Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.966
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(6): 2011-2017, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306708

RESUMO

Polymeric nanoparticles are a highly promising drug delivery formulation. However, a lack of understanding of the molecular mechanisms that underlie their drug solubilization and controlled release capabilities has hindered the efficient clinical translation of such technologies. Polyethylene glycol-poly(lactic-co-glycolic) acid (PEG-PLGA) nanoparticles have been widely studied as cancer drug delivery vehicles. In this letter, we use unbiased coarse-grained molecular dynamics simulations to model the self-assembly of a PEG-PLGA nanoparticle and its solubulization of the anticancer peptide, EEK, with good agreement with previously reported experimental structural data. We applied unsupervised machine learning techniques to quantify the conformations that polymers adopt at various locations within the nanoparticle. We find that the local microenvironments formed by the various polymer conformations promote preferential EEK solubilization within specific regions of the NP. This demonstrates that these microenvironments are key in controlling drug storage locations within nanoparticles, supporting the rational design of nanoparticles for therapeutic applications.


Assuntos
Nanopartículas , Poliésteres , Polímeros , Polímeros/química , Ácido Láctico/química , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos/métodos , Peptídeos , Nanopartículas/química , Portadores de Fármacos/química
2.
Anal Chem ; 96(32): 12957-12965, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39078103

RESUMO

We investigated the single particle kinetics of the molecular release processes from two types of microcapsules used as drug delivery systems (DDS): biodegradable poly(lactic-co-glycolic) acid (PLGA) and a light-triggered-degradable liposome encapsulating gold nanospheres (liposome-GNP). To optimize the design of DDS capsules, it is highly desirable to develop a method for real-time monitoring of the release process. Using a combination of optical tweezers and confocal fluorescence microspectroscopy we successfully analyzed a single optically trapped PLGA particle and liposome-GNPs in solution. From temporal decay profiles of the fluorescence intensity, we determined the time constant τ of the release processes. We demonstrated that the release rate of spontaneously degradable microcapsules (PLGA) decreased with increasing size, while conversely, the release rate of external stimuli-degradable microcapsules (liposome-GNPs) increased in proportion to their size. This result is explained by the differences in the disruption mechanisms of the capsules, with PLGA undergoing hydrolysis and the GNPs in the liposome-GNP undergoing a photoacoustic effect under nanosecond pulsed laser irradiation. The present approach offers a way forward to an alternative microanalysis system for single drug delivery nanocarriers.


Assuntos
Ouro , Ácido Láctico , Lipossomos , Nanosferas , Pinças Ópticas , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ouro/química , Lipossomos/química , Ácido Láctico/química , Nanosferas/química , Ácido Poliglicólico/química , Tamanho da Partícula , Sistemas de Liberação de Medicamentos
3.
Anal Chem ; 96(22): 9159-9166, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38726669

RESUMO

Flexible photonics offers the possibility of realizing wearable sensors by bridging the advantages of flexible materials and photonic sensing elements. Recently, optical resonators have emerged as a tool to improve their oversensitivity by integrating with flexible photonic sensors. However, direct monitoring of multiple psychological information on human skin remains challenging due to the subtle biological signals and complex tissue interface. To tackle the current challenges, here, we developed a functional thin film laser formed by encapsulating liquid crystal droplet lasers in a flexible hydrogel for monitoring metabolites in human sweat (lactate, glucose, and urea). The three-dimensional cross-linked hydrophilic polymer serves as the adhesive layer to allow small molecules to penetrate from human tissue to generate strong light--matter interactions on the interface of whispering gallery modes resonators. Both the hydrogel and cholesteric liquid crystal microdroplets were modified specifically to achieve high sensitivity and selectivity. As a proof of concept, wavelength-multiplexed sensing and a prototype were demonstrated on human skin to detect human metabolites from perspiration. These results present a significant advance in the fabrication and potential guidance for wearable and functional microlasers in healthcare.


Assuntos
Hidrogéis , Lasers , Pele , Suor , Dispositivos Eletrônicos Vestíveis , Humanos , Pele/química , Pele/metabolismo , Hidrogéis/química , Suor/química , Suor/metabolismo , Glucose/análise , Glucose/metabolismo , Ureia/química , Ureia/análise , Ácido Láctico/análise , Ácido Láctico/química , Cristais Líquidos/química , Metilgalactosídeos
4.
BMC Biotechnol ; 24(1): 52, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095760

RESUMO

BACKGROUND: Colorectal cancer is a common disease worldwide with non-specific symptoms such as blood in the stool, bowel movements, weight loss and fatigue. Chemotherapy drugs can cause side effects such as nausea, vomiting and a weakened immune system. The use of antioxidants such as hesperidin could reduce the side effects, but its low bioavailability is a major problem. In this research, we aimed to explore the drug delivery and efficiency of this antioxidant on the HCT116 colorectal cancer cell line by loading hesperidin into PLGA nanoparticles. MATERIALS AND METHODS: Hesperidin loaded PLGA nanoparticles were produced by single emulsion evaporation method. The physicochemical properties of the synthesized hesperidin-loaded nanoparticles were determined using SEM, AFM, FT-IR, DLS and UV-Vis. Subsequently, the effect of the PLGA loaded hesperidin nanoparticles on the HCT116 cell line after 48 h was investigated by MTT assay at three different concentrations of the nanoparticles. RESULT: The study showed that 90% of hesperidin were loaded in PLGA nanoparticles by UV-Vis spectrophotometry and FT-IR spectrum. The nanoparticles were found to be spherical and uniform with a hydrodynamic diameter of 76.2 nm in water. The release rate of the drug was about 93% after 144 h. The lowest percentage of cell viability of cancer cells was observed at a concentration of 10 µg/ml of PLGA nanoparticles loaded with hesperidin. CONCLUSION: The results indicate that PLGA nanoparticles loaded with hesperidin effectively reduce the survival rate of HCT116 colorectal cancer cells. However, further studies are needed to determine the appropriate therapeutic dosage and to conduct animal and clinical studies.


Assuntos
Neoplasias Colorretais , Hesperidina , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Humanos , Hesperidina/química , Hesperidina/farmacologia , Hesperidina/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Neoplasias Colorretais/tratamento farmacológico , Células HCT116 , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Ácido Láctico/química , Ácido Poliglicólico/química , Sistemas de Liberação de Medicamentos , Tamanho da Partícula , Portadores de Fármacos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Antineoplásicos/química , Sistemas de Liberação de Fármacos por Nanopartículas/química
5.
Magn Reson Med ; 92(2): 772-781, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38525658

RESUMO

PURPOSE: To develop a flexible, vendor-neutral EPI sequence for hyperpolarized 13C metabolic imaging. METHODS: An open-source EPI sequence consisting of a metabolite-specific spectral-spatial RF excitation pulse and a customizable EPI readout was created using the Pulseq framework. To explore the flexibility of our sequence, we tested several versions of the sequence including a symmetric 3D readout with different spatial resolutions for each metabolite (1.0 cm3 and 1.5 cm3). A multichamber phantom constructed with a Shepp-Logan geometry, containing two chambers filled with either natural abundance 13C compounds or hyperpolarized (HP) [1-13C]pyruvate, was used to test each sequence. For experiments involving HP [1-13C]pyruvate, a single chamber was prefilled with nicotinamide adenine dinucleotide hydride and lactate dehydrogenase to facilitate the conversion of [1-13C]pyruvate to [1-13C]lactate. All experiments were performed on a Siemens Prisma 3T scanner. RESULTS: All the sequence variations localized natural-abundance 13C ethylene glycol and methanol to the appropriate compartment of the multichamber phantom. [1-13C]pyruvate was detectable in both chambers following the injection of HP [1-13C]pyruvate, whereas [1-13C]lactate was only found in the chamber containing nicotinamide adenine dinucleotide hydride and lactate dehydrogenase. The conversion rate from [1-13C]pyruvate to [1-13C]lactate (kPL) was 0.01 s-1 (95% confidence interval [0.00, 0.02]). CONCLUSION: We have developed and tested a vendor-neutral EPI sequence for imaging HP 13C agents. We have made all of our sequence creation and image reconstruction code freely available online for other investigators to use.


Assuntos
Isótopos de Carbono , Imagens de Fantasmas , Ácido Pirúvico , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Isótopos de Carbono/química , Imagem Ecoplanar , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Ácido Láctico/química , Algoritmos , Humanos
6.
Biomacromolecules ; 25(3): 1527-1540, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38307005

RESUMO

Ionic liquids (ILs) showed a promising application prospect in the field of biomedicine due to their unique recyclability, modifiability, and structure adjustability. In this study, nanoporous microsphere of silk protein and blending with poly(d,l-lactic acid) as model drug delivery was fabricated, respectively, through an IL-induced self-assembly method. Their morphology, structure, and thermal properties were comparably investigated through scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, differential scanning calorimetry, X-ray diffraction, and thermogravimetric analyses, and the interaction mechanisms were also discussed to elucidate the effect of structure on drug delivery kinetics. The pure protein exhibited a bigger nanopore size in the microsphere compared to the composite one, facilitating more effective drug loading up to 88.7%. However, drug release was over 53.5% for the composite during initial 4 h, while pure protein was only about half of the composite. Both of them exhibited sustained slow release after 24 h and anticancer efficacy. Furthermore, the favorable compatibility between drug and microsphere vehicle was found and experienced improved thermal stability upon encapsulation, which could protect the drug molecules in high temperature at 200 °C. When the protein and its composite self-assembled to microspheres in ILs due to electrostatic and hydrophobic interaction, the drug could be infiltrated into the nanoporous matrix through biophysical action, and the protein structure displayed reversible transition during delivery. The sustained slow release from pure SF was attributed to the high ß-sheet block action and strong drug-protein interactions, whose strength could be tuned through blending poly(d,l-lactic acid) with protein. These findings indicated that the SF-based nanoporous microspheres formed from IL self-assembled system are an ideal and potential drug delivery vehicle which can be incorporated into various biomaterials in the future.


Assuntos
Líquidos Iônicos , Nanoporos , Seda/química , Microesferas , Sistemas de Liberação de Medicamentos , Ácido Láctico/química , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Biomacromolecules ; 25(7): 4420-4427, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38885360

RESUMO

Poly(l-lactic acid) (PLA) is a biodegradable bioplastic with limited marine degradation. This study examines the impact of molecular weight on PLA's marine biodegradability. We synthesized PLA with terminal hydroxyl groups (PLA-OH) with degrees of polymerization (DP) between 14 and 642 and conducted biochemical oxygen demand (BOD) tests. Samples with a DP of 422 or 642 did not degrade, like commercial PLA. However, PLA-OH with a DP below 314 showed biodegradability, with DP 14 exhibiting a higher degradability than cellulose. Size exclusion chromatography (SEC) confirmed a decrease in molecular weight for samples with DPs below 314, indicating extracellular microbial activity. These findings suggest that PLA-OH with a DP under 314 can be degraded in marine conditions, unlike high-molecular-weight PLA. If the DP of high-molecular-weight PLA can be reduced to 314 by some specific method, then it is expected that PLA can be used to create marine biodegradable materials.


Assuntos
Biodegradação Ambiental , Peso Molecular , Poliésteres , Poliésteres/química , Poliésteres/metabolismo , Polímeros/química , Polímeros/metabolismo , Ácido Láctico/química , Ácido Láctico/metabolismo , Cromatografia em Gel
8.
Biomacromolecules ; 25(7): 4030-4045, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38856657

RESUMO

Over the past decade, the preparation of novel materials by enzyme-embedding into biopolyesters has been proposed as a straightforward method to produce self-degrading polymers. This paper reports the preparation and enzymatic degradation of extruded self-degradable films of three different biopolyesters: poly(lactic acid) (PLA), poly(butylene adipate-co-terephthalate) (PBAT), and poly(butylene succinate) (PBS), as well as three binary/ternary blends. Candida antarctica lipase B (CalB) has been employed for the enzyme-embedding procedure, and to the best of our knowledge, the use of this approach in biopolyester blends has not been reported before. The three homopolymers exhibited differentiated degradation and suggested a preferential attack of CalB on PBS films over PBAT and PLA. Moreover, the self-degradable films obtained from the blends showed slow degradation, probably due to the higher content in PLA and PBAT. These observations pave the way for exploring enzymes capable of degrading all blend components or an enzymatic mixture for blend degradation.


Assuntos
Proteínas Fúngicas , Lipase , Poliésteres , Lipase/química , Lipase/metabolismo , Poliésteres/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Polímeros/química , Ácido Láctico/química , Enzimas Imobilizadas/química , Butileno Glicóis
9.
Biomacromolecules ; 25(6): 3519-3531, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38742604

RESUMO

Elastic fibers provide critical elasticity to the arteries, lungs, and other organs. Elastic fiber assembly is a process where soluble tropoelastin is coacervated into liquid droplets, cross-linked, and deposited onto and into microfibrils. While much progress has been made in understanding the biology of this process, questions remain regarding the timing of interactions during assembly. Furthermore, it is unclear to what extent fibrous templates are needed to guide coacervate droplets into the correct architecture. The organization and shaping of coacervate droplets onto a fiber template have never been previously modeled or employed as a strategy for shaping elastin fiber materials. Using an in vitro system consisting of elastin-like polypeptides (ELPs), genipin cross-linker, electrospun polylactic-co-glycolic acid (PLGA) fibers, and tannic acid surface coatings for fibers, we explored ELP coacervation, cross-linking, and deposition onto fiber templates. We demonstrate that integration of coacervate droplets into a fibrous template is primarily influenced by two factors: (1) the balance of coacervation and cross-linking and (2) the surface energy of the fiber templates. The success of this integration affects the mechanical properties of the final fiber network. Our resulting membrane materials exhibit highly tunable morphologies and a range of elastic moduli (0.8-1.6 MPa) comparable to native elastic fibers.


Assuntos
Elastina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Elastina/química , Ácido Láctico/química , Ácido Poliglicólico/química , Iridoides/química , Tropoelastina/química , Reagentes de Ligações Cruzadas/química , Taninos/química , Peptídeos/química , Elasticidade
10.
Nanotechnology ; 35(12)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38100843

RESUMO

Mucosal delivery systems have gained much attention as effective way for antigen delivery that induces both systemic and mucosal immunity. However, mucosal vaccination faces the challenges of mucus barrier and effective antigen uptake and presentation. In particular, split, subunit and recombinant protein vaccines that do not have an intact pathogen structure lack the efficiency to stimulate mucosal immunity. In this study, poly (lactic acid-co-glycolic acid-polyethylene glycol) (PLGA-PEG) block copolymers were modified by mannose to form a PLGA-PEG-Man conjugate (mannose modified PLGA-PEG), which were characterized. The novel nanoparticles (NPs) prepared with this material had a particle size of about 150 nm and a zeta potential of -15 mV, and possessed ideal mucus permeability, immune cell targeting, stability and low toxicity. Finally, PLGA-PEG-Man nanoparticles (PLGA-PEG-Man NPs) were successfully applied for intranasal delivery of split influenza vaccine in rat for the first time, which triggered strong systemic and mucosal immune responses. These studies suggest that PLGA-PEG-Man NPs could function as competitive potential nano-adjuvants to address the challenge of inefficient mucosal delivery of non-allopathogenic antigens.


Assuntos
Vacinas contra Influenza , Nanopartículas , Humanos , Ratos , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Manose , Adjuvantes Imunológicos/farmacologia , Antígenos , Nanopartículas/química
11.
Nanotechnology ; 35(30)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38636487

RESUMO

Despite the discovery of many chemotherapeutic drugs that prevent uncontrolled cell division processes in the last century, many studies are still being carried out to develop drugs with higher anticancer efficacy and lower level of side effects. Herein, we designed, synthesized, and characterized six novel coumarin-triazole hybrids, and evaluated for anticancer activity of the one with the highest potential against the breast cancer cell line, MCF-7 and human cervical cancer cell line, human cervical adenocarcinoma (HeLa). Compound21which was the coumarin derivative including phenyl substituent with the lowest IC50 value displayed the highest cytotoxicity against the studied cancer cell line. Furthermore, the potential use of poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) prepared by the emulsifying solvent evaporation method as a platform for a drug delivery system was studied on a selected coumarin derivative21. This coumarin derivative-loaded PLGA NPs were produced with an average size of 225.90 ± 2.96 nm, -16.90 ± 0.85 mV zeta potential, and 4.12 ± 0.90% drug loading capacity. The obtained21-loaded PLGA nanoparticles were analyzed spectroscopically and microscopically with FT-IR, UV-vis, and scanning electron microscopy as well as thermogravimetric analysis, Raman, and x-ray diffraction. Thein vitrorelease of21from the nanoparticles exhibited a controlled release profile just over one month following a burst release in the initial six hours and in addition to this a total release ratio of %50 and %85 were obtained at pH 7.4 and 5.5, respectively.21-loaded PLGA nanoparticles displayed remarkably effective anticancer activity than21. The IC50 values were determined as IC50(21-loaded PLGA nanoparticles): 0.42 ± 0.01 mg ml-1and IC50(free21molecule): 5.74 ± 3.82 mg ml-1against MCF-7 cells, and as IC50(21-loaded PLGA nanoparticles): 0.77 ± 0.12 mg ml-1and IC50(free21molecule): 1.32 ± 0.31 mg ml-1against HeLa cells after the incubation period of 24 h. Our findings indicated that triazole-substituted coumarins may be used as an anticancer agent by integrating them into a polymeric drug delivery system providing improved drug loading and effective controlled drug release.


Assuntos
Antineoplásicos , Cumarínicos , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Triazóis , Humanos , Cumarínicos/química , Cumarínicos/farmacologia , Triazóis/química , Triazóis/farmacologia , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Células HeLa , Células MCF-7 , Sobrevivência Celular/efeitos dos fármacos , Ácido Láctico/química , Portadores de Fármacos/química , Ácido Poliglicólico/química , Tamanho da Partícula , Sistemas de Liberação de Medicamentos/métodos
12.
Int Endod J ; 57(7): 907-921, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38374518

RESUMO

AIM: Design, produce and assess the viability of a novel nanotechnological antibacterial thermo-sensible intracanal medicament This involves encapsulating calcium hydroxide (Ca(OH)2) within polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) and dispersing them in a thermosensitive gel (Ca(OH)2-NPs-gel). In addition, perform in vitro and ex vivo assessments to evaluate tissue irritation and penetration capacity into dentinal tubules in comparison to free Ca(OH)2. METHODOLOGY: Reproducibility of Ca(OH)2-NPs was confirmed by obtaining the average size of the NPs, their polydispersity index, zeta potential and entrapment efficiency. Moreover, rheological studies of Ca(OH)2-NPs-gel were carried out with a rheometer, studying the oscillatory stress sweep, the mean viscosity value, frequency and temperature sweeps. Tolerance was assessed using the membrane of an embryonated chicken egg. In vitro Ca(OH)2 release was studied by direct dialysis in an aqueous media monitoring the amount of Ca(OH)2 released. Six extracted human teeth were used to study the depth of penetration of fluorescently labelled Ca(OH)2-NPs-gel into the dentinal tubules and significant differences against free Ca(OH)2 were calculated using one-way anova. RESULTS: Ca(OH)2-NPs-gel demonstrated to be highly reproducible with an average size below 200 nm, a homogeneous NPs population, negative surface charge and high entrapment efficiency. The analysis of the thermosensitive gel allowed us to determine its rheological characteristics, showing that at 10°C gels owned a fluid-like behaviour meanwhile at 37°C they owned an elastic-like behaviour. Ca(OH)2-NPs-gel showed a prolonged drug release and the depth of penetration inside the dentinal tubules increased in the most apical areas. In addition, it was found that this drug did not produce irritation when applied to tissues such as eggs' chorialantoidonic membrane. CONCLUSION: Calcium hydroxide-loaded PLGA NPs dispersed in a thermosensitive gel may constitute a suitable alternative as an intracanal antibacterial medicament.


Assuntos
Hidróxido de Cálcio , Nanopartículas , Hidróxido de Cálcio/química , Nanopartículas/química , Humanos , Géis , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Irrigantes do Canal Radicular/química , Temperatura , Técnicas In Vitro , Ácido Poliglicólico/química , Reologia , Embrião de Galinha , Ácido Láctico/química , Dentina/efeitos dos fármacos
13.
Mikrochim Acta ; 191(8): 455, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980437

RESUMO

A novel optical lactate biosensor is presented that utilizes a colorimetric interaction between H2O2 liberated by a binary enzymatic reaction and bis(neocuproine)copper(II) complex ([Cu(Nc)2]2+) known as CUPRAC (cupric reducing antioxidant capacity) reagent. In the first step, lactate oxidase (LOx) and pyruvate oxidase (POx) were separately immobilized on silanized magnetite nanoparticles (SiO2@Fe3O4 NPs), and thus, 2 mol of H2O2 was released per 1 mol of the substrate due to a sequential enzymatic reaction of the mixture of LOx-SiO2@Fe3O4 and POx-SiO2@Fe3O4 NPs with lactate and pyruvate, respectively. In the second step, the absorbance at 450 nm of the yellow-orange [Cu(Nc)2]+ complex formed through the color reaction of enzymatically produced H2O2 with [Cu(Nc)2]2+ was recorded. The results indicate that the developed colorimetric binary enzymatic biosensor exhibits a broad linear range of response between 0.5 and 50.0 µM for lactate under optimal conditions with a detection limit of 0.17 µM. The fabricated biosensor did not respond to other saccharides, while the positive interferences of certain reducing compounds such as dopamine, ascorbic acid, and uric acid were minimized through their oxidative removal with a pre-oxidant (NaBiO3) before enzymatic and colorimetric reactions. The fabricated optical biosensor was applied to various samples such as artificial blood, artificial/real sweat, and cow milk. The high recovery values (close to 100%) achieved for lactate-spiked samples indicate an acceptable accuracy of this colorimetric biosensor in the determination of lactate in real samples. Due to the increase in H2O2 production with the bienzymatic lactate sensor, the proposed method displays double-fold sensitivity relative to monoenzymatic biosensors and involves a neat color reaction with cupric-neocuproine having a clear stoichiometry as opposed to the rather indefinite stoichiometry of analogous redox dye methods.


Assuntos
Técnicas Biossensoriais , Colorimetria , Cobre , Enzimas Imobilizadas , Peróxido de Hidrogênio , Ácido Láctico , Nanopartículas de Magnetita , Oxigenases de Função Mista , Piruvato Oxidase , Técnicas Biossensoriais/métodos , Colorimetria/métodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Cobre/química , Nanopartículas de Magnetita/química , Piruvato Oxidase/química , Piruvato Oxidase/metabolismo , Ácido Láctico/análise , Ácido Láctico/química , Peróxido de Hidrogênio/química , Limite de Detecção , Animais , Dióxido de Silício/química , Fenantrolinas
14.
Sensors (Basel) ; 24(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38894105

RESUMO

Combining proton and phosphorus magnetic resonance spectroscopy offers a unique opportunity to study the oxidative and glycolytic components of metabolism in working muscle. This paper presents a 7 T proton calf coil design that combines dipole and loop elements to achieve the high performance necessary for detecting metabolites with low abundance and restricted visibility, specifically lactate, while including the option of adding a phosphorus array. We investigated the transmit, receive, and parallel imaging performance of three transceiver dipoles with six pair-wise overlap-decoupled standard or twisted pair receive-only coils. With a higher SNR and more efficient transmission decoupling, standard loops outperformed twisted pair coils. The dipoles with standard loops provided a four-fold-higher image SNR than a multinuclear reference coil comprising two proton channels and 32% more than a commercially available 28-channel proton knee coil. The setup enabled up to three-fold acceleration in the right-left direction, with acceptable g-factors and no visible aliasing artefacts. Spectroscopic phantom measurements revealed a higher spectral SNR for lactate with the developed setup than with either reference coil and fewer restrictions in voxel placement due to improved transmit homogeneity. This paper presents a new use case for dipoles and highlights their advantages for the integration in multinuclear calf coils.


Assuntos
Imageamento por Ressonância Magnética , Músculo Esquelético , Imagens de Fantasmas , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Razão Sinal-Ruído , Ácido Láctico/química , Ácido Láctico/metabolismo
15.
Sensors (Basel) ; 24(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38894238

RESUMO

In this paper, a novel fluorescent detection method for glucose and lactic acid was developed based on fluorescent iron nanoclusters (Fe NCs). The Fe NCs prepared using hemin as the main raw material exhibited excellent water solubility, bright red fluorescence, and super sensitive response to hydrogen peroxide (H2O2). This paper demonstrates that Fe NCs exhibit excellent peroxide-like activity, catalyzing H2O2 to produce hydroxyl radicals (•OH) that can quench the red fluorescence of Fe NCs. In this paper, a new type of glucose sensor was established by combining Fe NCs with glucose oxidase (GluOx). With the increase in glucose content, the fluorescence of Fe NCs decreases correspondingly, and the glucose content can be detected in the scope of 0-200 µmol·L-1 (µM). Similarly, the lactic acid sensor can also be established by combining Fe NCs with lactate oxidase (LacOx). With the increase in lactic acid concentration, the fluorescence of Fe NCs decreases correspondingly, and the lactic acid content can be detected in the range of 0-100 µM. Furthermore, Fe NCs were used in the preparation of gel test strip, which can be used to detect H2O2, glucose and lactic acid successfully by the changes of fluorescent intensity.


Assuntos
Glucose Oxidase , Glucose , Peróxido de Hidrogênio , Ferro , Ácido Láctico , Ácido Láctico/análise , Ácido Láctico/química , Glucose/análise , Glucose/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Ferro/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Técnicas Biossensoriais/métodos , Fluorescência , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Nanopartículas Metálicas/química
16.
Drug Dev Ind Pharm ; 50(4): 376-386, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533688

RESUMO

OBJECTIVE: The study evaluated physicochemical properties of eight different polymeric nanoparticles (NPs) and their interaction with lung barrier and their suitability for pulmonary drug delivery. METHODS: Eight physiochemically different NPs were fabricated from Poly lactic-co-glycolic acid (PLGA, PL) and Poly glycerol adipate-co-ω-pentadecalactone (PGA-co-PDL, PG) via emulsification-solvent evaporation. Pulmonary barrier integrity was investigated in vitro using Calu-3 under air-liquid interface. NPs internalization was investigated using a group of pharmacological inhibitors with subsequent microscopic visual confirmation. RESULTS: Eight NPs were successfully formulated from two polymers using emulsion-solvent evaporation; 200, 500 and 800 nm, negatively-charged and positively-charged. All different NPs did not alter tight junctions and PG NPs showed similar behavior to PL NPs, indicating its suitability for pulmonary drug delivery. Active endocytosis uptake mechanisms with physicochemical dependent manner were observed. In addition, NPs internalization and co-localization with lysosomes were visually confirmed indicating their vesicular transport. CONCLUSION: PG and PL NPs had shown no or low harmful effects on the barrier integrity, and with effective internalization and vesicular transport, thus, prospectively can be designed for pulmonary delivery applications.


Assuntos
Nanopartículas , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Pulmão , Linhagem Celular , Nanopartículas/química , Solventes , Portadores de Fármacos/química
17.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674103

RESUMO

pH-sensitive amphiphilic diblock polyphosphoesters containing lactic acid units were synthesized by multistep one-pot polycondensation reactions. They comprise acid-labile P(O)-O-C and C(O)-O-C bonds, the cleavage of which depends on the pH of the medium. The structure of these copolymers was characterized by 1H, 13C {H}, 31P NMR, and size exclusion chromatography (SEC). The newly synthesized polymers self-assembled into the micellar structure in an aqueous solution. The effects of the molecular weight of the copolymer and the length of the hydrophobic chain on micelle formation and stabilityand micelle size were studied via dynamic light scattering (DLS). Drug loading and encapsulation efficiency tests using doxorubicin revealed that hydrophobic drugs can be delivered by copolymers. It was established that the molecular weight of the copolymer, length of the hydrophobic chain and content of lactate units affects the size of the micelles, drug loading, and efficiency of encapsulation. A copolymer with 10.7% lactate content has drug loading (3.2 ± 0.3) and efficiency of encapsulation (57.4 ± 3.2), compared to the same copolymer with 41.8% lactate content (1.63%) and (45.8%), respectively. It was demonstrated that the poly[alkylpoly(ethylene glycol) phosphate-b-alkylpoly(ethylene glycol)lactate phosphate] DOX system has a pH-sensitive response capability in the result in which DOX was selectively accumulated into the tumor, where pH is acidic. The results obtained indicate that amphiphilic diblock polyphosphoesters have potential as drug carriers.


Assuntos
Doxorrubicina , Portadores de Fármacos , Ácido Láctico , Micelas , Polímeros , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química , Portadores de Fármacos/síntese química , Doxorrubicina/química , Doxorrubicina/farmacologia , Ácido Láctico/química , Polímeros/química , Polímeros/síntese química , Humanos , Ésteres/química , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular
18.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791538

RESUMO

Various studies have shown that Hypogymnia physodes are a source of many biologically active compounds, including lichen acids. These lichen-specific compounds are characterized by antioxidant, antiproliferative, and antimicrobial properties, and they can be used in the cosmetic and pharmaceutical industries. The main aim of this study was to optimize the composition of natural deep eutectic solvents based on proline or betaine and lactic acid for the extraction of metabolites from H. physodes. The design of the experimental method and the response surface approach allowed the optimization of the extraction process of specific lichen metabolites. Based on preliminary research, a multivariate model of the experiment was developed. For optimization, the following parameters were employed in the experiment to confirm the model: a proline/lactic acid/water molar ratio of 1:2:2. Such a mixture allowed the efficient extraction of three depsidones (i.e., physodic acid, physodalic acid, 3-hydroyphysodic acid) and one depside (i.e., atranorin). The developed composition of the solvent mixtures ensured good efficiency when extracting the metabolites from the thallus of H. physodes with high antioxidant properties.


Assuntos
Depsídeos , Lactonas , Depsídeos/química , Depsídeos/isolamento & purificação , Depsídeos/farmacologia , Lactonas/química , Lactonas/isolamento & purificação , Lactonas/farmacologia , Solventes Eutéticos Profundos/química , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Prolina/química , Líquens/química , Ácido Láctico/química , Química Verde/métodos , Betaína/química , Betaína/análogos & derivados , Betaína/farmacologia , Solventes/química , Dibenzoxepinas , Hidroxibenzoatos
19.
Pharm Dev Technol ; 29(5): 482-491, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38682665

RESUMO

The purpose of this study was to compare the characteristics of testosterone polylactic-co-glycolic (PLGA) microspheres prepared by a paddle mixer or microfluidics device. The comparison was conducted by not only in vitro evaluation but also in vivo evaluation which has not been reported up to date. We discovered that, among the steps in microsphere preparation, the solvent removal process strongly impacted drug content, particle size and surface morphology. Spectroscopic measurements suggested that molecular interactions and crystallinity of the drug incorporated in the microspheres differed. For the drug release profile, although both mixer- and microfluidics-prepared samples showed similar sustained release of the incorporated drug for approximately one month in vitro, they exhibited different plasma concentration profiles in vivo. Together, our findings show that the preparation process, especially the solvent removal process, may affect the physicochemical characteristics of testosterone PLGA microspheres, leading to different in vivo performance.


Assuntos
Liberação Controlada de Fármacos , Microesferas , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Testosterona , Testosterona/administração & dosagem , Testosterona/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Masculino , Ácido Láctico/química , Ácido Poliglicólico/química , Composição de Medicamentos/métodos , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Preparações de Ação Retardada
20.
Pharm Dev Technol ; 29(4): 291-299, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38466377

RESUMO

In the current work, we aimed to prepare a liraglutide-loaded porous microsphere-gel composite system. By employing polyethylene glycol (PEG) as a porogenic agent and poly (lactic-co-glycolic acid) copolymer (PLGA) as a carrier, the liraglutide microspheres were prepared and dispersed in a temperature-sensitive gel made of poloxamer 407 (F-127) and poloxamer 188 (F-68), which served as the gel matrix, to construct the composite system. The porous microsphere-gel composite system demonstrated prolonged and steady drug release, with a reduction to 4.7% in the initial release within 1 d, according to data from in vitro release tests. The drug release from the porous microspheres decreased from 53% to 29% during the rapid release phase as the PEG concentration increased and the release rate slowed down. In vivo experiments in rats revealed that the composite system prolonged the release period by about 10 d. The pharmacokinetic parameter AUC0-1 was decreased by 24.78 ng/ml*h, the initial burst release was decreased, and the blood drug concentration fluctuation was lessened. The construction of a porous microsphere-gel composite matrix offers a novel approach to the systems with a sustained, long-lasting release that utilizes rational design.


Assuntos
Liberação Controlada de Fármacos , Géis , Liraglutida , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Porosidade , Liraglutida/administração & dosagem , Liraglutida/farmacocinética , Ratos , Masculino , Portadores de Fármacos/química , Polietilenoglicóis/química , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/química , Ácido Láctico/química , Poloxâmero/química , Preparações de Ação Retardada , Ácido Poliglicólico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA