONCLUSIONS: With the pretreatment of HGFs with D-Asp of 1/10/30 mM for 24 h, the cell membrane permeability was reduced and the expression of NLRP3, caspase-1, GSDMD, IL-1ß, and IL-18 was significantly decreased compared with the HMGB1 group, indicating the competitive antagonism of D-Asp against HMGB1 on the binding with toll-like receptors. Hence, this study may provide a novel insight into preventing pyroptosis and propose a new strategy for the treatment of peri-implantitis.


Assuntos
Proteína HMGB1 , Peri-Implantite , Caspase 1/metabolismo , Ácido D-Aspártico/farmacologia , Fibroblastos/metabolismo , Proteína HMGB1/metabolismo , Humanos , Inflamação , Interleucina-18 , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose
11.
Appl Microbiol Biotechnol ; 106(7): 2651-2663, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35305124

RESUMO

D-Aspartate (D-Asp) is a useful compound for a semisynthetic antibiotic and has potentially beneficial effects on humans. Several lactic acid bacteria (LAB) species produce D-Asp as a component of cell wall peptidoglycan. We previously isolated a LAB strain (named strain WDN19) that can extracellularly produce a large amount of D-Asp. Here, we show the factors that contribute to high D-Asp production ability. Strain WDN19 was most closely related to Latilactobacillus curvatus. The D-Asp production ability of strain WDN19 in a rich medium was 13.7-fold higher than that of L. curvatus DSM 20019. A major part of D-Asp was synthesized from L-Asp contained in the medium by aspartate racemase (RacD). During their cultivation, the RacD activity in strain WDN19 was higher than in strain DSM 20019, especially much higher in the early exponential growth phase because of the higher racD transcription and the higher activity of RacD itself of strain WDN19. In a synthetic medium, the extracellular production of D,L-Asp was observed in strain WDN19 but not in strain DSM 20019. The addition of L-asparagine (L-Asn) to the medium increased and gave D,L-Asp production in strains WDN19 and DSM 20019, respectively, suggesting L-Asp synthesis by L-asparaginase (AsnA). The L-Asn uptake ability of the strains was similar, but the AsnA activity in the middle exponential and early stationary growth phases and intracellular D,L-Asp was much higher in strain WDN19. In their genome sequences, only an aspartate aminotransferase gene was found among L-Asp-metabolizing enzymes, except for RacD, but was disrupted in strain WDN19 by transposon insertion. These observations indicated that the high D-Asp production ability of strain WDN19 was mainly based on high RacD and AnsA activities and L-Asp supply. KEY POINTS: • Strain WDN19 was suggested to be a strain of Latilactobacillus curvatus. • Extracellular high d-Asp production ability was not a common feature of L. curvatus. • High d-Asp production was due to high RacD and AnsA activities and l-Asp supply.


Assuntos
Ácido Aspártico , Lactobacillales , Asparagina , Ácido D-Aspártico , Humanos , Ácido Láctico , Lactobacillus
12.
J Proteome Res ; 20(1): 727-739, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33274941

RESUMO

d-Amino acids were believed to occur only in bacteria and invertebrates. Today, it is well known that d-amino acids are also present in mammalian tissues in a considerable amount. In particular, high levels of free d-serine (d-Ser) and d-aspartate (d-Asp) are found in the brain. While the functions of d-Ser are well known, many questions remain unanswered regarding the role of d-Asp in the central nervous system. d-Asp is very abundant at the embryonic stage, while it strongly decreases after birth because of the expression of d-aspartate oxidase (Ddo) enzyme, which catalyzes the oxidation of this d-amino acid into oxaloacetate, ammonium, and hydrogen peroxide. Pharmacologically, d-Asp acts as an endogenous agonist of N-methyl d-aspartate and mGlu5 receptors, which are known to control fundamental brain processes, including brain development, synaptic plasticity, and cognition. In this work, we studied a recently generated knockin mouse model (R26ddo/ddo), which was designed to express DDO beginning at the zygotic stage. This strategy enables d-Asp to be almost eliminated in both prenatal and postnatal lives. To understand which biochemical pathways are affected by depletion of d-Asp, in this study, we carried out a metabolomic and lipidomic study of ddo knockin brains at different stages of embryonic and postnatal development, combining nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) techniques. Our study shows that d-Asp deficiency in the brain influences amino acid pathways such as threonine, glycine, alanine, valine, and glutamate. Interestingly, d-Asp is also correlated with metabolites involved in brain development and functions such as choline, creatine, phosphocholine (PCho), glycerophosphocholine (GPCho), sphingolipids, and glycerophospholipids, as well as metabolites involved in brain energy metabolism, such as GPCho, glucose, and lactate.


Assuntos
Ácido Aspártico , Ácido D-Aspártico , Aminoácidos , Animais , Encéfalo/metabolismo , Ácido D-Aspártico/metabolismo , Metabolismo Energético , Feminino , Camundongos , Gravidez , Receptores de N-Metil-D-Aspartato/metabolismo
13.
FASEB J ; 34(1): 1182-1197, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914658

RESUMO

d-Amino acids are the "wrong" enantiomers of amino acids as they are not used in proteins synthesis but evolved in selected functions. On this side, d-aspartate (d-Asp) plays several significant roles in mammals, especially as an agonist of N-methyl-d-aspartate receptors (NMDAR), and is involved in relevant diseases, such as schizophrenia and Alzheimer's disease. In vivo modulation of d-Asp levels represents an intriguing task to cope with such pathological states. As little is known about d-Asp synthesis, the only option for modulating the levels is via degradation, which is due to the flavoenzyme d-aspartate oxidase (DASPO). Here we present the first three-dimensional structure of a DASPO enzyme (from human) which belongs to the d-amino acid oxidase family. Notably, human DASPO differs from human d-amino acid oxidase (attributed to d-serine degradation, the main coagonist of NMDAR) showing peculiar structural features (a specific active site charge distribution), oligomeric state and kinetic mechanism, and a higher FAD affinity and activity. These results provide useful insights into the structure-function relationships of human DASPO: modulating its activity represents now a feasible novel therapeutic target.


Assuntos
Encéfalo/metabolismo , D-Aspartato Oxidase/química , D-Aspartato Oxidase/metabolismo , Ácido D-Aspártico/análise , Animais , Antipsicóticos/farmacologia , Sítios de Ligação , Bovinos , Cristalografia por Raios X , Dimerização , Desenho de Fármacos , Humanos , Cinética , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Receptores de N-Metil-D-Aspartato/metabolismo , Especificidade por Substrato , Suínos
14.
Int J Legal Med ; 135(4): 1225-1233, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33595689

RESUMO

Age at death estimation in cases of human skeletal finds is an important task in forensic medicine as well as in anthropology. In forensic medicine, methods based on "molecular clocks" in dental tissues and bone play an increasing role. The question, whether these methods are applicable also in cases with post-depositional intervals far beyond the forensically relevant period, was investigated for two "protein clocks", the accumulation of D-aspartic acid (D-Asp) and the accumulation of pentosidine (Pen) in dentine. Eight teeth of skeletons from different burial sites in Austria and with post-depositional intervals between c. 1216 and c. 8775 years were analysed. The results of age at death estimation based on D-Asp and Pen in dentine were compared to that derived from a classical morphological examination. Age at death estimation based on D-Asp resulted consistently in false high values. This finding can be explained by a post-mortem accumulation of D-Asp that may be enhanced by protein degradation. In contrast, the Pen-based age estimates fitted well with the morphological age diagnoses. The described effect of post-mortem protein degradation is negligible in forensically relevant time horizons, but not for post-depositional intervals of thousands of years. That means that the "D-Asp clock" loses its functionality with increasing post-depositional intervals, whereas Pen seems to be very stable. The "Pen-clock" may have the potential to become an interesting supplement to the existing repertoire of methods even in cases with extremely long post-depositional intervals. Further investigations have to test this hypothesis.


Assuntos
Determinação da Idade pelos Dentes/métodos , Arginina/análogos & derivados , Ácido D-Aspártico/análise , Dentina/química , Lisina/análogos & derivados , Arginina/análise , Áustria , Restos Mortais , Antropologia Forense , Medicina Legal , Humanos , Lisina/análise , Fatores de Tempo
15.
Biochem Biophys Res Commun ; 527(4): 947-952, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32439167

RESUMO

D-amino acids are unique and essential signaling molecules in neural, hormonal, and immune systems. However, the presence of D-amino acids and their recruitment in early animals is mostly unknown due to limited information about prebilaterian metazoans. Here, we performed the comparative survey of L-/D-aspartate and L-/D-glutamate in representatives of four phyla of early-branching Metazoa: cnidarians (Aglantha); placozoans (Trichoplax), sponges (Sycon) and ctenophores (Pleurobrachia, Mnemiopsis, Bolinopsis, and Beroe), which are descendants of ancestral animal lineages distinct from Bilateria. Specifically, we used high-performance capillary electrophoresis for microchemical assays and quantification of the enantiomers. L-glutamate and L-aspartate were abundant analytes in all species studied. However, we showed that the placozoans, cnidarians, and sponges had high micromolar concentrations of D-aspartate, whereas D-glutamate was not detectable in our assays. In contrast, we found that in ctenophores, D-glutamate was the dominant enantiomer with no or trace amounts of D-aspartate. This situation illuminates prominent lineage-specific diversifications in the recruitment of D-amino acids and suggests distinct signaling functions of these molecules early in the animal evolution. We also hypothesize that a deep ancestry of such recruitment events might provide some constraints underlying the evolution of neural and other signaling systems in Metazoa.


Assuntos
Cnidários/química , Ctenóforos/química , Ácido D-Aspártico/análise , Ácido Glutâmico/análise , Placozoa/química , Poríferos/química , Animais , Eletroforese Capilar , Estereoisomerismo
16.
Mult Scler ; 26(3): 304-311, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30730244

RESUMO

BACKGROUND: Synaptic plasticity reserve correlates with clinical recovery after a relapse in relapsing-remitting forms of multiple sclerosis (MS) and is significantly compromised in patients with progressive forms of MS. These findings suggest that progression of disability in MS is linked to reduced synaptic plasticity reserve. D-Aspartate, an endogenous aminoacid approved for the use in humans as a dietary supplement, enhances synaptic plasticity in mice. OBJECTIVE: To test whether D-Aspartate oral intake increases synaptic plasticity reserve in progressive MS patients. METHODS: A total of 31 patients affected by a progressive form of MS received either single oral daily doses of D-Aspartate 2660 mg or placebo for 4 weeks. Synaptic plasticity reserve and trans-synaptic cortical excitability were measured through transcranial magnetic stimulation (TMS) protocols before and after D-Aspartate. RESULTS: Both TMS-induced long-term potentiation (LTP), intracortical facilitation (ICF) and short-interval ICF increased after 2 and 4 weeks of D-Aspartate but not after placebo, suggesting an enhancement of synaptic plasticity reserve and increased trans-synaptic glutamatergic transmission. CONCLUSION: Daily oral D-Aspartate 2660 mg for 4 weeks enhances synaptic plasticity reserve in patients with progressive MS, opening the path to further studies assessing its clinical effects on disability progression.


Assuntos
Ácido D-Aspártico/farmacologia , Potencial Evocado Motor/efeitos dos fármacos , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Adulto , Ácido D-Aspártico/administração & dosagem , Feminino , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Estimulação Magnética Transcraniana
17.
Amino Acids ; 52(4): 597-617, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32185508

RESUMO

The free D-amino acid, D-aspartate, is abundant in the embryonic brain but significantly decreases after birth. Besides its intracellular occurrence, D-aspartate is also present at extracellular level and acts as an endogenous agonist for NMDA and mGlu5 receptors. These findings suggest that D-aspartate is a candidate signaling molecule involved in neural development, influencing brain morphology and behaviors at adulthood. To address this issue, we generated a knockin mouse model in which the enzyme regulating D-aspartate catabolism, D-aspartate oxidase (DDO), is expressed starting from the zygotic stage, to enable the removal of D-aspartate in prenatal and postnatal life. In line with our strategy, we found a severe depletion of cerebral D-aspartate levels (up to 95%), since the early stages of mouse prenatal life. Despite the loss of D-aspartate content, Ddo knockin mice are viable, fertile, and show normal gross brain morphology at adulthood. Interestingly, early D-aspartate depletion is associated with a selective increase in the number of parvalbumin-positive interneurons in the prefrontal cortex and also with improved memory performance in Ddo knockin mice. In conclusion, the present data indicate for the first time a biological significance of precocious D-aspartate in regulating mouse brain formation and function at adulthood.


Assuntos
Encéfalo/embriologia , D-Aspartato Oxidase/metabolismo , Ácido D-Aspártico/deficiência , Animais , Encéfalo/metabolismo , Cognição , D-Aspartato Oxidase/genética , Técnicas de Introdução de Genes , Ácido Glutâmico/análise , Masculino , Camundongos , Teste do Labirinto Aquático de Morris , Teste de Campo Aberto , Córtex Pré-Frontal/embriologia , Córtex Pré-Frontal/metabolismo , Serina/análise
18.
Int J Legal Med ; 134(2): 721-733, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30976985

RESUMO

Several molecular modifications accumulate in the human organism with increasing age. Some of these "molecular clocks" in DNA and in proteins open up promising approaches for the development of methods for forensic age estimation. A natural limitation of these methods arises from the fact that the chronological age is determined only indirectly by analyzing defined molecular changes that occur during aging. These changes are not linked exclusively to the expired life span but may be influenced significantly by intrinsic and extrinsic factors in the complex process of individual aging. We tested the hypothesis that a combined use of different molecular clocks in different tissues results in more precise age estimates because this approach addresses the complex aging processes in a more comprehensive way. Two molecular clocks (accumulation of D-aspartic acid (D-Asp), accumulation of pentosidine (PEN)) in two different tissues (annulus fibrosus of intervertebral discs and elastic cartilage of the epiglottis) were analyzed in 95 cases, and uni- and multivariate models for age estimation were generated. The more parameters were included in the models for age estimation, the smaller the mean absolute errors (MAE) became. While the MAEs were 7.5-11.0 years in univariate models, a multivariate model based on the two protein clocks in the two tissues resulted in a MAE of 4.0 years. These results support our hypothesis. The tested approach of a combined analysis of different molecular clocks analyzed in different tissues opens up new possibilities in postmortem age estimation. In a next step, we will add the epigenetic clock (DNA methylation) to our protein clocks (PEN, D-Asp) and expand our set of tissues.


Assuntos
Envelhecimento/fisiologia , Arginina/análogos & derivados , Ácido D-Aspártico/análise , Epiglote/química , Medicina Legal , Disco Intervertebral/química , Lisina/análogos & derivados , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Arginina/análise , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Colágeno/isolamento & purificação , Feminino , Humanos , Lactente , Lisina/análise , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Análise Multivariada , Adulto Jovem
19.
Cereb Cortex ; 29(6): 2499-2508, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850790

RESUMO

d-Aspartate (d-Asp), the stereoisomer of l-aspartate, has a role in memory function in rodents. However, the mechanism of the effect of d-Asp has not been fully understood. In this study, we hypothesized that ingested d-Asp directly reaches the hippocampal tissues via the blood circulation and modifies the functional connectivity between hippocampus and other regions through spinogenesis in hippocampal CA1 neurons. The spinogenesis induced by the application of d-Asp was investigated using rat acute hippocampal slices. The density of CA1 spines was increased following 21 and 100 µM d-Asp application. The nongenomic spine increase pathway involved LIM kinase. In parallel to the acute slice study, brain activation was investigated in awake rats using functional MRI following the intragastric administration of 5 mM d-Asp. Furthermore, the concentration of d-Asp in the blood serum and hippocampus was significantly increased 15 min after intragastric administration of d-Asp. A functional connectivity by awake rat fMRI demonstrated increased slow-frequency synchronization in the hippocampus and other regions, including the somatosensory cortex, striatum, and the nucleus accumbens, 10-20 min after the start of d-Asp administration. These results suggest that ingested d-Asp reaches the brain through the blood circulation and modulates hippocampal neural networks through the modulation of spines.


Assuntos
Ácido D-Aspártico/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Animais , Espinhas Dendríticas/fisiologia , Hipocampo/fisiologia , Masculino , Vias Neurais/fisiologia , Ratos , Ratos Wistar
20.
Biosci Biotechnol Biochem ; 84(1): 95-102, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31478781

RESUMO

D-Aspartate, aspartate racemase activity, and D-aspartate oxidase activity were detected in tissues from several types of starfish. Aspartate racemase activity in male testes of Patiria pectinifera was significantly elevated in the summer months of the breeding season compared with spring months. We also compared aspartate racemase activity with the gonad index and found that activity in individuals with a gonad index ≥6% was four-fold higher than that of individuals with a gonad index <6%. The ratio of the D-form of aspartate to total aspartate was approximately 25% in testes with a gonad index <6% and this increased to approximately 40% in testes with a gonad index ≥6%. However, such changes were not observed in female ovaries. Administration of D-aspartate into male starfish caused testicular growth. These results indicate the possible involvement of aspartate racemase and D-aspartate in testicular maturation in echinoderm starfish.


Assuntos
Isomerases de Aminoácido/metabolismo , Ácido D-Aspártico/metabolismo , Ácido D-Aspártico/farmacologia , Estrelas-do-Mar/fisiologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Animais , Ácido Aspártico/administração & dosagem , Ácido Aspártico/farmacologia , Cromatografia Líquida de Alta Pressão , Ácido D-Aspártico/administração & dosagem , Estrona/administração & dosagem , Estrona/farmacologia , Feminino , Masculino , Ovário/crescimento & desenvolvimento , Estações do Ano , Espermatogênese/fisiologia , Testosterona/administração & dosagem , Testosterona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA