Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Drug Dev Res ; 85(4): e22212, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38798193

RESUMO

AKT is one of the overexpressed targets in nonsmall cell lung cancer (NSCLC) and plays an important role in its progression and offers an attractive target for the therapy. The PI3K/AKT/mTOR pathway is upregulated in NSCLC. Acridone is an important heterocycle compound which treats cancer through various mechanisms including AKT as a target. In the present work, the study was designed to evaluate the safety profile of three acridone derivatives (AC-2, AC-7, and AC-26) by acute and repeated dose oral toxicity. In addition to this, we also checked the pAKT overexpression and its control by these derivatives in tumor xenograft model. The results from acute and repeated dose toxicity showed these compounds to be highly safe and free from any toxicity, mortality, or significant alteration in body weight, food, and water intake in the rats. In the repeated dose toxicity, compounds showed negligible variations in a few hematological parameters at 400 mg/kg. The histopathology, biochemical, and urine parameters remained unchanged. The xenograft model study demonstrated AC-2 to be inhibiting HOP-62 induced tumor via reduction in p-AKT1 (Ser473) expression significantly. In immunofluorescence staining AC-2 treated tissue section showed 2.5 fold reduction in the expression of p-AKT1 (Ser473). Histopathology studies showed the destruction of tumor cells with increased necrosis after treatment. The study concluded that AC-2 causes cell necrosis in tumor cells via blocking the p-AKT1 expression. The findings may provide a strong basis for further clinical applications of acridone derivatives in NSCLC.


Assuntos
Acridonas , Antineoplásicos , Neoplasias Pulmonares , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Acridonas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Humanos , Masculino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Camundongos Nus , Linhagem Celular Tumoral , Ratos Sprague-Dawley , Feminino
2.
J Org Chem ; 88(13): 9419-9423, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37246934

RESUMO

A tert-butyl hydroperoxide-promoted oxidative annulation reaction of isatins with 2-(trimethylsilyl)aryl triflates for the convenient synthesis of acridone derivatives has been established. Mechanistic investigation suggested that the reaction may proceed via consecutive Baeyer-Villiger-type rearrangement followed by an intermolecular cyclization. This synthetic approach offers several advantages, including broad substrate scope, good functional group tolerance, and simplicity of operation. Additionally, successful late-stage modification of the obtained compounds was achieved, expanding the application potential of this methodology in organic synthesis.


Assuntos
Isatina , Elementos de Transição , Estrutura Molecular , Acridonas , Estresse Oxidativo
3.
Bioorg Chem ; 136: 106526, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37058782

RESUMO

Two series of novel acridone derivatives were designed and synthesized, with their anticancer activity evaluated. Most of these compounds showed potent antiproliferative activity against cancer cell lines. Among them, compound C4 with dual 1,2,3-triazol moieties exhibited the most potent activity against Hep-G2 cells with IC50 value determined to be 6.29 ± 0.93 µM. Subsequent experiments showed that C4 could bind to and destabilize Kras gene promoter i-motif structure without significant interaction with its corresponding G-quadruplex. C4 could down-regulate Kras expression in Hep-G2 cells, possibly due to its interaction with the Kras i-motif. Further cellular studies indicated that C4 could induce apoptosis of Hep-G2 cells, possibly related to its effect on mitochondrial dysfunction. These results indicated that C4 could be further developed as a promising anticancer agent.


Assuntos
Antineoplásicos , Estrutura Molecular , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Acridonas/farmacologia , Proliferação de Células , Apoptose
4.
Bioorg Chem ; 130: 106222, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334476

RESUMO

In the present work, four new compounds based on the privileged structure acridone were efficiently synthesized following simple operational techniques and biologically tested on proliferative skeletal muscle cells (C2C12) and rhabdomyosarcoma cells (RD) showing no significant changes in the number of dead or viable cells at 1 µM during 24 or 48 h of treatment. Of relevance, acridone derivatives 3a-3d at 0.5 µM for 24 h effectively inhibited Akt activation in C2C12, while at 1 µM only compounds 3a and 3b have effect. RD cells showed a different response pattern. These cells treated with 3a (0.5 µM), 3b (0.5 µM) or 3d (0.5 or 1 µM) for 24 h shown significant Akt inhibition. In addition, 3a-3d assayed at 1 µM for 48 h were highly successful in inhibiting Akt phosphorylation. Finally, based on molecular docking and molecular dynamics simulations, we rationalize the experimental results mentioned above and propose that 3-phosphoinositide-dependent kinase-1 (PDK1) could be one of the molecular targets of this new series of 1, 3-dihydroxyacridone derivatives. Biological and in silico studies revealed that 3b could be considered as the most promising prototype for the development of new antitumor agents.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Acridonas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Fibras Musculares Esqueléticas , Estrutura Molecular , Proliferação de Células
5.
Bull Exp Biol Med ; 176(2): 210-215, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38194065

RESUMO

We studied the mechanism of action of cytostatics with the addition of lysine acridone acetate to evaluate the possibility of its use for improving the effectiveness of antioncogenic therapy in colorectal cancer. In Nude mouse model, the level of apoptosis (TUNEL) and expression of proteins CD95, p53, Bcl-2, histone H3, and Ki-67 (immunohistochemistry) were assessed in primary tumor biopsy specimens. It has been shown that cytostatic treatment led to stimulation of p53-mediated apoptosis and suppression of proliferation (Ki-67 expression) of tumor cells, and apoptosis level was increased in groups receiving lysine acridone acetate. H3 expression in the experimental groups was changed.


Assuntos
Neoplasias Colorretais , Lisina , Animais , Camundongos , Lisina/farmacologia , Antígeno Ki-67/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Neoplasias Colorretais/patologia , Acridonas/farmacologia , Acetatos/farmacologia
6.
Bioorg Chem ; 119: 105543, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929515

RESUMO

Previously, an array of N-substituted acridone derivatives have been reported as potent topoisomerase II (topo II) inhibitors, and preliminary structure-activity relationship (SAR) outcomes revealed that the linker between 1-NH and N-methyl piperazine motif of the tricyclic acridone scaffold significantly affected their anti-proliferative potencies. To further explore the SARs of acridone-derived topo II inhibitors, a wider range of novel acridone derivatives were herein synthesized via two rounds of structural optimizations on two validated hits, E17 and E24. Initially, the linker length was optimized, and then influences of N-methyl piperazinyl moiety and disposition of three N atoms on the bioactivity were investigated. As a result, a newly developed topo II inhibitor 6 h was found to be more potent than E17 and E24, thereby serving as a tool compound for the follow-up mechanistic study. Compound 6 h functioned as a strong topo IIα/ß inhibitor, caused obvious DNA damage, and induced apoptosis by triggering the loss of mitochondrial membrane potential (Δψm). Further molecular docking and MD study illustrated the favorable interactions of 6 h with both topo IIα and topo IIß subtypes.


Assuntos
Acridonas/farmacologia , Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Acridonas/síntese química , Acridonas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
7.
Nucleic Acids Res ; 48(15): 8255-8268, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32710621

RESUMO

Nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) are global epidemic public health problems with pathogenesis incompletely understood. Hepatocyte excessive apoptosis is a significant symbol for NAFLD/NASH patients, and therefore anti-apoptosis therapy could be used for NAFLD/NASH treatment. Up-regulation of BCL-2 has been found to be closely related with anti-apoptosis. BCL-2 gene promoter region has a C-rich sequence, which can form i-motif structure and play important role in regulating gene transcription. In this study, after extensive screening and evaluation, we found that acridone derivative A22 could up-regulate BCL-2 transcription and translation in vitro and in cells through selective binding to and stabilizing BCL-2 gene promoter i-motif. Our further experiments showed that A22 could reduce hepatocyte apoptosis in NAFLD/NASH model possibly through up-regulating BCL-2 expression. A22 could reduce inflammation, endoplasmic reticulum stress and cirrhosis in high-fat diet-fed mice liver model. Our findings provide a potentially new approach of anti-apoptosis for NAFLD/NASH treatment, and A22 could be further developed as a lead compound for NAFLD/NASH therapy. Our present study first demonstrated that gene promoter i-motif could be targeted for gene up-regulation for extended treatment of other important diseases besides cancer.


Assuntos
Acridonas/uso terapêutico , Genes bcl-2 , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Regulação para Cima/efeitos dos fármacos , Animais , Apoptose , Linhagem Celular Tumoral , Dieta Hiperlipídica , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Regiões Promotoras Genéticas/efeitos dos fármacos
8.
Molecules ; 27(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35744993

RESUMO

The present study aimed to investigate the effect of acridone alkaloids on cancer cell lines and elucidate the underlying molecular mechanisms. The ten acridone alkaloids from Atalantia monophyla were screened for cytotoxicity against LNCaP cell lines by a WST-8 assay. Then, the most potential acridone, buxifoliadine E, was evaluated on four types of cancer cells, namely prostate cancer (LNCaP), neuroblastoma (SH SY5Y), hepatoblastoma (HepG2), and colorectal cancer (HT29). The results showed that buxifoliadine E was able to significantly inhibit the proliferation of all four types of cancer cells, having the most potent cytotoxicity against the HepG2 cell line. Western blotting analysis was performed to assess the expression of signaling proteins in the cancer cells. In HepG2 cells, buxifoliadine E induced changes in the levels of Bid as well as cleaved caspase-3 and Bax through MAPKs, including Erk and p38. Moreover, the binding interaction between buxifoliadine E and Erk was investigated by using the Autodock 4.2.6 and Discovery Studio programs. The result showed that buxifoliadine E bound at the ATP-binding site, located at the interface between the N- and C-terminal lobes of Erk2. The results of this study indicate that buxifoliadine E suppressed cancer cell proliferation by inhibiting the Erk pathway.


Assuntos
Alcaloides , Neoplasias , Rutaceae , Acridonas/química , Acridonas/farmacologia , Alcaloides/química , Alcaloides/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sistema de Sinalização das MAP Quinases , Rutaceae/química
9.
Bioorg Med Chem ; 29: 115868, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33191085

RESUMO

Unlike other DNA topoisomerase II (topo II) inhibitors, our recently identified acridone derivative E17 exerted strong cytotoxic activity by inhibiting topo II without causing topo II degradation and DNA damage, which promoted us to explore more analogues of E17 by expanding its chemical diversification and enrich the structure-activity relationship (SAR) outcomes of acridone-oriented chemotypes. To achieve this goal, 42 novel acridone derivatives were synthesized and evaluated for their antiproliferative efficacies. SAR investigations revealed that orientation and spatial topology of R3 substituents make greater contributions to the bioactivity, exemplified by compounds E24, E25 and E27, which has provided valuable information for guiding further development of acridone derivatives as promising drug candidates.


Assuntos
Acridonas/farmacologia , Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Acridonas/síntese química , Acridonas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
10.
Bioorg Med Chem ; 34: 116042, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33561716

RESUMO

Upregulation of platelet-derived growth factor receptor ß (PDGFR-ß) has been found to be associated with development of various types of cancers, which has become an attractive target for anti-tumor treatment. Previously, we have synthesized and studied an acridone derivative B19, which can selectively bind to and stabilize oncogene c-myc promoter i-motif, resulting in down-regulation of c-myc transcription and translation, however its effect on tumor cells apoptosis requires improvement. In the present study, we synthesized a variety of B19 derivatives containing a known anti-cancer fluorescent chromophore naphthalimide for the purpose of enhancing anti-cancer activity. After screening, we found that acridone-naphthalimide derivative WZZ02 could selectively stabilize PDGFR-ß promoter G-quadruplex and destabilize its corresponding i-motif structure, without significant interaction to other oncogenes promoter G-quadruplex and i-motif. WZZ02 down-regulated PDGFR-ß gene transcription and translation in a dose-dependent manner, possibly due to above interactions. WZZ02 could significantly inhibit cancer cell proliferation, and induce cell apoptosis and cycle arrest. WZZ02 exhibited tumor growth inhibition activity in MCF-7 xenograft tumor model, which could be due to its binding interactions with PDGFR-ß promoter G-quadruplex and i-motif. Our results suggested that WZZ02 as a dual G-quadruplex/i-motif binder could be effective on both oncogene replication and transcription, which could become a promising lead compound for further development with improved potency and selectivity. The wide properties for the derivatives of 1,8-naphthalimide could facilitate further in-depth mechanistic studies of WZZ02 through various fluorescent physical and chemical methods, which could help to further understand the function of PDGFR-ß gene promoter G-quadruplex and i-motif.


Assuntos
Acridonas/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Naftalimidas/química , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais , Distribuição Aleatória , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Neoplasias de Tecidos Moles/tratamento farmacológico
11.
Molecules ; 26(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673146

RESUMO

9H-Xanthenes, 9H-thioxanthenes and 9,10-dihydroacridines can be easily oxidized to the corresponding xanthones, thioxanthones and acridones, respectively, by a simple photo-oxidation procedure carried out using molecular oxygen as oxidant under the irradiation of visible blue light and in the presence of riboflavin tetraacetate as a metal-free photocatalyst. The obtained yields are high or quantitative.


Assuntos
Acridonas/síntese química , Oxigênio/química , Tioxantenos/síntese química , Xantonas/síntese química , Acridonas/química , Acridonas/efeitos da radiação , Luz , Metais/química , Oxidantes Fotoquímicos/química , Oxidantes Fotoquímicos/farmacologia , Oxirredução/efeitos da radiação , Tioxantenos/química , Tioxantenos/efeitos da radiação , Xantonas/química , Xantonas/efeitos da radiação
12.
Molecules ; 26(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299615

RESUMO

Nitric oxide (NO) is an important signaling molecule involved in a wide range of physiological and pathological processes. Fluorescent imaging is a useful tool for monitoring NO concentration, which could be essential in various biological and biochemical studies. Here, we report the design of a novel small-molecule fluorescent probe based on 9(10H)acridone moiety for nitric oxide sensing. 7,8-Diamino-4-carboxy-10-methyl-9(10H)acridone reacts with NO in aqueous media in the presence of O2, yielding a corresponding triazole derivative with fivefold increased fluorescence intensity. The probe was shown to be capable of nitric oxide sensing in living Jurkat cells.


Assuntos
Acridonas/química , Corantes Fluorescentes/química , Óxido Nítrico/análise , Humanos , Células Jurkat , Imagem Óptica
13.
Molecules ; 26(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917054

RESUMO

A new coumarin-acridone fluorescent probe S was designed and synthesized, and the structure was confirmed with 1H/13C NMR spectrometry, single-crystal X-ray diffraction, and high-resolution mass spectrometry. This probe has high sensitivity and selectivity for Fe3+ over other testing metal ions at 420 or 436 nm in acetonitrile-MOPS (3-Morpholinopropanesulfonic Acid) buffer solution (20.0 µM, pH = 6.9, 8:2 (v/v)). Under physiological conditions, the probe displayed satisfying time stability with a detection limit of 1.77 µM. In addition, probe S was successfully used to detect intracellular iron changes through a fluorescence-off mode, and the imaging results of cells and zebrafish confirmed their low cytotoxicity and satisfactory cell membrane permeability, as well as their potential biological applications.


Assuntos
Acridonas/química , Rastreamento de Células , Cumarínicos/química , Corantes Fluorescentes/química , Imagem Óptica , Espectrometria de Fluorescência , Animais , Linhagem Celular , Rastreamento de Células/métodos , Técnicas de Química Sintética , Corantes Fluorescentes/síntese química , Humanos , Concentração de Íons de Hidrogênio , Ferro/química , Conformação Molecular , Estrutura Molecular , Imagem Óptica/métodos , Espectrometria de Fluorescência/métodos , Peixe-Zebra
14.
J Proteome Res ; 19(2): 819-831, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31887055

RESUMO

The lead compound acridone derivative 8a showed potent antiproliferative activity by inducing DNA damage through direct stacking with DNA bases and triggering ROS in CCRF-CEM cells. To define the chromatin alterations during DNA damage sensing and repair, a detailed quantitative map of single and coexisting histone post-translational modifications (PTMs) in CCRF-CEM cells affected by 8a was performed by the Data Independent Acquisition (DIA) method on QE-plus. A total of 79 distinct and 164 coexisting histone PTMs were quantified, of which 16 distinct histone PTMs were significantly altered when comparing 8a-treated cells with vehicle control cells. The changes in histone PTMs were confirmed by Western blotting analysis for three H3 and one H4 histone markers. The up-regulated dimethylation on H3K9, H3K36, and H4K20 implied that CCRF-CEM cells might accelerate DNA damage repair to counteract the DNA lesion induced by 8a, which was verified by an increment in the 53BP1 foci localization at the damaged DNA. Most of the significantly altered PTMs were involved in transcriptional regulation, including down-regulated acetylation on H3K18, H3K27, and H3K122, and up-regulated di- and trimethylation on H3K9 and H3K27. This transcription-silencing phenomenon was associated with G2/M cell cycle arrest after 8a treatment by flow cytometry. This study shows that the DIA proteomics strategy provides a sensitive and accurate way to characterize the coexisting histone PTMs changes and their cross-talk in CCRF-CEM cells after 8a treatment. Specifically, histone PTMs rearrange transcription-silencing, and cell cycle arrest DNA damage repair may contribute to the mechanism of epigenetic response affected by 8a.


Assuntos
Código das Histonas , Proteômica , Acridonas , Histonas/metabolismo , Processamento de Proteína Pós-Traducional
15.
Langmuir ; 36(5): 1241-1251, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31951141

RESUMO

Spectroscopic analyses reveal that acridone (AD) penetrates through the structure and enters the hydrophobic cavity of the protein ß-lactoglobulin (ßLG). Although the protein contains two tryptophan (Trp) residues, AD interacts with only one (Trp-19), which is authenticated by the appearance of a single isoemissive point in TRANES. Alteration in the secondary structure of the protein while AD pierces through ßLG is evident from the circular dichroism spectroscopic study. The ground-state interaction between AD and ßLG is proven from the UV-vis spectroscopic study and the static nature of quenching of intrinsic fluorescence of the protein by the ligand. The steady-state fluorescence study in varied temperatures indicates the involvement of hydrogen bonding in the ligand-protein interaction. Further, the time-resolved fluorescence anisotropy study gives a hint of the presence of a hydrogen bond in AD-ßLG interaction, which possibly involves the rotamers of Trp-19. In fact, the idea of involvement of rotamers of Trp-19 is obtained from the increase in fluorescence lifetime of ßLG in the presence of AD. The docking study agrees to the involvement of hydrogen bonding in AD-ßLG interaction. The direct evidence of hydrogen bonding between Trp and AD is obtained from the laser flash photolysis studies where the signature of formation of ADH• and Trp• through hydrogen abstraction between Trp and AD, loosely bound through hydrogen bonding, gets prominence. Thus, binding of AD to ßLG involves hydrogen bonding in a hydrophobic pocket of the protein.


Assuntos
Acridonas/metabolismo , Lactoglobulinas/metabolismo , Acridonas/química , Animais , Sítios de Ligação , Bovinos , Dicroísmo Circular , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lactoglobulinas/química , Simulação de Acoplamento Molecular , Ligação Proteica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Triptofano/química
16.
Microb Cell Fact ; 19(1): 73, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32197639

RESUMO

BACKGROUND: Acridone alkaloids are heterocyclic compounds that exhibit a broad-range of pharmaceutical and chemotherapeutic activities, including anticancer, antiviral, anti-inflammatory, antimalarial, and antimicrobial effects. Certain plant species such as Citrus microcarpa, Ruta graveolens, and Toddaliopsis bremekampii synthesize acridone alkaloids from anthranilate and malonyl-CoA. RESULTS: We synthesized two acridones in Escherichia coli. Acridone synthase (ACS) and anthraniloyl-CoA ligase genes were transformed into E. coli, and the synthesis of acridone was examined. To increase the levels of endogenous anthranilate, we tested several constructs expressing proteins involved in the shikimate pathway and selected the best construct. To boost the supply of malonyl-CoA, genes coding for acetyl-coenzyme A carboxylase (ACC) from Photorhabdus luminescens were overexpressed in E. coli. For the synthesis of 1,3-dihydroxy-10-methylacridone, we utilized an N-methyltransferase gene (NMT) to supply N-methylanthranilate and a new N-methylanthraniloyl-CoA ligase. After selecting the best combination of genes, approximately 17.3 mg/L of 1,3-dihydroxy-9(10H)-acridone (DHA) and 26.0 mg/L of 1,3-dihydroxy-10-methylacridone (NMA) were synthesized. CONCLUSIONS: Two bioactive acridone derivatives were synthesized by expressing type III plant polyketide synthases and other genes in E. coli, which increased the supplement of substrates. This study showed that is possible to synthesize diverse polyketides in E. coli using plant polyketide synthases.


Assuntos
Acridonas/metabolismo , Escherichia coli , Aciltransferases/genética , Proteínas de Bactérias/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/metabolismo , Photorhabdus/enzimologia , Proteínas de Plantas/genética , Policetídeo Sintases/genética , Proteínas Recombinantes/genética
17.
Bioorg Med Chem ; 28(9): 115426, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32201193

RESUMO

Eleven novel acridone derivatives were synthesized and evaluated for their anticancer activity against 60 human cancer cell lines. Five compounds 8b, 8d, 8g, 8h, and 8k displayed very good in vitro antiproliferative activities well over 95% of the panels. The most active compound is 8k (5, 7-dibromo-3-phenyl-3,4-dihydroacridin-1 (2H)-one). In addition, 8k was the most sensitive agent in all 9 panels starting with prostate (0.075 µm), leukemia (0.116 µm), non-small cell lung cancer (0.164 µm), colon cancer (0.193 µm), CNS cancer (0.264 µm), melanoma (0.317 µm), renal cancer (0.403 µm), ovarian cancer (0.410 µm), and breast cancer (0.608 µm). Virtual screening studies also revealed that nine of the eleven compounds formed good binding interaction with the active site ATPase domain of human topoisomerase IIα (PDB: 1zxm). All nine derivatives exhibited binding affinities that ranged in values from -8.5 to -7.9 kcal/mol, indicating that they could be catalytic inhibitors of the nuclear enzyme, topoisomerase.


Assuntos
Acridonas/farmacologia , Antineoplásicos/farmacologia , Acridonas/síntese química , Acridonas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
18.
Bioorg Chem ; 95: 103556, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31927317

RESUMO

STING (Stimulator of Interferon Genes) has become a focal point in immunology research and a target in drug discovery. The discovery of a potent human-STING agonist is expected to revolutionize current anti-virus or cancer immunotherapy. Inspired by the structure and function of murine STING-specific agonists (DMXAA and CMA), we rationally designed and synthesized four series of novel compounds for the enhancement of human sensitivity. In the cell-based assay, we identified six compounds from all the synthetic small molecules: 2g, 9g, and 12b are STING agonists that are efficacious across species, and all have the skeleton of acridone; 1b, 1c, and 12c just function in the murine STING pathway. Notably, 12b exhibits the best activity among the six agonists, and its inductions of both human and murine STING-dependent signalling are similar to that of 2'3'-cGAMP, which is a well-known STING inducer. While a protein assay indicated that 2 g, 9 g, and 12b could activate the pathway by directly binding human STING, 12b also displayed the strongest binding affinity. Additionally, our studies show that 12b can induce faster, more powerful, and more durable responses of assorted cytokines in a native system than 2'3'-cGAMP. Consequently, our team is the first to successfully modify murine STING agonists to obtain human sensitivity, and these results suggest that 12b is a potent direct-human-STING agonist. Additionally, the acridone analogues demonstrate tremendous potential in the treatment of tumours or viral infections.


Assuntos
Acridonas/química , Acridonas/farmacologia , Desenho de Fármacos , Proteínas de Membrana/antagonistas & inibidores , Acridonas/síntese química , Animais , Proteínas de Membrana/genética , Camundongos
19.
Molecules ; 25(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973202

RESUMO

Aiming to design blue fluorescent emitters with high photoluminescence quantum yields in solid-state, nitrogen-containing heteroaromatic 9,9-dimethylacridine was refined by tetraphenylethene and triphenylethene. Six tetra-/triphenylethene-substituted 9,9-dimethylacridines were synthesized by the Buchwald-Hartwig method with relatively high yields. Showing effects of substitution patterns, all emitters demonstrated high fluorescence quantum yields of 26-53% in non-doped films and 52-88% in doped films due to the aggregation induced/enhanced emission (AIE/AIEE) phenomena. In solid-state, the emitters emitted blue (451-481 nm) without doping and deep-blue (438-445 nm) with doping while greenish-yellow emission was detected for two compounds with additionally attached cyano-groups. The ionization potentials of the derivatives were found to be in the relatively wide range of 5.43-5.81 eV since cyano-groups were used in their design. Possible applications of the emitters were demonstrated in non-doped and doped organic light-emitting diodes with up to 2.3 % external quantum efficiencies for simple fluorescent devices. In the best case, deep-blue electroluminescence with chromaticity coordinates of (0.16, 0.10) was close to blue color standard (0.14, 0.08) of the National Television System Committee.


Assuntos
Acridonas/química , Luminescência , Acridonas/síntese química , Varredura Diferencial de Calorimetria , Eletricidade , Eletroquímica , Furanos/química , Espectrofotometria Ultravioleta , Temperatura , Tolueno/química
20.
Molecules ; 25(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213112

RESUMO

This study investigates the application of the paramagnetic shift reagent tris(dipivaloylmethanato)-europium(III) in NMR spectral studies of permethoxyacridone alkaloids (1-3) and pyranoacridone alkaloids (4-6). The induced chemical shifts (∆δ) of all protons were observed for the same molecule, and were compared to deduce the positions resulting from the distance nearby the Eu(dpm)3. Assignment of the H-2, H-4 and H-8 of polysubstituted acridones could be distinguished based on the least-squares method of lanthanide-induced shifts plotted against the mole ratios of Eu(dpm)3 to the substrate. The developed method is not only potentially useful for determining the planar structures of polysubstituted compounds, such as acridones, anthraquinones, xanthones, flavonoids, and phenanthrenes, but also applicable for their stereochemistry.


Assuntos
Acridonas/química , Alcaloides/química , Elementos da Série dos Lantanídeos/química , Espectroscopia de Prótons por Ressonância Magnética , Európio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA