Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.947
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Ann Intern Med ; 177(4): JC39, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38560908

RESUMO

SOURCE CITATION: Ray KK, Nicholls SJ, Li N, et al; CLEAR OUTCOMES Committees and Investigators. Efficacy and safety of bempedoic acid among patients with and without diabetes: prespecified analysis of the CLEAR Outcomes randomised trial. Lancet Diabetes Endocrinol. 2024;12:19-28. 38061370.


Assuntos
Diabetes Mellitus , Inibidores de Hidroximetilglutaril-CoA Redutases , Adulto , Humanos , Diabetes Mellitus/tratamento farmacológico , Ácidos Dicarboxílicos/efeitos adversos , Ácidos Graxos/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
J Am Soc Nephrol ; 35(2): 135-148, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38044490

RESUMO

SIGNIFICANCE STATEMENT: In this study, we demonstrate that a common, low-cost compound known as octanedioic acid (DC 8 ) can protect mice from kidney damage typically caused by ischemia-reperfusion injury or the chemotherapy drug cisplatin. This compound seems to enhance peroxisomal activity, which is responsible for breaking down fats, without adversely affecting mitochondrial function. DC 8 is not only affordable and easy to administer but also effective. These encouraging findings suggest that DC 8 could potentially be used to assist patients who are at risk of experiencing this type of kidney damage. BACKGROUND: Proximal tubules are rich in peroxisomes, which are damaged during AKI. Previous studies demonstrated that increasing peroxisomal fatty acid oxidation (FAO) is renoprotective, but no therapy has emerged to leverage this mechanism. METHODS: Mice were fed with either a control diet or a diet enriched with dicarboxylic acids, which are peroxisome-specific FAO substrates, then subjected to either ischemia-reperfusion injury-AKI or cisplatin-AKI models. Biochemical, histologic, genetic, and proteomic analyses were performed. RESULTS: Both octanedioic acid (DC 8 ) and dodecanedioic acid (DC 12 ) prevented the rise of AKI markers in mice that were exposed to renal injury. Proteomics analysis demonstrated that DC 8 preserved the peroxisomal and mitochondrial proteomes while inducing extensive remodeling of the lysine succinylome. This latter finding indicates that DC 8 is chain shortened to the anaplerotic substrate succinate and that peroxisomal FAO was increased by DC 8 . CONCLUSIONS: DC 8 supplementation protects kidney mitochondria and peroxisomes and increases peroxisomal FAO, thereby protecting against AKI.


Assuntos
Injúria Renal Aguda , Ácidos Dicarboxílicos , Suplementos Nutricionais , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/patologia , Cisplatino , Ácidos Dicarboxílicos/administração & dosagem , Ácidos Graxos , Proteômica , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia
3.
BMC Plant Biol ; 24(1): 687, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39026164

RESUMO

BACKGROUND: The effect of azelaic acid (Aza) on the response of tomato plants to Alternaria solani was investigated in this study. After being treated with Aza, tomato plants were infected with A. solani, and their antioxidant, biochemical, and molecular responses were analyzed. RESULTS: The results demonstrated that H2O2 and MDA accumulation increased in control plants after pathogen infection. Aza-treated plants exhibited a remarkable rise in peroxidase (POD) and catalase (CAT) activities during the initial stages of A. solani infection. Gene expression analysis revealed that both Aza treatment and pathogen infection altered the expression patterns of the SlNPR1, SlERF2, SlPR1, and SlPDF1.2 genes. The expression of SlPDF1.2, a marker gene for the jasmonic acid/ethylene (JA/ET) signaling pathway, showed a remarkable increase of 4.2-fold upon pathogen infection. In contrast, for the SlNPR1, a key gene in salicylic acid (SA) pathway, this increased expression was recorded with a delay at 96 hpi. Also, the phytohormone analysis showed significantly increased SA accumulation in plant tissues with disease development. It was also revealed that tissue accumulation of JA in Aza-treated plants was increased following pathogen infection, while it was not increased in plants without pathogen inoculation. CONCLUSION: The results suggest that the resistance induced by Aza is mainly a result of modulations in both SA and JA pathways following complex antioxidant and molecular defense responses in tomato plants during A. solani infection. These findings provide novel information regarding inducing mechanisms of azelaic acid which would add to the current body of knowledge of SAR induction in plants as result of Aza application.


Assuntos
Alternaria , Ciclopentanos , Ácidos Dicarboxílicos , Resistência à Doença , Doenças das Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Alternaria/fisiologia , Ácidos Dicarboxílicos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Antioxidantes/metabolismo
4.
Metab Eng ; 81: 262-272, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154655

RESUMO

Due to its tolerance properties, Pseudomonas has gained particular interest as host for oxidative upgrading of the toxic aldehyde 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA), a promising biobased alternative to terephthalate in polyesters. However, until now, the native enzymes responsible for aldehyde oxidation are unknown. Here, we report the identification of the primary HMF-converting enzymes of P. taiwanensis VLB120 and P. putida KT2440 by extended gene deletions. The key players in HMF oxidation are a molybdenum-dependent periplasmic oxidoreductase and a cytoplasmic dehydrogenase. Deletion of the corresponding genes almost completely abolished HMF oxidation, leading instead to aldehyde reduction. In this context, two HMF-reducing dehydrogenases were also revealed. These discoveries enabled enhancement of Pseudomonas' furanic aldehyde oxidation machinery by genomic overexpression of the respective genes. The resulting BOX strains (Boosted OXidation) represent superior hosts for biotechnological synthesis of FDCA from HMF. The increased oxidation rates provide greatly elevated HMF tolerance, thus tackling one of the major drawbacks of whole-cell catalysis with this aldehyde. Furthermore, the ROX (Reduced OXidation) and ROAR (Reduced Oxidation And Reduction) deletion mutants offer a solid foundation for future development of Pseudomonads as biotechnological chassis notably for scenarios where rapid HMF conversion is undesirable.


Assuntos
Ácidos Dicarboxílicos , Furaldeído , Pseudomonas , Pseudomonas/genética , Furanos
5.
Metab Eng ; 83: 52-60, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521489

RESUMO

2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable pseudo-aromatic dicarboxylic acid, is a promising building block compound for manufacturing biodegradable polyesters. This study aimed to construct high-performance cell factories enabling the efficient production of PDC from glucose. Firstly, the effective enzymes of the PDC biosynthetic pathway were overexpressed on the chromosome of the 3-dehydroshikimate overproducing strain. Consequently, the one-step biosynthesis of PDC from glucose was achieved. Further, the PDC production was enhanced by multi-copy integration of the key gene PsligC encoding 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase and co-expression of Vitreoscilla hemoglobin. Subsequently, the PDC production was substantially improved by redistributing the metabolic flux for cell growth and PDC biosynthesis based on dynamically downregulating the expression of pyruvate kinase. The resultant strain PDC50 produced 129.37 g/L PDC from glucose within 78 h under fed-batch fermentation conditions, with a yield of 0.528 mol/mol and an average productivity of 1.65 g/L/h. The findings of this study lay the foundation for the potential industrial production of PDC.


Assuntos
Escherichia coli , Engenharia Metabólica , Poliésteres , Pironas , Escherichia coli/genética , Escherichia coli/metabolismo , Poliésteres/metabolismo , Pironas/metabolismo , Glucose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácidos Dicarboxílicos/metabolismo
6.
J Med Virol ; 96(1): e29372, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235544

RESUMO

Influenza A virus (IAV) infection causes respiratory disease. Recently, infection of IAV H5N1 among mammals are reported in farmed mink. Therefore, to discover antivirals against IAV, we screened a compound library by using the RNA-dependent RNA polymerase (RdRp) assay system derived from H5N1 IAV including a drug-resistant PA mutant (I38T) and a viral polymerase activity enhancing PB2 mutant (T271A). Upon screening, we found vidofludimus can be served as a potential inhibitor for IAV. Vidofludimus an orally active inhibitor for dihydroorotate dehydrogenase (DHODH), a key enzyme for the cellular de novo pyrimidine biosynthesis pathway. We found that vidofludimus exerted antiviral activity against wild-type and drug-resistant mutant IAV, with effective concentrations (EC50 ) of 2.10 and 2.11 µM, respectively. The anti-IAV activity of vidofludimus was canceled by the treatment of uridine or cytidine through pyrimidine salvage synthesis pathway, or orotic acid through pyrimidine de novo synthesis pathway. This indicated that the main target of vidofludimus is DHODH in IAV RdRp expressing cells. We also produced recombinant seasonal IAV H1N1 virion and influenza B virus (IBV) RdRp assay system and confirmed vidofludimus also carried highly antiviral activity against seasonal IAV and IBV. Vidofludimus is a candidate drug for the future threat of IAV H5N1 infection among humans as well as seasonal influenza virus infection.


Assuntos
Compostos de Bifenilo , Ácidos Dicarboxílicos , Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Humanos , Animais , Di-Hidro-Orotato Desidrogenase , Antivirais/farmacologia , Antivirais/metabolismo , Vírus da Influenza A/genética , Influenza Humana/tratamento farmacológico , Vírus da Influenza B , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Pirimidinas/farmacologia , Replicação Viral , Mamíferos/metabolismo
7.
J Exp Bot ; 75(6): 1767-1780, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37769208

RESUMO

Very long-chain fatty acids (VLCFAs) are precursors for the synthesis of membrane lipids, cuticular waxes, suberins, and storage oils in plants. 3-Ketoacyl CoA synthase (KCS) catalyzes the condensation of C2 units from malonyl-CoA to acyl-CoA, the first rate-limiting step in VLCFA synthesis. In this study, we revealed that Arabidopsis KCS17 catalyzes the elongation of C22-C24 VLCFAs required for synthesizing seed coat suberin. Histochemical analysis of Arabidopsis plants expressing GUS (ß-glucuronidase) under the control of the KCS17 promoter revealed predominant GUS expression in seed coats, petals, stigma, and developing pollen. The expression of KCS17:eYFP (enhanced yellow fluorescent protein) driven by the KCS17 promoter was observed in the outer integument1 of Arabidopsis seed coats. The KCS17:eYFP signal was detected in the endoplasmic reticulum of tobacco epidermal cells. The levels of C22 VLCFAs and their derivatives, primary alcohols, α,ω-alkane diols, ω-hydroxy fatty acids, and α,ω-dicarboxylic acids increased by ~2-fold, but those of C24 VLCFAs, ω-hydroxy fatty acids, and α,ω-dicarboxylic acids were reduced by half in kcs17-1 and kcs17-2 seed coats relative to the wild type (WT). The seed coat of kcs17 displayed decreased autofluorescence under UV and increased permeability to tetrazolium salt compared with the WT. Seed germination and seedling establishment of kcs17 were more delayed by salt and osmotic stress treatments than the WT. KCS17 formed homo- and hetero-interactions with KCR1, PAS2, and ECR, but not with PAS1. Therefore, KCS17-mediated VLCFA synthesis is required for suberin layer formation in Arabidopsis seed coats.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lipídeos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutação , Ácidos Graxos/metabolismo , Lipídeos de Membrana/metabolismo , Sementes/genética , Sementes/metabolismo , Plantas/metabolismo , Ácidos Dicarboxílicos/metabolismo
8.
Eur J Clin Invest ; 54(9): e14254, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38778431

RESUMO

BACKGROUND: Elevated levels of lipoprotein(a) [Lp(a)] represent a risk factor for cardiovascular disease including aortic valve stenosis, myocardial infarction and stroke. While the patho-physiological mechanisms linking Lp(a) with atherosclerosis are not fully understood, from genetic studies that lower Lp(a) levels protect from CVD independently of other risk factors including lipids and lipoproteins. Hereby, Lp(a) has been considered an appealing pharmacological target. RESULTS: However, approved lipid lowering therapies such as statins, ezetimibe or PCSK9 inhibitors have a neutral to modest effect on Lp(a) levels, thus prompting the development of new strategies selectively targeting Lp(a). These include antisense oligonucleotides and small interfering RNAs (siRNAs) directed towards apolipoprotein(a) [Apo(a)], which are in advanced phase of clinical development. More recently, additional approaches including inhibitors of Apo(a) and gene editing approaches via CRISPR-Cas9 technology entered early clinical development. CONCLUSION: If the results from the cardiovascular outcome trials, designed to demonstrate whether the reduction of Lp(a) of more than 80% as observed with pelacarsen, olpasiran or lepodisiran translates into the decrease of cardiovascular mortality and major adverse cardiovascular events, will be positive, lowering Lp(a) will become a new additional target in the management of patients with elevated cardiovascular risk.


Assuntos
Lipoproteína(a) , Oligonucleotídeos Antissenso , RNA Interferente Pequeno , Humanos , Lipoproteína(a)/sangue , Lipoproteína(a)/genética , Oligonucleotídeos Antissenso/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Inibidores de PCSK9/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Edição de Genes , Anticolesterolemiantes/uso terapêutico , Ezetimiba/uso terapêutico , Hipolipemiantes/uso terapêutico , Aterosclerose , Ácidos Dicarboxílicos , Ácidos Graxos
9.
Curr Opin Cardiol ; 39(4): 280-285, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456474

RESUMO

PURPOSE OF REVIEW: To study the effect of bempedoic acid on markers of inflammation and lipoprotein (a) to help determine if the drug would be useful to treat patients with elevated cardiovascular risks and residual cardiovascular risk despite optimal low-density lipoprotein cholesterol (LDL-C) levels. RECENT FINDINGS: Bempedoic acid is found to cause significant reduction in LDL-C and high-sensitivity C-reactive protein (hs-CRP) in various randomized clinical trials. Multiple meta-analyses have also found that bempedoic acid therapy leads to reduction in non-high-density lipoprotein cholesterol (non-HDL-C), total cholesterol (TC) and apolipoprotein B (ApoB) levels. However, it has minimal effect on lipoprotein (a) (Lp(a)) level. SUMMARY: Bempedoic acid is a new lipid-lowering agent that inhibits enzyme ATP-citrate lyase in the cholesterol biosynthesis pathway. Major risk of cardiovascular events and its associated morbidity and mortality are proportional to LDL-C and inflammatory markers levels. It was found that bempedoic acid significantly lowers LDL-C, hs-CRP and other inflammatory markers levels. This drug could potentially be used in patients with elevated cardiovascular risk, in patients with residual cardiovascular risk despite attaining LDL-C goal and in statin intolerant patients.


Assuntos
Biomarcadores , Proteína C-Reativa , Doenças Cardiovasculares , Ácidos Dicarboxílicos , Ácidos Graxos , Inflamação , Lipoproteína(a) , Humanos , Ácidos Dicarboxílicos/uso terapêutico , Ácidos Dicarboxílicos/farmacologia , Lipoproteína(a)/sangue , Biomarcadores/sangue , Inflamação/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Ácidos Graxos/uso terapêutico , Proteína C-Reativa/análise , Proteína C-Reativa/efeitos dos fármacos , LDL-Colesterol/sangue , LDL-Colesterol/efeitos dos fármacos , Hipolipemiantes/uso terapêutico , Hipolipemiantes/farmacologia
10.
Chemistry ; 30(21): e202400269, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38329391

RESUMO

Recently, catalytic valorization of biomass-derived furans has received growing interest. 5-Aminomethyl-2-furancarboxylic acid (AMFC), a furan amino acid, holds great promise in the aeras of polymer and pharmaceutical, but its synthesis remains limited. In this work, we report a chemobiocatalytic route toward AMFC by combining laccase-TEMPO system and recombinant Escherichia coli (named E. coli_TAF) harboring ω-transaminase (TA), L-alanine dehydrogenase (L-AlaDH) and formate dehydrogenase (FDH), starting from 5-hydroxymethylfurfural (HMF). In the cascade, HMF is oxidized into 5-formyl-2-furancarboxylic acid (FFCA) by laccase-TEMPO system, and then the resulting intermediate is converted into AMFC by E. coli_TAF via transamination with cheap ammonium formate instead of costly organic amine donors, theoretically generating H2O and CO2 as by-products. The tandem process was run in a one-pot twostep manner, affording AMFC with approximately 81 % yield, together with 10 % 2,5-furandicarboxylic acid (FDCA) as by-product. In addition, the scale-up production of AMFC was demonstrated, with 0.41 g/L h productivity and 8.6 g/L titer. This work may pave the way for green manufacturing of the furan-containing amino acid.


Assuntos
Escherichia coli , Furaldeído/análogos & derivados , Lacase , Escherichia coli/metabolismo , Lacase/química , Aminoácidos , Furanos/química , Furaldeído/química , Furaldeído/metabolismo , Ácidos Dicarboxílicos/química
11.
BMC Cancer ; 24(1): 371, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528462

RESUMO

BACKGROUND: The need for intelligent and effective treatment of diseases and the increase in drug design costs have raised drug repurposing as one of the effective strategies in biomedicine. There are various computational methods for drug repurposing, one of which is using transcription signatures, especially single-cell RNA sequencing (scRNA-seq) data, which show us a clear and comprehensive view of the inside of the cell to compare the state of disease and health. METHODS: In this study, we used 91,103 scRNA-seq samples from 29 patients with colorectal cancer (GSE144735 and GSE132465). First, differential gene expression (DGE) analysis was done using the ASAP website. Then we reached a list of drugs that can reverse the gene signature pattern from cancer to normal using the iLINCS website. Further, by searching various databases and articles, we found 12 drugs that have FDA approval, and so far, no one has reported them as a drug in the treatment of any cancer. Then, to evaluate the cytotoxicity and performance of these drugs, the MTT assay and real-time PCR were performed on two colorectal cancer cell lines (HT29 and HCT116). RESULTS: According to our approach, 12 drugs were suggested for the treatment of colorectal cancer. Four drugs were selected for biological evaluation. The results of the cytotoxicity analysis of these drugs are as follows: tezacaftor (IC10 = 19 µM for HCT-116 and IC10 = 2 µM for HT-29), fenticonazole (IC10 = 17 µM for HCT-116 and IC10 = 7 µM for HT-29), bempedoic acid (IC10 = 78 µM for HCT-116 and IC10 = 65 µM for HT-29), and famciclovir (IC10 = 422 µM for HCT-116 and IC10 = 959 µM for HT-29). CONCLUSIONS: Cost, time, and effectiveness are the main challenges in finding new drugs for diseases. Computational approaches such as transcriptional signature-based drug repurposing methods open new horizons to solve these challenges. In this study, tezacaftor, fenticonazole, and bempedoic acid can be introduced as promising drug candidates for the treatment of colorectal cancer. These drugs were evaluated in silico and in vitro, but it is necessary to evaluate them in vivo.


Assuntos
Neoplasias Colorretais , Ácidos Dicarboxílicos , Reposicionamento de Medicamentos , Ácidos Graxos , Humanos , Reposicionamento de Medicamentos/métodos , Células HT29 , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
12.
Curr Atheroscler Rep ; 26(3): 83-89, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38294660

RESUMO

PURPOSE OF REVIEW: Bempedoic acid is a novel therapeutic agent that is designed to reduce levels of low-density lipoprotein cholesterol (LDL-C). The purpose of this review is to provide the background for development of bempedoic acid, findings from clinical trials and to discuss clinical implications. RECENT FINDINGS: Bempedoic acid inhibits ATP citrate lyase within the liver and reduces cholesterol synthesis, with the potential to avoid muscle symptoms experienced by patients treated with statins. Early clinical studies demonstrated that administration of bempedoic acid resulted in lowering of LDL-C by 20-30% as monotherapy and by 40-50% when combined with ezetimibe, in addition to lowering of high sensitivity C-reactive protein by 20-30%. The CLEAR Outcomes trial of high cardiovascular risk patients, with elevated LDL-C levels and either unable or unwilling to take statins demonstrated that bempedoic acid reduced the rate of major adverse cardiovascular events. A greater incidence of elevation of hepatic transaminase and creatinine, gout, and cholelithiasis were consistently observed in bempedoic acid-treated patients. Bempedoic acid presents an additional therapeutic option to achieve more effective lowering of LDL-C levels and reduction in cardiovascular risk.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , LDL-Colesterol , Ácidos Graxos/uso terapêutico , Ácidos Dicarboxílicos/uso terapêutico
13.
Amino Acids ; 56(1): 11, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319413

RESUMO

The organic anion-transporting polypeptide 1B3 and P-glycoprotein (P-gp) provide efficient directional transport (OATP1B3-P-gp) from the blood to the bile that serves as a key determinant of hepatic disposition of the drug. Unfortunately, there is still a lack of effective means to evaluate the disposal ability mediated by transporters. The present study was designed to identify a suitable endogenous biomarker for the assessment of OATP1B3-P-gp function in the liver. We established stably transfected HEK293T-OATP1B3 and HEK293T-P-gp cell lines. Results showed that azelaic acid (AzA) was an endogenous substrate for OATP1B3 and P-gp using serum pharmacology combined with metabolomics. There is a good correlation between the serum concentration of AzA and probe drugs of rOATP1B3 and rP-gp when rats were treated with their inhibitors. Importantly, after 5-fluorouracil-induced rat liver injury, the relative mRNA level and expression of rOATP1B3 and rP-gp were markedly down-regulated in the liver, and the serum concentration of AzA was significantly increased. These observations suggest that AzA is an endogenous substrate of both OATP1B3 and P-gp, and may serve as a potential endogenous biomarker for the assessment of the function of OATP1B3-P-gp for the prediction of changes in the pharmacokinetics of drugs transported by OATP1B3-P-gp in liver disease states.


Assuntos
Ácidos Dicarboxílicos , Fígado , Metabolômica , Animais , Humanos , Ratos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Biomarcadores , Células HEK293 , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto
14.
Biomacromolecules ; 25(5): 2792-2802, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38602263

RESUMO

Polyesters from furandicarboxylic acid derivatives, i.e., dimethyl 2,5-furandicarboxylate (2,5-DMFDCA) and 2,4-DMFDCA, show interesting properties among bio-based polymers. Another potential heteroaromatic monomer, 3,4-bis(hydroxymethyl)furan (3,4-BHMF), is often overlooked but holds promise for biopolymer synthesis. Cleaning and greening synthetic procedures, i.e., enzymatic polymerization, offer sustainable pathways. This study explores the Candida antarctica lipase B (CALB)-catalyzed copolymerization of 3,4-BHMF with furan dicarboxylate isomers and aliphatic diols. The furanic copolyesters (co-FPEs) with higher polymerization degrees are obtained using 2,4-isomer, indicating CALB's preference. Material analysis revealed semicrystalline properties in all synthesized 2,5-FDCA-based co-FPEs, with multiple melting temperatures (Tm) from 53 to 124 °C and a glass-transition temperature (Tg) of 9-10 °C. 2,4-FDCA-based co-FPEs showed multiple Tm from 43 to 61 °C and Tg of -14 to 12 °C; one of them was amorphous. In addition, all co-FPEs showed a two-step decomposition profile, indicating aliphatic and semiaromatic segments in the polymer chains.


Assuntos
Ácidos Dicarboxílicos , Proteínas Fúngicas , Furanos , Lipase , Poliésteres , Polimerização , Lipase/química , Lipase/metabolismo , Furanos/química , Proteínas Fúngicas/química , Ácidos Dicarboxílicos/química , Poliésteres/química , Poliésteres/síntese química , Isomerismo , Basidiomycota
15.
Microb Cell Fact ; 23(1): 255, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342283

RESUMO

Cyclo (Phe-Pro) (cFP), a cyclic dipeptide with notable antifungal, antibacterial, and antiviral properties, shows great promise for biological control of plant diseases. Produced as a byproduct by non-ribosomal peptide synthetases (NRPS), the regulatory mechanism of cFP biosynthesis remains unclear. In a screening test of 997 Tn5 mutants of Burkholderia seminalis strain R456, we identified eight mutants with enhanced antagonistic effects against Fusarium graminearum (Fg). Among these, mutant 88's culture filtrate contained cFP, confirmed through HPLC and LC-MS, which actively inhibited Fg. The gene disrupted in mutant 88 is part of the Dct transport system (Dct-A, -B, -D), responsible for C4-dicarboxylate transport. Knockout mutants of Dct genes exhibited higher cFP levels than the wild type, whereas complementary strains showed no significant difference. Additionally, the presence of exogenous C4-dicarboxylates reduced cFP production in wild type R456, indicating that these substrates negatively regulate cFP synthesis. Given that cFP synthesis is related to NRPS, we previously identified an NRPS cluster in R456, horizontally transferred from algae. Specifically, knocking out gene 2061 within this NRPS cluster significantly reduced cFP production. A Fur box binding site was predicted upstream of gene 2061, and yeast one-hybrid assays confirmed Fur protein binding, which increased with additional C4-dicarboxylates. Knockout of the Fur gene led to up-regulation of gene 2061 and increased cFP production, suggesting that C4-dicarboxylates suppress cFP synthesis by enhancing Fur-mediated repression of gene 2061.


Assuntos
Burkholderia , Burkholderia/metabolismo , Burkholderia/genética , Fusarium/metabolismo , Fusarium/genética , Fusarium/efeitos dos fármacos , Peptídeos Cíclicos/biossíntese , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Ácidos Dicarboxílicos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
16.
Physiol Plant ; 176(5): e14550, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39327690

RESUMO

The present study demonstrates that low concentrations of azelaic acid (AZA) significantly impact the metabolism of Arabidopsis thaliana seedlings, leading to imbalances in numerous minerals and metabolites due to AZA-induced stress. Untargeted metabolomic analyses were conducted on untreated and AZA-treated seedlings at two time points: 7 and 14 days after treatment initiation. The results revealed a general accumulation of sugars (e.g., glucose, mannose, xylose), amino acids (e.g., lysine, GABA, threonine, glutamine), and organic acids (e.g., glutaric acid, shikimic acid, succinic acid) in AZA treated-seedlings, suggesting that AZA triggers stress responses in Arabidopsis. Ionomic analysis revealed that AZA induces phosphorus deficiency, which plants compensate by increasing malate content in the roots. Additionally, AZA treatment induced putrescine accumulation within the root, a metabolic biomarker of potassium deficiency and plant stress. The metabolomic profile showed elevated levels of different specialized metabolites, such as nitrogen- and sulphur-containing compounds, and altered levels of various phytohormones, including jasmonates and brassinosteroids, implicated in plant protection under biotic and/or abiotic stresses. These findings support the hypothesis that AZA's mode of action is associated with an auxin imbalance, suggesting its function as an auxinic herbicide. The observed increases in starch and jasmonates, coupled with the disruptions in potassium homeostasis, are linked to the previously reported alterations in the auxin transport, root architecture and gravitropic root response. Statistical analyses were applied, including Kruskal-Wallis tests for ionomic data, as well as multifactor analysis, Principal Component Analysis, Orthogonal Partial Least Squares-Discriminant Analysis, and enrichment pathway analysis for metabolomic data, ensuring the robustness and validity of these findings.


Assuntos
Arabidopsis , Ácidos Dicarboxílicos , Metabolômica , Plântula , Ácidos Dicarboxílicos/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Plântula/metabolismo , Plântula/efeitos dos fármacos , Metabolômica/métodos , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Aminoácidos/metabolismo , Metaboloma/efeitos dos fármacos , Malatos/metabolismo , Estresse Fisiológico/efeitos dos fármacos
17.
Environ Sci Technol ; 58(17): 7516-7528, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629947

RESUMO

Field observations of daytime HONO source strengths have not been well explained by laboratory measurements and model predictions up until now. More efforts are urgently needed to fill the knowledge gaps concerning how environmental factors, especially relative humidity (RH), affect particulate nitrate photolysis. In this work, two critical attributes for atmospheric particles, i.e., phase state and bulk-phase acidity, both influenced by ambient RH, were focused to illuminate the key regulators for reactive nitrogen production from typical internally mixed systems, i.e., NaNO3 and dicarboxylic acid (DCA) mixtures. The dissolution of only few oxalic acid (OA) crystals resulted in a remarkable 50-fold increase in HONO production compared to pure nitrate photolysis at 85% RH. Furthermore, the HONO production rates (PHONO) increased by about 1 order of magnitude as RH rose from <5% to 95%, initially exhibiting an almost linear dependence on the amount of surface absorbed water and subsequently showing a substantial increase in PHONO once nitrate deliquescence occurred at approximately 75% RH. NaNO3/malonic acid (MA) and NaNO3/succinic acid (SA) mixtures exhibited similar phase state effects on the photochemical HONO production. These results offer a new perspective on how aerosol physicochemical properties influence particulate nitrate photolysis in the atmosphere.


Assuntos
Nitratos , Fotólise , Nitratos/química , Ácidos Dicarboxílicos/química , Ácido Nitroso/química , Umidade , Malonatos/química , Poluentes Atmosféricos/química
18.
J Am Acad Dermatol ; 90(5): 1006.e1-1006.e30, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38300170

RESUMO

BACKGROUND: Acne vulgaris commonly affects adults, adolescents, and preadolescents aged 9 years or older. OBJECTIVE: The objective of this study was to provide evidence-based recommendations for the management of acne. METHODS: A work group conducted a systematic review and applied the Grading of Recommendations, Assessment, Development, and Evaluation approach for assessing the certainty of evidence and formulating and grading recommendations. RESULTS: This guideline presents 18 evidence-based recommendations and 5 good practice statements. Strong recommendations are made for benzoyl peroxide, topical retinoids, topical antibiotics, and oral doxycycline. Oral isotretinoin is strongly recommended for acne that is severe, causing psychosocial burden or scarring, or failing standard oral or topical therapy. Conditional recommendations are made for topical clascoterone, salicylic acid, and azelaic acid, as well as for oral minocycline, sarecycline, combined oral contraceptive pills, and spironolactone. Combining topical therapies with multiple mechanisms of action, limiting systemic antibiotic use, combining systemic antibiotics with topical therapies, and adding intralesional corticosteroid injections for larger acne lesions are recommended as good practice statements. LIMITATIONS: Analysis is based on the best available evidence at the time of the systematic review. CONCLUSIONS: These guidelines provide evidence-based recommendations for the management of acne vulgaris.


Assuntos
Acne Vulgar , Antibacterianos , Peróxido de Benzoíla , Fármacos Dermatológicos , Ácidos Dicarboxílicos , Doxiciclina , Isotretinoína , Ácido Salicílico , Espironolactona , Humanos , Acne Vulgar/tratamento farmacológico , Isotretinoína/administração & dosagem , Isotretinoína/uso terapêutico , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/uso terapêutico , Peróxido de Benzoíla/administração & dosagem , Peróxido de Benzoíla/uso terapêutico , Ácidos Dicarboxílicos/administração & dosagem , Ácidos Dicarboxílicos/uso terapêutico , Espironolactona/administração & dosagem , Espironolactona/uso terapêutico , Doxiciclina/administração & dosagem , Doxiciclina/uso terapêutico , Ácido Salicílico/administração & dosagem , Ácido Salicílico/uso terapêutico , Medicina Baseada em Evidências/normas , Administração Oral , Retinoides/administração & dosagem , Retinoides/uso terapêutico , Tetraciclinas/administração & dosagem , Tetraciclinas/uso terapêutico , Adolescente , Minociclina/administração & dosagem , Minociclina/uso terapêutico , Criança , Administração Cutânea , Anticoncepcionais Orais Combinados/administração & dosagem , Anticoncepcionais Orais Combinados/uso terapêutico , Quimioterapia Combinada , Feminino , Corticosteroides/administração & dosagem , Corticosteroides/uso terapêutico , Injeções Intralesionais , Adulto , Cortodoxona/análogos & derivados , Propionatos
19.
Cardiology ; 149(1): 71-77, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37989119

RESUMO

BACKGROUND: Low-density lipoproteins are now proven to be causal for atherosclerosis. Pharmacological treatment focuses on an increase of low-density lipoprotein (LDL) receptors, particularly in the hepatocyte, which leads to uptake of LDL from blood, thereby reducing the burden to the arterial wall. This mechanism has first been proven by statins to be effective to reduce cardiovascular morbidity and mortality. The concept of "the lower, the better" was shown by high-intensity statins and new compounds like ezetimibe, PCSK9 antibodies, inclisiran, and ultimately bempedoic acid. SUMMARY: Although first considered only a relatively weak LDL-C lowering drug, bempedoic acid proved to be very effective, for example, in statin-intolerant patients to reduce cardiovascular events in the CLEAR-Outcomes study. In the era of personalized medicine, it should not be forgotten that the individual response to a LDL-C lowering drug can vary considerably. Bempedoic acid has a favorable safety profile, particularly it does not induce muscle problems because its precursor is not metabolized to the active drug in the muscle, and it does not induce hyperglycemia. Bempedoic acid probably is best used in combination with ezetimibe, which leads to LDL-C reductions in the range of moderately intensive statins; in an oral triple combination with a high-intensity statin, LDL-C reductions in the range of two-thirds can be achieved. KEY MESSAGES: Bempedoic acid is a further weapon against the atherogenic effect of LDL cholesterol - in both primary and secondary prevention.


Assuntos
Anticolesterolemiantes , Ácidos Dicarboxílicos , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Pró-Proteína Convertase 9 , LDL-Colesterol , Ácidos Graxos/uso terapêutico , Ezetimiba/uso terapêutico , Anticolesterolemiantes/efeitos adversos
20.
J Asthma ; 61(10): 1306-1315, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38634666

RESUMO

OBJECTIVE: The prevalence of asthma has gradually increased worldwide in recent years, which has made asthma a global public health problem. However, due to its complexity and heterogeneity, there are a few academic debates on the pathogenic mechanism of asthma. The study of the pathogenesis of asthma through metabolomics has become a new research direction. We aim to uncover the metabolic pathway of children with asthma. METHODS: Liquid chromatography (LC)-mass spectrometry (MS)-based metabolomic analysis was conducted to compare urine metabolic profiles between asthmatic children (n = 30) and healthy controls (n = 10). RESULTS: Orthogonal projections to latent structures-discrimination analysis (OPLS-DA) showed that there were significant differences in metabolism between the asthma group and the control group with three different metabolites screened out, including traumatic acid, dodecanedioic acid, and glucobrassicin, and the levels of traumatic acid and dodecanedioic acid in the urine samples of asthmatic children were lower than those of healthy controls therein. Pathway enrichment analysis of differentially abundant metabolites suggested that α-linolenic acid metabolism was an asthma-related pathway. CONCLUSIONS: This study suggests that there are significant metabolic differences in the urine of asthmatic children and healthy controls, and α-linolenic acid metabolic pathways may be involved in the pathogenesis of asthma.


Assuntos
Asma , Metabolômica , Humanos , Asma/urina , Asma/metabolismo , Criança , Masculino , Feminino , Redes e Vias Metabólicas , Cromatografia Líquida , Espectrometria de Massas , Metaboloma , Estudos de Casos e Controles , Ácido alfa-Linolênico/urina , Ácidos Dicarboxílicos/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA