Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ecotoxicol Environ Saf ; 284: 116905, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39191133

RESUMO

Lanthanide-doped upconversion nanoparticles (Ln-UCNPs) have been considered promising materials for various fields, such as biomedical and industrial applications. However, data and reports regarding its toxicity and environmental risks are scarce. Under these circumstances, data must be obtained to fully understand potential toxicity and adverse outcome pathways. In the present study, the toxicity of uncoated Ln-UCNP cores (NaYF4:Yb, Er) was systematically assessed in zebrafish embryos during early developmental stages. Ln-UCNPs were found to have multiple toxic effects, such as effects on survival rates, delayed hatching times, shorter body lengths, altered heart rates and blood circulation (significantly reduced), and neurobehavioral impairments in response to photoperiod stimulation. Bioimaging showed that Ln-UCNPs were distributed on the chorion, eyes, and skin at 72 hpf. However, it accumulates in the pharynx, esophagus, and intestine after oral administration. Ln-UCNPs disrupt the diversity and abundance of host-associated microorganisms (gut microbiota) leading to an increase in the prevalence of harmful bacteria in zebrafish. Transcriptomic and Ingenuity Pathway Analysis (IPA) predicted Interleukin-8 (IL-8) signaling, neuroinflammation, cardiac hypertrophy signaling pathways, immune and inflammation-related response interferon-gamma (ifnγ), and miR-155 as key mediators in regulatory effects. Based on this, a causal network was built showing the strong links between the induced gene expression of differentially expressed genes (DEGs), such as nitric oxide synthase 2 (nos2) and tumor necrosis factor (tnf) upon Ln-UCNPs treatment, and with the downstream adverse outcomes, in particular, the promotion of apoptosis, liver damage, and inflammatory response. Finally, RT-qPCR analysis confirmed the up-regulated expression of nos2 and tnf in the exposed larvae, consistent with the observation of an increased number of fluorescence-labelled neutrophils and macrophages in lyz: DsRed transgenic zebrafish until 120 hpf exposure, which together demonstrated the proinflammatory effects of Ln-UCNPs on organisms. In conclusion, we illustrated the developmental toxicity, disruption of gut-microbiome, and proinflammatory effects of Ln-UCNP cores on zebrafish, and the causal network from IPA analysis may help further elucidate the adverse outcome pathway of Ln-UCNPs.


Assuntos
Microbioma Gastrointestinal , Nanopartículas , Peixe-Zebra , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Nanopartículas/toxicidade , Ítrio/toxicidade , Fluoretos/toxicidade , Itérbio/toxicidade , Érbio/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Inflamação/induzido quimicamente
2.
Ecotoxicol Environ Saf ; 203: 110951, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678752

RESUMO

The growing use of rare-earth doped upconversion nanoparticles (UCNPs) has caused increasing concern about their biosafety. Here, to understand the toxicity of UCNPs and their mechanism in HepG2 cells, we systematically study the cytotoxicity, uptake and elimination behaviors of three types of UCNPs combined multiple cytotoxicity evaluation means with inductively coupled plasma mass spectrometry (ICP-MS) detection. Sodium yttrium fluoride, doped with 18% (molar ratio) ytterbium and 2% erbium (NaYF4: Yb3+, Er3+) was selected as the model UCNPs with two sizes (35 and 55 nm), and the poly(acrylic acid) and polyethylenimine were selected as the representatives of negative and positive surface coating of UCNPs, respectively. UCNPs were found to induce cytotoxicity in time- and dose-dependent manners, which might be mediated by reactive oxygen species generation and oxidative stress. Apoptosis, inflammation, and metabolic process were enhanced after cells exposed to 200 mg/L UCNPs for 48 h. Increase in the protein levels of cleaved caspased-9, cleaved caspase-3 and Bax and decrease in the anti-apoptotic protein, Bcl-2 suggested that the mitochondria mediated pathway was involved in UCNP-induced apoptosis. With the aid of ICP-MS, it demonstrated that the cytotoxicity was associated with internalized amount of UCNPs, which largely relied on their surface properties rather than size in the tested range. By comparing UCNPs with Y3+ ions, it demonstrated that NPs properties played a nonnegligible role in the cytotoxicity of UCNPs. These findings provide new insights for fundamental understanding of cytotoxicity of UCNPs and may contribute to more rational use of these materials in the future.


Assuntos
Endocitose/efeitos dos fármacos , Érbio/toxicidade , Fluoretos/toxicidade , Nanopartículas/toxicidade , Itérbio/toxicidade , Ítrio/toxicidade , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células , Sobrevivência Celular , Érbio/química , Érbio/metabolismo , Fluoretos/química , Fluoretos/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Propriedades de Superfície , Itérbio/química , Itérbio/metabolismo , Ítrio/química , Ítrio/metabolismo
3.
Langmuir ; 32(13): 3226-33, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27010624

RESUMO

Bone regeneration and scaffold degradation do not usually follow the same rate, representing a daunting challenge in bone repair. Toward this end, we propose to use an external field such as light (in particular, a tissue-penetrating near-infrared light) to precisely monitor the degradation of the mineralized scaffold (demineralization) and the formation of apatite mineral (mineralization). Herein, CaTiO3:Yb(3+),Er(3+)@bioactive glass (CaTiO3:Yb(3+),Er(3+)@BG) nanofibers with upconversion (UC) photoluminescence (PL) were synthesized. Such nanofibers are biocompatible and can emit green and red light under 980 nm excitation. The UC PL intensity is quenched during the bone-like apatite formation on the surface of the nanofibers in simulated body fluid; more mineral formation on the nanofibers induces more rapid optical quenching of the UC PL. Furthermore, the quenched UC PL can recover back to its original magnitude when the apatite on the nanofibers is degraded. Our work suggests that it is possible to optically monitor the apatite mineralization and demineralization on the surface of nanofibers used in bone repair.


Assuntos
Materiais Biocompatíveis/efeitos da radiação , Nanofibras/efeitos da radiação , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/toxicidade , Materiais Biomiméticos , Compostos de Cálcio/síntese química , Compostos de Cálcio/efeitos da radiação , Compostos de Cálcio/toxicidade , Células Cultivadas , Érbio/química , Érbio/efeitos da radiação , Érbio/toxicidade , Luminescência , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanofibras/química , Nanofibras/toxicidade , Óxidos/síntese química , Óxidos/efeitos da radiação , Óxidos/toxicidade , Titânio/efeitos da radiação , Titânio/toxicidade , Itérbio/química , Itérbio/efeitos da radiação , Itérbio/toxicidade
4.
J Nanosci Nanotechnol ; 16(4): 3653-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27451683

RESUMO

Water soluble NaYF4 nanocrystals codoped with 20 mol% Yb3+, 2 mol% Er3+ were prepared by a facile solvothermal approach using polyvinylpyrrolidone (PVP) as a surfactant. As a potential material for luminescent probes, in votroeffects of upconversion nanoparticles (UCNPs) on human aenocarcinoma (SGC-7901) cells with different concentrations were observed. These effects range from cell viability, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) production, AnnexinV-FITC-propidium iodide (PI) apoptosis detection, and cell cycles. Our results demonstrated that the cells treated with UCNPs showed a decrease in cell viability accompanied the decreased MMP and the release of ROS. When treated with 400 µg/mL UCNPs, AnnexinV-FITC-PI apoptosis detection showed the UCNPs induced apoptosis, the cell cycle indicated the UCNPs suppressor cells in the G1 phase obviously, thereby reducing cell activity.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Fluoretos/química , Fluoretos/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Ítrio/química , Ítrio/toxicidade , Materiais Biocompatíveis , Érbio/química , Érbio/toxicidade , Teste de Materiais , Nanopartículas Metálicas/ultraestrutura , Solubilidade , Água/química , Itérbio/química , Itérbio/toxicidade
5.
J Mater Chem B ; 8(37): 8634-8643, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32839792

RESUMO

Cerium oxide nanoparticles (NPs) due to their advanced catalytic performance have been widely used to treat oxidative damage. However, Ce2O3 NPs have not been further investigated in the treatment of acute oxidative injury in vivo. It is meaningful to improve the efficiency for treatment of acute oxidative injury with NPs in vivo. In this report, we designed Er3+-doped Ce2O3 (Er/Ce2O3) NPs with a size of 7.9 nm, which were used to treat acute liver injury. Er/Ce2O3 NPs realized high-efficiency catalysis of hydrogen peroxide (H2O2) at room temperature. An acute liver damage model was established through intraperitoneal injection of lipopolysaccharide (LPS) in C57 mice. By analyzing histopathological and biochemical indexes, Er/Ce2O3 NPs showed a significant improvement in LPS-induced acute liver injury. Acute liver oxidative damage can be treated within 24 hours, which proved the high catalytic efficiency of Er/Ce2O3 NPs in vivo. The activities of SOD, GPx and CTA increased and production of ROS decreased with Er/Ce2O3 NP treatment in comparison with LPS-induced injury, indicating that the mechanism of Er/Ce2O3 NPs in the treatment of acute oxidative damage of liver was mainly via catalysis of ROS products. Moreover, the protein expression levels of TNF-α, CD45 and IL-1ß in liver decreased in the Er/Ce2O3 NPs-treated group, which indicated that Er/Ce2O3 NPs have the function of anti-inflammation property. Therefore, Er/Ce2O3 NPs can be applied to treat and prevent diseases caused by acute oxidative damage.


Assuntos
Antioxidantes/uso terapêutico , Cério/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Inflamação/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/toxicidade , Catálise , Linhagem Celular , Cério/química , Cério/toxicidade , Érbio/química , Érbio/uso terapêutico , Érbio/toxicidade , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Lipopolissacarídeos , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos
6.
Acta Biomater ; 102: 384-393, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31794872

RESUMO

Surface modification to obtain high dispersion stability and biocompatibility is a key factor for bio-application of upconversion nanoparticles (UCNPs). A systematic study of UCNPs modified with four hydrophilic molecules separately, comparing their dispersion stability in biological buffers and cellular biocompatibility is reported here. The results show that carboxyl-functionalized UCNPs (modified by 3,4-dihydrocinnamic acid (DHCA) or poly(monoacryloxyethyl phosphate (MAEP)) with negative surface charge have superior even-distribution in biological buffers compared to amino-functionalized UCNPs (modified by (aminomethyl)phosphonic (AMPA) or (3-Aminopropyl)triethoxysilane (APTES)) with positive surface charge. Subsequent investigation of cellular interactions revealed high levels of non-targeted cellular uptake of the particles modified with either of the three small molecules (AMPA, APTES, DHCA) and high levels of cytotoxicity when used at high concentrations. The particles were seen to be trapped as particle-aggregates within the cellular cytoplasm, leading to reduced cell viability and cell proliferation, along with dysregulation of the cell cycle as assessed by DNA content measurements. The dramatically reduced proportion of cells in G1 phase and the slightly increased proportion in G2 phase indicates inhibition of M phase, and the appearance of sub-G1 phase reflects cell necrosis. In contrast, MAEP-modified UCNPs are bio-friendly with increased dispersion stability in biological buffers, are non-cytotoxic, with negligible levels of non-specific cellular uptake and no effect on the cell cycle at both low and high concentrations. MAEP-modified UCNPs were further functionalized with streptavidin for intracellular microtubule imaging, and showed clear cytoskeletal structures via their upconversion luminescence. STATEMENT OF SIGNIFICANCE: Upconversion nanoparticles (UCNP) are an exciting potential nanomaterial for bio-applications. Their anti-Stokes luminescence makes them especially attractive to be used as imaging probes and thermal therapeutic reagents. Surface modification is the key to achieving stable and compatible hydrophilic-UCNPs. However, the lack of criteria to assess molecular ligands used for ligand exchange of nanoparticles has hampered the development of surface modification, and further limits UCNP's bio-application. Herein, we report a systematic comparative study of modified-UCNPs with four distinct hydrophilic molecules, assessing each particles' colloidal stability in biological buffers and their cellular biocompatibility. The protocol established here can serve as a potential guide for the surface modification of UCNPs in bio-applications.


Assuntos
Substâncias Luminescentes/química , Nanopartículas Metálicas/química , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Érbio/química , Érbio/efeitos da radiação , Érbio/toxicidade , Fluoretos/química , Fluoretos/efeitos da radiação , Fluoretos/toxicidade , Interações Hidrofóbicas e Hidrofílicas , Raios Infravermelhos , Ligantes , Substâncias Luminescentes/efeitos da radiação , Substâncias Luminescentes/toxicidade , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Nanopartículas Metálicas/efeitos da radiação , Nanopartículas Metálicas/toxicidade , Microscopia de Fluorescência , Microtúbulos/metabolismo , Itérbio/química , Itérbio/efeitos da radiação , Itérbio/toxicidade , Ítrio/química , Ítrio/efeitos da radiação , Ítrio/toxicidade
7.
Environ Pollut ; 254(Pt A): 112985, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31394345

RESUMO

Cerium (Ce, CeCl3) and Erbium (Er, ErCl3) are increasingly used in many electronic devices facilitating the alteration of their biogeochemical cycles (e.g. e-waste). Previous surveys stated that their environmental concentrations due to natural or anthropogenic events can reach up to 161 µg/L in ore mine effluent for Ce with a mean water concentration of 0.79 µg/L, and 11.9 µg/L for Er in ore mine effluents with a mean water concentration of 0.004 µg/L. Their potential effects onto aquatic organisms are still relatively unexplored. In this study, long-term multigenerational effects on Daphnia magna were assessed using various exposure times (3, 7, 14, and 21 days) in three generations (F0, F1 and F2). Each generation was exposed to environmental concentrations of Ce and Er (0.54 and 0.43 µg/L, respectively - mean values) and effects included organisms' size, parental reproduction, and survival, determination of reactive oxygen species (ROS), enzymatic activity (superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST)), gene expression of ATP-binding cassette (ABC) transporter, and uptake. Results evidenced that chronic multi-generational exposure of daphnids to Ce and Er reduced survival, growth and reproduction, decreasing ROS, SOD and CAT from F0 to F2. Ce reduced the number of generated offsprings after each generation, while Er delayed the time of offsprings emergence, but not their number. ROS, SOD, CAT and GST evidenced that Er is slightly more toxic than Ce. Up- and downregulation of genes was limited, but Ce and Er activated the ABC transporters. Uptake of Ce and Er decreased through exposure time and generations.


Assuntos
Cério/toxicidade , Daphnia/fisiologia , Érbio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/metabolismo , Catalase/metabolismo , Daphnia/efeitos dos fármacos , Glutationa Transferase , Espécies Reativas de Oxigênio , Reprodução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA