Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(52): e2312666120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127985

RESUMO

AGPAT2 (1-acyl-sn-glycerol-3-phosphate-acyltransferase-2) converts lysophosphatidic acid (LPA) into phosphatidic acid (PA), and mutations of the AGPAT2 gene cause the most common form of congenital generalized lipodystrophy which leads to steatohepatitis. The underlying mechanism by which AGPAT2 deficiency leads to lipodystrophy and steatohepatitis has not been elucidated. We addressed this question using an antisense oligonucleotide (ASO) to knockdown expression of Agpat2 in the liver and white adipose tissue (WAT) of adult male Sprague-Dawley rats. Agpat2 ASO treatment induced lipodystrophy and inflammation in WAT and the liver, which was associated with increased LPA content in both tissues, whereas PA content was unchanged. We found that a controlled-release mitochondrial protonophore (CRMP) prevented LPA accumulation and inflammation in WAT whereas an ASO against glycerol-3-phosphate acyltransferase, mitochondrial (Gpam) prevented LPA content and inflammation in the liver in Agpat2 ASO-treated rats. In addition, we show that overnutrition, due to high sucrose feeding, resulted in increased hepatic LPA content and increased activated macrophage content which were both abrogated with Gpam ASO treatment. Taken together, these data identify LPA as a key mediator of liver and WAT inflammation and lipodystrophy due to AGPAT2 deficiency as well as liver inflammation due to overnutrition and identify LPA as a potential therapeutic target to ameliorate these conditions.


Assuntos
Fígado Gorduroso , Lipodistrofia , Hipernutrição , Masculino , Ratos , Animais , Aciltransferases/metabolismo , Glicerol , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Ratos Sprague-Dawley , Lipodistrofia/genética , Tecido Adiposo Branco/metabolismo , Ácidos Fosfatídicos , Inflamação , Fosfatos
2.
Mol Microbiol ; 121(6): 1164-1181, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38676355

RESUMO

Latent tuberculosis, caused by dormant Mycobacterium tuberculosis (Mtb), poses a threat to global health through the incubation of undiagnosed infections within the community. Dormant Mtb, which is phenotypically tolerant to antibiotics, accumulates triacylglycerol (TAG) utilizing fatty acids obtained from macrophage lipid droplets. TAG is vital to mycobacteria, serving as a cell envelope component and energy reservoir during latency. TAG synthesis occurs by sequential acylation of glycerol-3-phosphate, wherein the second acylation step is catalyzed by acylglycerol-3-phosphate acyltransferase (AGPAT), resulting in the production of phosphatidic acid (PA), a precursor for the synthesis of TAG and various phospholipids. Here, we have characterized a putative acyltransferase of Mtb encoded by Rv3816c. We found that Rv3816c has all four characteristic motifs of AGPAT, exists as a membrane-bound enzyme, and functions as 1-acylglycerol-3-phosphate acyltransferase. The enzyme could transfer the acyl group to acylglycerol-3-phosphate (LPA) from monounsaturated fatty acyl-coenzyme A of chain length 16 or 18 to produce PA. Complementation of Escherichia coli PlsC mutant in vivo by Rv3816c confirmed that it functions as AGPAT. Its active site mutants, H43A and D48A, were incapable of transferring the acyl group to LPA in vitro and were not able to rescue the growth defect of E. coli PlsC mutant in vivo. Identifying Rv3816c as AGPAT and comparing its properties with other AGPAT homologs is not only a step toward understanding the TAG biosynthesis in mycobacteria but has the potential to explore it as a drug target.


Assuntos
Mycobacterium tuberculosis , Triglicerídeos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Triglicerídeos/biossíntese , Triglicerídeos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/genética , Aciltransferases/metabolismo , Aciltransferases/genética , Acilação , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Ácidos Fosfatídicos/metabolismo , Ácidos Fosfatídicos/biossíntese , Acil Coenzima A/metabolismo
3.
Am J Physiol Endocrinol Metab ; 327(1): E69-E80, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717361

RESUMO

Acylglycerophosphate acyltransferases (AGPATs) catalyze the de novo formation of phosphatidic acid to synthesize glycerophospholipids and triglycerides. AGPATs demonstrate unique physiological roles despite a similar biochemical function. AGPAT3 is highly expressed in the testis, kidney, and liver, with intermediate expression in adipose tissue. Loss of AGPAT3 is associated with reproductive abnormalities and visual dysfunction. However, the role of AGPAT3 in adipose tissue and whole body metabolism has not been investigated. We found that male Agpat3 knockout (KO) mice exhibited reduced body weights with decreased white and brown adipose tissue mass. Such changes were less pronounced in the female Agpat3-KO mice. Agpat3-KO mice have reduced plasma insulin growth factor 1 (IGF1) and insulin levels and diminished circulating lipid metabolites. They manifested intact glucose homeostasis and insulin sensitivity despite a lean phenotype. Agpat3-KO mice maintained an energy balance with normal food intake, energy expenditure, and physical activity, except for increased water intake. Their adaptive thermogenesis was also normal despite reduced brown adipose mass and triglyceride content. Mechanistically, Agpat3 was elevated during mouse and human adipogenesis and enriched in adipocytes. Agpat3-knockdown 3T3-L1 cells and Agpat3-deficient mouse embryonic fibroblasts (MEFs) have impaired adipogenesis in vitro. Interestingly, pioglitazone treatment rescued the adipogenic deficiency in Agpat3-deficient cells. We conclude that AGPAT3 regulates adipogenesis and adipose development. It is possible that adipogenic impairment in Agpat3-deficient cells potentially leads to reduced adipose mass. Findings from this work support the unique role of AGPAT3 in adipose tissue.NEW & NOTEWORTHY AGPAT3 deficiency results in male-specific growth retardation. It reduces adipose tissue mass but does not significantly impact glucose homeostasis or energy balance, except for influencing water intake in mice. Like AGPAT2, AGPAT3 is upregulated during adipogenesis, potentially by peroxisome proliferator-activated receptor gamma (PPARγ). Loss of AGPAT3 impairs adipocyte differentiation, which could be rescued by pioglitazone. Overall, AGPAT3 plays a significant role in regulating adipose tissue mass, partially involving its influence on adipocyte differentiation.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase , Adipócitos , Camundongos Knockout , Animais , Feminino , Masculino , Camundongos , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , Adipogenia/fisiologia , Tecido Adiposo Marrom/metabolismo , Diferenciação Celular , Metabolismo Energético/genética , Resistência à Insulina/genética , Camundongos Endogâmicos C57BL , Fenótipo , Termogênese/genética , Magreza/metabolismo , Magreza/genética
4.
Am J Med Genet A ; 194(4): e63481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37984424

RESUMO

Chanarin-Dorfman syndrome is an autosomal recessively inherited disorder characterized by ichthyosis, sensorineural hearing loss, and hepatic dysfunction. We report on a 60-year-old female of Venezuelan descent who presented with congenital ichthyosis, progressive sensorineural hearing loss, and liver cirrhosis. We identify a heterozygous copy number deletion involving exon 1 and another heterozygous deletion involving exon 3 of the ABHD5 gene. Exon 2 is preserved. Both deletions were confirmed with RT-PCR. RNAseq from peripheral blood shows a reduction of ABHD5 expression overall and an absence of exon 3 expression, confirming the deleterious effects of the identified deletions. We present exonic deletions as a potentially common type of ABHD5 variation.


Assuntos
Perda Auditiva Neurossensorial , Eritrodermia Ictiosiforme Congênita , Ictiose , Erros Inatos do Metabolismo Lipídico , Doenças Musculares , Feminino , Humanos , Pessoa de Meia-Idade , Eritrodermia Ictiosiforme Congênita/complicações , Eritrodermia Ictiosiforme Congênita/diagnóstico , Eritrodermia Ictiosiforme Congênita/genética , Erros Inatos do Metabolismo Lipídico/genética , Doenças Musculares/genética , Ictiose/complicações , Ictiose/diagnóstico , Ictiose/genética , Cirrose Hepática , Perda Auditiva Neurossensorial/complicações , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética
5.
Cell Biol Toxicol ; 40(1): 62, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093497

RESUMO

BACKGROUND: Increased activity of the transcription factor FOXC1 leads to elevated transcription of target genes, ultimately facilitating the progression of various cancer types. However, there are currently no literature reports on the role of FOXC1 in renal cell carcinoma. METHODS: By using RT-qPCR, immunohistochemistry and Western blotting, FOXC1 mRNA and protein expression was evaluated. Gain of function experiments were utilized to assess the proliferation and metastasis ability of cells. A nude mouse model was created for transplanting tumors and establishing a lung metastasis model to observe cell proliferation and spread in a living organism. Various techniques including biological analysis, CHIP assay, luciferase assay, RT-qRCR and Western blotting experiments were utilized to investigate how FOXC1 contributes to the transcription of ABHD5 on a molecular level. FOXC1 was assessed by Western blot for its impact on AMPK/mTOR signaling pathway. RESULTS: FOXC1 is down-regulated in RCC, causing unfavorable prognosis of patients with RCC. Further experiments showed that forced FOXC1 expression significantly restrains RCC cell growth and cell metastasis. Mechanically, FOXC1 promotes the transcription of ABHD5 to activate AMPK signal pathway to inhibit mTOR signal pathway. Finally, knockdown of ABHD5 recovered the inhibitory role of FOXC1 overexpression induced cell growth and metastasis suppression. CONCLUSION: In general, our study demonstrates that FOXC1 exerts its tumor suppressor role by promoting ABHD5 transcription to regulating AMPK/mTOR signal pathway. FOXC1 could serve as both a diagnostic indicator and potential treatment focus for RCC.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase , Proteínas Quinases Ativadas por AMP , Carcinoma de Células Renais , Proliferação de Células , Fatores de Transcrição Forkhead , Neoplasias Renais , Camundongos Nus , Transdução de Sinais , Serina-Treonina Quinases TOR , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Humanos , Animais , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Proliferação de Células/genética , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Regulação Neoplásica da Expressão Gênica , Progressão da Doença , Masculino , Feminino , Camundongos Endogâmicos BALB C
6.
Cell Biochem Funct ; 41(1): 128-137, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36515301

RESUMO

Dysfunction of the adipose tissue metabolism is considered as a significant hallmark of aging. It has been proposed that α-ß hydrolase domain containing 5 (ABHD5) plays a critical role in the control of lipolysis. However, the role of ABHD5 in the control of lipolysis during aging or exercise is unknown. Here we combined the experimental mouse model with transcriptomic analyzes by using murine and human databases to explore the role of ABHD5 in the adipose tissue during aging and in response to exercise. Transcriptomic data revealed a downregulation of Abhd5 messenger RNA levels in the subcutaneous white adipose tissue (scWAT) over time in individuals from 20 to 69 years old. Aged mice displayed dramatic reduction of ABHD5 protein content and lipolytic-related proteins in the scWAT. Interestingly, 4 weeks of high-intensity interval training increased ABHD5 protein level and restored the lipolytic pathway in the scWAT of aged mice. Altogether, our findings demonstrated that aging affects ABHD5 content in the adipose tissue of mice and humans. Conversely, exercise increases ABHD5 activity, recovering the lipolytic activity in aged mice.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase , Tecido Adiposo , Envelhecimento , Exercício Físico , Lipólise , Adulto , Idoso , Animais , Humanos , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Tecido Adiposo/enzimologia , Envelhecimento/metabolismo , Hidrolases/genética , Hidrolases/metabolismo
7.
Pediatr Dermatol ; 40(5): 879-881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36709747

RESUMO

Chanarin-Dorfman syndrome (CDS) is a rare, autosomal recessive disorder of impaired triacylglycerol catabolism leading to cytoplasmic deposition of triglycerides in various cell types. We describe the case of an 8-month-old boy with cataracts, strabismus, motor delays, and an ichthyosiform rash since birth. Genetic testing revealed a pathogenic variant of the ABHD5 gene, suggestive of CDS, and further workup demonstrated hepatic steatosis and myopathy. His ichthyosis improved with initiation of a diet low in very long-chain fatty acids and medium-chain fatty acid supplementation.


Assuntos
Catarata , Eritrodermia Ictiosiforme Congênita , Ictiose Lamelar , Ictiose , Erros Inatos do Metabolismo Lipídico , Doenças Musculares , Masculino , Humanos , Lactente , Eritrodermia Ictiosiforme Congênita/diagnóstico , Eritrodermia Ictiosiforme Congênita/genética , Ictiose Lamelar/diagnóstico , Ictiose Lamelar/genética , Ictiose/diagnóstico , Ictiose/genética , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/patologia , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/patologia , Catarata/diagnóstico , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética
8.
J Biol Chem ; 296: 100104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33219129

RESUMO

ABHD5 is an essential coactivator of ATGL, the rate-limiting triglyceride (TG) lipase in many cell types. Importantly, ABHD5 also functions as a tumor suppressor, and ABHD5 mRNA expression levels correlate with patient survival for several cancers. Nevertheless, the mechanisms involved in ABHD5-dependent tumor suppression are not known. We found that overexpression of ABHD5 induces cell cycle arrest at the G1 phase and causes growth retardation in a panel of prostate cancer cells. Transcriptomic profiling and biochemical analysis revealed that genetic or pharmacological activation of lipolysis by ABHD5 potently inhibits mTORC1 signaling, leading to a significant downregulation of protein synthesis. Mechanistically, we found that ABHD5 elevates intracellular AMP content, which activates AMPK, leading to inhibition of mTORC1. Interestingly, ABHD5-dependent suppression of mTORC1 was abrogated by pharmacological inhibition of DGAT1 or DGAT2, isoenzymes that re-esterify fatty acids in a process that consumes ATP. Collectively, this study maps out a novel molecular pathway crucial for limiting cancer cell proliferation, in which ABHD5-mediated lipolysis creates an energy-consuming futile cycle between TG hydrolysis and resynthesis, leading to inhibition of mTORC1 and cancer cell growth arrest.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Humanos , Lipólise/fisiologia , Metabolismo/fisiologia , RNA-Seq
9.
Gastroenterology ; 160(5): 1634-1646.e7, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33347879

RESUMO

BACKGROUND & AIMS: Fatty liver disease (FLD) is a growing epidemic that is expected to be the leading cause of end-stage liver disease within the next decade. Both environmental and genetic factors contribute to the susceptibility of FLD. Several genetic variants contributing to FLD have been identified in exome-wide association studies. However, there is still a missing hereditability indicating that other genetic variants are yet to be discovered. METHODS: To find genes involved in FLD, we first examined the association of missense and nonsense variants with alanine aminotransferase at an exome-wide level in 425,671 participants from the UK Biobank. We then validated genetic variants with liver fat content in 8930 participants in whom liver fat measurement was available, and replicated 2 genetic variants in 3 independent cohorts comprising 2621 individuals with available liver biopsy. RESULTS: We identified 190 genetic variants independently associated with alanine aminotransferase after correcting for multiple testing with Bonferroni method. The majority of these variants were not previously associated with this trait. Among those associated, there was a striking enrichment of genetic variants influencing lipid metabolism. We identified the variants rs2792751 in GPAM/GPAT1, the gene encoding glycerol-3-phosphate acyltransferase, mitochondrial, and rs429358 in APOE, the gene encoding apolipoprotein E, as robustly associated with liver fat content and liver disease after adjusting for multiple testing. Both genes affect lipid metabolism in the liver. CONCLUSIONS: We identified 2 novel genetic variants in GPAM and APOE that are robustly associated with steatosis and liver damage. These findings may help to better elucidate the genetic susceptibility to FLD onset and progression.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Alanina Transaminase/sangue , Apolipoproteínas E/genética , Variação Genética , Hepatopatia Gordurosa não Alcoólica/genética , Biomarcadores/sangue , Europa (Continente) , Exoma , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Fenótipo , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Transcriptoma
10.
PLoS Pathog ; 16(6): e1008554, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32542055

RESUMO

Lipid droplets are essential cellular organelles for storage of fatty acids and triglycerides. The hepatitis C virus (HCV) translocates several of its proteins onto their surface and uses them for production of infectious progeny. We recently reported that the lipid droplet-associated α/ß hydrolase domain-containing protein 5 (ABHD5/CGI-58) participates in HCV assembly by mobilizing lipid droplet-associated lipids. However, ABHD5 itself has no lipase activity and it remained unclear how ABHD5 mediates lipolysis critical for HCV assembly. Here, we identify adipose triglyceride lipase (ATGL) as ABHD5 effector and new host factor involved in the hepatic lipid droplet degradation as well as in HCV and lipoprotein morphogenesis. Modulation of ATGL protein expression and lipase activity controlled lipid droplet lipolysis and virus production. ABHD4 is a paralog of ABHD5 unable to activate ATGL or support HCV assembly and lipid droplet lipolysis. Grafting ABHD5 residues critical for activation of ATGL onto ABHD4 restored the interaction between lipase and co-lipase and bestowed the pro-viral and lipolytic functions onto the engineered protein. Congruently, mutation of the predicted ABHD5 protein interface to ATGL ablated ABHD5 functions in lipid droplet lipolysis and HCV assembly. Interestingly, minor alleles of ABHD5 and ATGL associated with neutral lipid storage diseases in human, are also impaired in lipid droplet lipolysis and their pro-viral functions. Collectively, these results show that ABHD5 cooperates with ATGL to mobilize triglycerides for HCV infectious virus production. Moreover, viral manipulation of lipid droplet homeostasis via the ABHD5-ATGL axis, akin to natural genetic variation in these proteins, emerges as a possible mechanism by which chronic HCV infection causes liver steatosis.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Hepacivirus/fisiologia , Lipase/metabolismo , Gotículas Lipídicas/metabolismo , Lipólise , Montagem de Vírus/fisiologia , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Linhagem Celular Tumoral , Ativação Enzimática , Células HEK293 , Humanos , Lipase/genética , Gotículas Lipídicas/virologia , Triglicerídeos/genética , Triglicerídeos/metabolismo
11.
FASEB J ; 35(9): e21872, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34449947

RESUMO

Repeated implantation failure (RIF) is a major problem that limits the pregnancy rate associated with assisted reproductive technology. However, the pathogenesis of RIF is still unknown. Recently, the expression levels of circular RNAs (circRNAs) were profiled in the endometrial tissues of patients with RIF. However, the exact role of circRNAs in RIF remains unclear. In our study, we found that circFAM120A levels were significantly down-regulated in the endometrium at the window of implantation in RIF patients compared with non-RIF controls. The suppression of circFAM120A expression inhibited decidualization in human endometrial stromal cells (hESCs). Furthermore, RNA-seq analysis after circFAM120A knockdown revealed ABHD5 as a potential downstream target gene of circFAM120A. As expected, down-regulating ABHD5 in hESCs also inhibited decidualization. Using the starBase and TargetScan databases, we predicted that miR-29 may interact with ABHD5, based on nucleotide sequence matching. Luciferase reporter assay showed that miR-29 bound to the 3' UTR of ABHD5 at the predicted complementary sites. Moreover, miR-29 mimics efficiently reduced ABHD5 expression levels and suppressed the decidualization process, whereas a miR-29 inhibitor partly rescued ABHD5 mRNA expression level and decidualization reduced by the knockdown of circFAM120A. Therefore, circFAM120A modulated decidualization in RIF through the miR-29/ABHD5 axis.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Implantação do Embrião/genética , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas/genética , Adulto , Decídua/metabolismo , Regulação para Baixo/genética , Endométrio/metabolismo , Feminino , Humanos , Infertilidade Feminina/genética , Gravidez , Células Estromais/metabolismo
12.
J Biol Chem ; 295(38): 13393-13406, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32732285

RESUMO

Lysocardiolipin acyltransferase (LYCAT), a cardiolipin (CL)-remodeling enzyme, is crucial for maintaining normal mitochondrial function and vascular development. Despite the well-characterized role for LYCAT in the regulation of mitochondrial dynamics, its involvement in lung cancer, if any, remains incompletely understood. In this study, in silico analysis of TCGA lung cancer data sets revealed a significant increase in LYCAT expression, which was later corroborated in human lung cancer tissues and immortalized lung cancer cell lines via indirect immunofluorescence and immunoblotting, respectively. Stable knockdown of LYCAT in NSCLC cell lines not only reduced CL and increased monolyso-CL levels but also reduced in vivo tumor growth, as determined by xenograft studies in athymic nude mice. Furthermore, blocking LYCAT activity using a LYCAT mimetic peptide attenuated cell migration, suggesting a novel role for LYCAT activity in promoting NSCLC. Mechanistically, the pro-proliferative effects of LYCAT were mediated by an increase in mitochondrial fusion and a G1/S cell cycle transition, both of which are linked to increased cell proliferation. Taken together, these results demonstrate a novel role for LYCAT in promoting NSCLC and suggest that targeting LYCAT expression or activity in NSCLC may provide new avenues for the therapeutic treatment of lung cancer.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Proliferação de Células , Neoplasias Pulmonares/enzimologia , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Cardiolipinas/genética , Cardiolipinas/metabolismo , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Mitocôndrias/genética , Proteínas de Neoplasias/genética , Transplante de Neoplasias
13.
Liver Int ; 41(5): 905-914, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33455044

RESUMO

The Chanarin-Dorfman syndrome (CDS) is a rare, autosomal recessively inherited genetic disease. This syndrome is associated with a decrease in the lipolysis activity in multiple tissue cells because of recessive mutations in the abhydrolase domain containing 5 (ABHD5) gene, which leads to the accumulation of lipid droplets in multiple types of cells. Major clinical symptoms in patients with CDS include ichthyosis and intracytoplasmic lipid droplets. The variability of clinical symptoms in patients with CDS depends on a large number of mutations involved. In this syndrome, liver involvement is an important cause of mortality and morbidity. This review aims to summarize the demographic characteristic, clinical symptoms, liver involvement and mutations in CDS patients in the literature to date.


Assuntos
Eritrodermia Ictiosiforme Congênita , Erros Inatos do Metabolismo Lipídico , Doenças Musculares , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Humanos , Eritrodermia Ictiosiforme Congênita/diagnóstico , Eritrodermia Ictiosiforme Congênita/genética , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Doenças Musculares/genética
14.
Am J Physiol Heart Circ Physiol ; 319(1): H13-H21, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412780

RESUMO

Marathon running is an extreme physical activity, which determines cardiopulmonary adaption of athletes. Circular RNAs (circRNAs) as potential biomarkers in the blood stream have so far not been tested after such strenuous activities. In silico approaches were performed to identify the potential candidate circRNA MBOAT2. Next, we demonstrated high stability and conservation of circRNA MBOAT2 as well as its abundancy in human plasma. In addition to Sanger sequencing of the circRNA specific head-to-tail junction, or back-splice site, we established a synthetic plasmid standard which allowed exact copy number calculations of circRNA MBOAT2. We then analyzed plasmatic circRNA MBOAT2 and observed a significantly lower level 24 h after the marathon. Such alterations were correlated to physical exercise parameters confirming the role of circRNA MBOAT2 as a promising noncoding RNA biomarker detecting cardiopulmonary adaption.NEW & NOTEWORTHY In brief, we herein report a timeline of circulating circular RNA (circRNA) MBOAT2 in a cohort of marathon runners. Time-course analysis of plasmatic circRNA MBOAT2 demonstrated a significantly lowered level 24 h after the marathon. Abundancy of circRNA was correlated to physical exercise parameters highlighting the role of circRNA MBOAT2 as a valuable noncoding RNA biomarker detecting and following up cardiopulmonary adaption.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Ácidos Nucleicos Livres/sangue , Treino Aeróbico/métodos , RNA Circular/sangue , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Adaptação Fisiológica , Adulto , Biomarcadores/sangue , Aptidão Cardiorrespiratória , Humanos , Masculino , Pessoa de Meia-Idade , Estabilidade de RNA
15.
Biochem J ; 476(1): 85-99, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30523059

RESUMO

Macrophage classical M1 activation via TLR4 triggers a variety of responses to achieve the elimination of foreign pathogens. During this process, there is also an increase in lipid droplets which contain large quantities of triacylglycerol (TAG) and phospholipid (PL). The functional consequences of this increment in lipid mass are poorly understood. Here, we studied the contribution of glycerolipid synthesis to lipid accumulation, focusing specifically on the first and rate-limiting enzyme of the pathway: glycerol-3-phosphate acyltransferase (GPAT). Using bone marrow-derived macrophages (BMDMs) treated with Kdo2-lipid A, we showed that glycerolipid synthesis is induced during macrophage activation. GPAT4 protein level and GPAT3/GPAT4 enzymatic activity increase during this process, and these two isoforms were required for the accumulation of cell TAG and PL. The phagocytic capacity of Gpat3-/- and Gpat4-/- BMDM was impaired. Additionally, inhibiting fatty acid ß-oxidation reduced phagocytosis only partially, suggesting that lipid accumulation is not necessary for the energy requirements for phagocytosis. Finally, Gpat4-/- BMDM expressed and released more pro-inflammatory cytokines and chemokines after macrophage activation, suggesting a role for GPAT4 in suppressing inflammatory responses. Together, these results provide evidence that glycerolipid synthesis directed by GPAT4 is important for the attenuation of the inflammatory response in activated macrophages.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Lipogênese , Macrófagos/enzimologia , Fosfolipídeos/biossíntese , Triglicerídeos/biossíntese , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Animais , Glicerol-3-Fosfato O-Aciltransferase/genética , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Ativação de Macrófagos/genética , Macrófagos/patologia , Camundongos , Camundongos Knockout , Fosfolipídeos/genética , Triglicerídeos/genética
16.
J Hepatol ; 71(2): 366-370, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30954460

RESUMO

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) is a multifactorial condition and the most common liver disease worldwide, affecting more than one-third of the population. So far there have been no reports on mendelian inheritance in families with NAFLD. METHODS: We performed whole-exome or targeted next-generation sequencing on patients with autosomal dominant NAFLD. RESULTS: We report a heritable form of NAFLD and/or dyslipidemia due to monoallelic ABHD5 mutations, with complete clinical expression after the fourth decade of life, in 7 unrelated multiplex families encompassing 39 affected individuals. The prevalence of ABHD5-associated NAFLD was estimated to be 1 in 1,137 individuals in a normal population. CONCLUSION: We associate a Mendelian form of NAFLD and/or dyslipidemia with monoallelic ABHD5 mutations. LAY SUMMARY: Non-alcoholic fatty liver disease (NAFLD) is a common multifactorial disorder with a strong genetic component. Inherited forms of NAFLD have been suspected but, their molecular pathogenesis has not been disclosed. Here we report a heritable form of NAFLD with clinical expression after 40 years of age, associated with monoallelic ABHD5 mutations.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Dislipidemias/genética , Predisposição Genética para Doença , Mutação , Hepatopatia Gordurosa não Alcoólica/genética , Adulto , Idoso , Alelos , Dislipidemias/complicações , Feminino , Frequência do Gene , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Linhagem , Prevalência , Sequenciamento do Exoma , Adulto Jovem
17.
New Phytol ; 224(1): 336-351, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31211859

RESUMO

Nitrogen (N) deficiency triggers an accumulation of a storage lipid triacylglycerol (TAG) in seed plants and algae. Whereas the metabolic pathway and regulatory mechanism to synthesize TAG from diacylglycerol are well known, enzymes involved in the supply of diacylglycerol remain elusive under N starvation. Lysophosphatidic acid acyltransferase (LPAT) catalyzes an important step of the de novo phospholipid biosynthesis pathway and thus has a strong flux control in the biosynthesis of phospholipids and TAG. Five LPAT isoforms are known in Arabidopsis; however, the functions of LPAT4 and LPAT5 remain elusive. Here, we show that LPAT4 and LPAT5 are functional endoplasmic-reticulum-localized LPATs. Seedlings of the double knockout mutant lpat4-1 lpat5-1 showed reduced content of phospholipids and TAG under normal growth condition. Under N starvation, lpat4-1 lpat5-1 seedlings showed severer growth defect than the wild-type in shoot. The phenotype was similar to dgat1-4, which affects a major TAG biosynthesis pathway and showed similarly reduced TAG content as the lpat4-1 lpat5-1. We suggest that LPAT4 and LPAT5 may redundantly function in endoplasmic-reticulum-localized de novo glycerolipid biosynthesis for phospholipids and TAG, which is important for the N starvation response in Arabidopsis.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Nitrogênio/deficiência , Triglicerídeos/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação/genética , Especificidade de Órgãos/genética , Fenótipo , Ácidos Fosfatídicos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Brotos de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Proteínas Recombinantes/metabolismo , Plântula/crescimento & desenvolvimento , Sementes/enzimologia , Sementes/crescimento & desenvolvimento
18.
Lipids Health Dis ; 18(1): 232, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31883530

RESUMO

BACKGROUND: Chanarin Dorfman Syndrome (CDS) is a rare autosomal recessive disorder characterized by the multisytemic accumulation of neutral lipids inside the cytoplasmic lipid droplets. This condition is caused by mutations in the abhydrolase domain containing 5 gene (ABHD5). In CDS the skin involvement is the prevalent and always observed clinical feature, consisting of a non-bullous congenital ichthyosiform erythroderma (NCIE). Moreover, a variable involvement of the liver and neuromuscular system can be also observed. In this report, we aimed to perform the clinical and genetic characterization of a patient affected by CDS with atypical dermatological findings, considering this rare inborn error of neutral lipid metabolism. METHODS: Genomic DNA samples obtained from patient and his parents were used to perform the sequencing of the ABHD5 exons and their intron/exon boundaries. Bioinformatic analyses were performed to investigate the possible effect of the identified mutation on protein structure. RESULTS: Here we present the case of a 29-year-old male patient with CDS, who, for long time, has been misdiagnosed as pityriasis rubra pilaris (PRP). He has a history of increasing hyperlipidemia; hepatomegaly associated with hepatosteatosis was also detected. ABHD5 molecular analysis revealed a novel missense mutation, the c.811G > A (p.G271R). Bioinformatic investigations showed that the variant has a deleterious effect on ABHD5 function, probably causing an incorrect folding of the mutant protein. CONCLUSIONS: These results highlihts the importance of genetic testing for ABHD5 in unresolved cases of patients presenting unusual skin lesions, that resemble PRP, associated with a history of hyperlipidemia and nonalcoholic fatty liver.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Eritrodermia Ictiosiforme Congênita/diagnóstico , Ictiose Lamelar/diagnóstico , Erros Inatos do Metabolismo Lipídico/diagnóstico , Doenças Musculares/diagnóstico , Pitiríase Rubra Pilar/diagnóstico , Adulto , Erros de Diagnóstico , Predisposição Genética para Doença , Humanos , Eritrodermia Ictiosiforme Congênita/genética , Eritrodermia Ictiosiforme Congênita/patologia , Ictiose Lamelar/genética , Ictiose Lamelar/patologia , Gotículas Lipídicas/metabolismo , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/patologia , Lipídeos/genética , Masculino , Doenças Musculares/genética , Doenças Musculares/patologia , Mutação de Sentido Incorreto , Pitiríase Rubra Pilar/genética , Pitiríase Rubra Pilar/patologia , Dobramento de Proteína
19.
Nucleic Acids Res ; 45(6): 3158-3171, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28034957

RESUMO

Genome segregation is a fundamental step in the life cycle of every cell. Most bacteria rely on dedicated DNA partition proteins to actively segregate chromosomes and low copy-number plasmids. Here, by employing super resolution microscopy, we establish that the ParF DNA partition protein of the ParA family assembles into a three-dimensional meshwork that uses the nucleoid as a scaffold and periodically shuttles between its poles. Whereas ParF specifies the territory for plasmid trafficking, the ParG partner protein dictates the tempo of ParF assembly cycles and plasmid segregation events by stimulating ParF adenosine triphosphate hydrolysis. Mutants in which this ParG temporal regulation is ablated show partition deficient phenotypes as a result of either altered ParF structure or dynamics and indicate that ParF nucleoid localization and dynamic relocation, although necessary, are not sufficient per se to ensure plasmid segregation. We propose a Venus flytrap model that merges the concepts of ParA polymerization and gradient formation and speculate that a transient, dynamic network of intersecting polymers that branches into the nucleoid interior is a widespread mechanism to distribute sizeable cargos within prokaryotic cells.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Plasmídeos/fisiologia , 1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , DNA/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Microscopia de Fluorescência , Mutação , Plasmídeos/genética , Proteínas Repressoras/análise , Proteínas Repressoras/genética , Imagem com Lapso de Tempo
20.
J Lipid Res ; 59(12): 2360-2367, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30361410

RESUMO

Mutations in the genes coding for patatin-like phospholipase domain-containing 1 (PNPLA1) and α/ß-hydrolase domain-containing 5 (ABHD5), also known as comparative gene identification 58, are causative for ichthyosis, a severe skin barrier disorder. Individuals with mutations in either of these genes show a defect in epidermal ω-O-acylceramide (AcylCer) biosynthesis, suggesting that PNPLA1 and ABHD5 act in the same metabolic pathway. In this report, we identified ABHD5 as a coactivator of PNPLA1 that stimulates the esterification of ω-hydroxy ceramides with linoleic acid for AcylCer biosynthesis. ABHD5 interacts with PNPLA1 and recruits the enzyme to its putative triacylglycerol substrate onto cytosolic lipid droplets. Conversely, alleles of ABHD5 carrying point mutations associated with ichthyosis in humans failed to accelerate PNPLA1-mediated AcylCer biosynthesis. Our findings establish an important biochemical function of ABHD5 in interacting with PNPLA1 to synthesize crucial epidermal lipids, emphasizing the significance of these proteins in the formation of a functional skin permeability barrier.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Ceramidas/metabolismo , Epiderme/metabolismo , Pele/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Alelos , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Lipase/genética , Lipase/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Confocal , Permeabilidade , Ligação Proteica , Esfingosina N-Aciltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA