Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.025
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 39(20): e104467, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32706158

RESUMO

Nucleoporins (Nups) build highly organized nuclear pore complexes (NPCs) at the nuclear envelope (NE). Several Nups assemble into a sieve-like hydrogel within the central channel of the NPCs. In the cytoplasm, the soluble Nups exist, but how their assembly is restricted to the NE is currently unknown. Here, we show that fragile X-related protein 1 (FXR1) can interact with several Nups and facilitate their localization to the NE during interphase through a microtubule-dependent mechanism. Downregulation of FXR1 or closely related orthologs FXR2 and fragile X mental retardation protein (FMRP) leads to the accumulation of cytoplasmic Nup condensates. Likewise, models of fragile X syndrome (FXS), characterized by a loss of FMRP, accumulate Nup granules. The Nup granule-containing cells show defects in protein export, nuclear morphology and cell cycle progression. Our results reveal an unexpected role for the FXR protein family in the spatial regulation of nucleoporin condensation.


Assuntos
Núcleo Celular/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Acrilatos/farmacologia , Animais , Linhagem Celular , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Regulação para Baixo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Hibridização in Situ Fluorescente , Interfase/genética , Camundongos , Microscopia Eletrônica de Transmissão , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/genética , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética
2.
Plant Cell ; 33(8): 2776-2793, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34137858

RESUMO

Malate oxidation by plant mitochondria enables the generation of both oxaloacetate and pyruvate for tricarboxylic acid (TCA) cycle function, potentially eliminating the need for pyruvate transport into mitochondria in plants. Here, we show that the absence of the mitochondrial pyruvate carrier 1 (MPC1) causes the co-commitment loss of its putative orthologs, MPC3/MPC4, and eliminates pyruvate transport into Arabidopsis thaliana mitochondria, proving it is essential for MPC complex function. While the loss of either MPC or mitochondrial pyruvate-generating NAD-malic enzyme (NAD-ME) did not cause vegetative phenotypes, the lack of both reduced plant growth and caused an increase in cellular pyruvate levels, indicating a block in respiratory metabolism, and elevated the levels of branched-chain amino acids at night, a sign of alterative substrate provision for respiration. 13C-pyruvate feeding of leaves lacking MPC showed metabolic homeostasis was largely maintained except for alanine and glutamate, indicating that transamination contributes to the restoration of the metabolic network to an operating equilibrium by delivering pyruvate independently of MPC into the matrix. Inhibition of alanine aminotransferases when MPC1 is absent resulted in extremely retarded phenotypes in Arabidopsis, suggesting all pyruvate-supplying enzymes work synergistically to support the TCA cycle for sustained plant growth.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo , Acrilatos/farmacologia , Alanina/metabolismo , Alanina Transaminase/antagonistas & inibidores , Proteínas de Transporte de Ânions/genética , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Transporte Biológico/efeitos dos fármacos , Ciclosserina/farmacologia , Inibidores Enzimáticos/farmacologia , Malato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética , Transportadores de Ácidos Monocarboxílicos/genética , Complexos Multiproteicos/metabolismo , NAD/metabolismo , Plantas Geneticamente Modificadas
3.
Molecules ; 29(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398568

RESUMO

Ionizing radiation (IR)-induced hematopoietic injury has become a global concern in the past decade. The underlying cause of this condition is a compromised hematopoietic reserve, and this kind of hematopoietic injury could result in infection or bleeding, in addition to lethal mishaps. Therefore, developing an effective treatment for this condition is imperative. Fluacrypyrim (FAPM) is a recognized effective inhibitor of STAT3, which exhibits anti-inflammation and anti-tumor effects in hematopoietic disorders. In this context, the present study aimed to determine whether FAPM could serve as a curative agent in hematopoietic-acute radiation syndrome (H-ARS) after total body irradiation (TBI). The results revealed that the peritoneally injection of FAPM could effectively promote mice survival after lethal dose irradiation. In addition, promising recovery of peripheral blood, bone marrow (BM) cell counts, hematopoietic stem cell (HSC) cellularity, BM colony-forming ability, and HSC reconstituting ability upon FAPM treatment after sublethal dose irradiation was noted. Furthermore, FAPM could reduce IR-induced apoptosis in hematopoietic stem and progenitor cells (HSPCs) both in vitro and in vivo. Specifically, FAPM could downregulate the expressions of p53-PUMA pathway target genes, such as Puma, Bax, and Noxa. These results suggested that FAPM played a protective role in IR-induced hematopoietic damage and that the possible underlying mechanism was the modulation of apoptotic activities in HSCs.


Assuntos
Proteínas Reguladoras de Apoptose , Células-Tronco Hematopoéticas , Pirimidinas , Camundongos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Acrilatos/farmacologia , Apoptose , Irradiação Corporal Total , Camundongos Endogâmicos C57BL
4.
Biomacromolecules ; 24(11): 5342-5352, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37734002

RESUMO

This study develops a novel drug delivery system using a hyaluronic acid (HA) hydrogel for controlled release of epidermal growth factor (EGF) to enhance skin wound healing. Conventional hydrogel-based methods suffer from a burst release and limited drug delivery times. To address this, we employ bioconjugation to introduce an acrylate group to EGF, enabling chemical bonding to the HA hydrogel matrix through thiol-ene cross-linking. This approach results in sustained-release delivery of EGF based on the degradation rate of the HA matrix, overcoming diffusion-based limitations. We confirm the introduction of the acrylate group using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. We evaluated the hydrogel morphology and rheological properties following binding of acrylate-conjugated EGF to the HA matrix. Assessment of the EGF release profile demonstrates delayed release compared to unconjugated EGF. We evaluate the impact on cells through cell proliferation and scratch assays, indicating the system's efficacy. In a rat wound healing model, the sustained release of EGF from the hydrogel system promotes appropriate tissue healing and restores it to a normal state. These findings suggest that this practical drug delivery system, involving the modification of growth factors or drugs to chemically bind healing factors to hydrogels, can achieve long-lasting effects.


Assuntos
Fator de Crescimento Epidérmico , Ácido Hialurônico , Ratos , Animais , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/química , Ácido Hialurônico/química , Hidrogéis/farmacologia , Hidrogéis/química , Preparações de Ação Retardada/farmacologia , Cicatrização , Acrilatos/farmacologia
5.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614239

RESUMO

Fundamental knowledge about cell-surface interactions can be applied in the development of wound dressings and scaffolds to encourage wounds to heal. As surfaces produced with acid-functionalised monomers encourage keratinocyte adhesion, proliferation and migration, whilst amine functionalisation enhances fibroblast proliferation and migration in vitro, standard care wound dressings were plasma-coated with either acrylic acid or allylamine and applied to 6 mm excisional wounds on the backs of mice to test their effectiveness in vivo. At day 3, the rate of wound healing was increased in mice treated with dressings that were plasma-coated with allylamine compared to uncoated dressings, with a significantly reduced wound area. However, healing may be impaired following prolonged treatment with allylamine-functionalised dressings, with delayed re-epithelialisation and increased cellularisation of the wound site at later timepoints. Acrylic acid functionalisation, however, offered no early improvement in wound healing, but wounds treated with these dressings displayed increased collagen deposition at day 7 post wounding. These results suggest that plasma polymerisation may allow for the development of new dressings which can enhance wound closure by directing cell behaviour, but that the application of these dressings may require a timed approach to enhance specific phases of the wound healing response.


Assuntos
Bandagens , Cicatrização , Camundongos , Animais , Acrilatos/farmacologia , Colágeno
6.
Biomacromolecules ; 23(6): 2374-2387, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35508075

RESUMO

The synthesis of new amino acid-containing, cell-specific, therapeutically active polymers is presented. Amino acids served as starting material for the preparation of tailored polymers with different amino acids in the side chain. The reversible addition-fragmentation chain-transfer (RAFT) polymerization of acrylate monomers yielded polymers of narrow size distribution (D ≤ 1.3). In particular, glutamate (Glu)-functionalized, zwitterionic polymers revealed a high degree of cytocompatibility and cellular specificity, i.e., showing association to different cancer cell lines, but not with nontumor fibroblasts. Energy-dependent uptake mechanisms were confirmed by means of temperature-dependent cellular uptake experiments as well as localization of the polymers in cellular lysosomes determined by confocal laser scanning microscopy (CLSM). The amino acid receptor antagonist O-benzyl-l-serine (BzlSer) was chosen as an active ingredient for the design of therapeutic copolymers. RAFT copolymerization of Glu acrylate and BzlSer acrylate resulted in tailored macromolecules with distinct monomer ratios. The targeted, cytotoxic activity of copolymers was demonstrated by means of multiday in vitro cell viability assays. To this end, polymers with 25 mol % BzlSer content showed cytotoxicity against cancer cells, while leaving fibroblasts unaffected over a period of 3 days. Our results emphasize the importance of biologically derived materials to be included in synthetic polymers and the potential of zwitterionic, amino acid-derived materials for cellular targeting. Furthermore, it highlights that the fine balance between cellular specificity and unspecific cytotoxicity can be tailored by monomer ratios within a copolymer.


Assuntos
Aminoácidos , Materiais Inteligentes , Acrilatos/farmacologia , Aminas , Aminoácidos/química , Polimerização , Polímeros/química
7.
Biol Reprod ; 105(1): 64-75, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33824958

RESUMO

Fetal ovarian germ cells show characteristic energy metabolism status, such as enhanced mitochondrial metabolism as well as glycolysis, but their roles in early folliculogenesis are unclear. We show here that inhibition of pyruvate uptake to mitochondria by UK5099 in organ cultures of fetal mouse ovaries resulted in repressed early folliculogenesis without affecting energy production, survival of oocytes, or meiosis. In addition, the abnormal folliculogenesis by UK5099 was partially rescued by α-ketoglutarate and succinate, intermediate metabolites in the TCA cycle, suggesting the importance of those metabolites. The expression of TGFß-related genes Gdf9 and Bmp15 in ovarian germ cells, which are crucial for folliculogenesis, was downregulated by UK5099, and the addition of recombinant GDF9 partially rescued the abnormal folliculogenesis induced by UK5099. We also found that early folliculogenesis was similarly repressed, as in the culture, in the ovaries of a germ cell-specific knockout of Mpc2, which encodes a mitochondria pyruvate carrier that is targeted by UK5099. These results suggest that insufficient Gdf9 expression induced by abnormal pyruvate metabolism in oocytes results in early follicular dysgenesis, which is a possible cause of defective folliculogenesis in humans.


Assuntos
Acrilatos/farmacologia , Proteína Morfogenética Óssea 15/genética , Fator 9 de Diferenciação de Crescimento/genética , Oócitos/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Ácido Pirúvico/metabolismo , Animais , Transporte Biológico , Proteína Morfogenética Óssea 15/metabolismo , Ciclo do Ácido Cítrico , Feminino , Regulação da Expressão Gênica , Fator 9 de Diferenciação de Crescimento/metabolismo , Camundongos , Mitocôndrias/metabolismo , Oócitos/metabolismo
8.
Plant Physiol ; 183(3): 1376-1390, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32321840

RESUMO

Glucosinolates (GSLs) are sulfur-containing defense metabolites produced in the Brassicales, including the model plant Arabidopsis (Arabidopsis thaliana). Previous work suggests that specific GSLs may function as signals to provide direct feedback regulation within the plant to calibrate defense and growth. These GSLs include allyl-GSL, a defense metabolite that is one of the most widespread GSLs in Brassicaceae and has also been associated with growth inhibition. Here we show that at least three separate potential catabolic products of allyl-GSL or closely related compounds affect growth and development by altering different mechanisms influencing plant development. Two of the catabolites, raphanusamic acid and 3-butenoic acid, differentially affect processes downstream of the auxin signaling cascade. Another catabolite, acrylic acid, affects meristem development by influencing the progression of the cell cycle. These independent signaling events propagated by the different catabolites enable the plant to execute a specific response that is optimal to any given environment.


Assuntos
Glucosinolatos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Acrilatos/farmacologia , Glucosinolatos/química , Glucosinolatos/farmacologia , Ácidos Indolacéticos/farmacologia , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Modelos Biológicos , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Tiazóis/análise , Tionas/análise
9.
Org Biomol Chem ; 19(8): 1835-1846, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33565564

RESUMO

Donor-π-acceptor (D-π-A) fluorophores consisting of a donor unit, a π linker, and an acceptor moiety have attracted attention in the last decade. In this study, we report the synthesis, characterization, optical properties, TD-DFT, and cytotoxicity studies of 17 near infrared (NIR) D-π-A analogs which have not been reported so far to the best of our knowledge. These fluorophores have chloroacrylic acid as the acceptor unit and various donor units such as indole, benzothiazole, benzo[e]indole, and quinoline. The fluorophores showed strong absorption in the NIR (700-970 nm) region due to their enhanced intramolecular charge transfer (ICT) between chloroacrylic acid and the donor moieties connected with the Vilsmeier-Haack linker. The emission wavelength maxima of the fluorophores were in between 798 and 870 nm. Compound 20 with a 4-quinoline donor moiety showed an emission wavelength above 1000 nm in the NIR II window. The synthesized fluorophores were characterized by 1H NMR and 13C NMR, and their optical properties were studied. Time dependent density functional theory (TD-DFT) calculations showed that the charge transfer occurs from the donor groups (indole, benzothiazole, benzo[e]indole, and quinoline) to the acceptor chloroacrylic acid moiety. Fluorophores with [HOMO] to [LUMO+1] transitions were shown to possess a charge separation character. The cytotoxicity of selected fluorophores, 4, 7, 10 and 12 was investigated against breast cancer cell lines and they showed better activity than the anti-cancer agent docetaxel.


Assuntos
Acrilatos/farmacologia , Antineoplásicos/farmacologia , Corantes Fluorescentes/farmacologia , Compostos Heterocíclicos com 2 Anéis/farmacologia , Acrilatos/síntese química , Acrilatos/efeitos da radiação , Antineoplásicos/síntese química , Antineoplásicos/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/efeitos da radiação , Compostos Heterocíclicos com 2 Anéis/síntese química , Compostos Heterocíclicos com 2 Anéis/efeitos da radiação , Humanos , Luz , Modelos Químicos , Fenômenos Ópticos
10.
Bioorg Med Chem ; 31: 115959, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33387696

RESUMO

PPO herbicides emerge to be widely use in the agricultural field and a focus of research to many scientists due to its environmentally-friendly properties. In lieu with this, this study presents acrylate and acrylamide substituted pyrimidinediones as PPO herbicide candidates. Most synthesized compounds exhibits herbicidal activities against both monocot and dicot weeds, especially, compound 5a which showed non-selective superior activity against the commercialized, Saflufenacil. Compound 5a was further tested for residual effect and showed promising results as shorter period is needed to cultivate the next crops. The synthesized acrylate and acrylamide substituted pyrimidinediones, especially, 5a could potentially be utilized in the development of commercial protoporphyrinogen oxidase inhibitors with further tests and studies.


Assuntos
Acrilamida/farmacologia , Acrilatos/farmacologia , Inibidores Enzimáticos/farmacologia , Herbicidas/farmacologia , Protoporfirinogênio Oxidase/antagonistas & inibidores , Pirimidinonas/farmacologia , Acrilamida/química , Acrilatos/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Herbicidas/síntese química , Herbicidas/química , Estrutura Molecular , Protoporfirinogênio Oxidase/metabolismo , Pirimidinonas/síntese química , Pirimidinonas/química , Relação Estrutura-Atividade
11.
J Biochem Mol Toxicol ; 35(7): e22796, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33942446

RESUMO

Eprosartan (EPRO), an angiotensin receptor type-1 (AT-1) blocker, exhibited neuroprotective activities in ischemic stroke resulting from focal cerebral ischemia in rats. The current study aimed to clarify the neuroprotective role of EPRO in middle carotid artery occlusion (MCAO)-induced ischemic stroke in rats. Fifty-six male Wistar rats were divided into four groups (n = 14 per group): sham-operated group, sham receiving EPRO (60 mg/kg/day, po) group, ischemia-reperfusion (IR) group, and IR receiving EPRO (60 mg/kg/day, po) group. MCAO led to a remarkable impairment in motor function together with stimulation of inflammatory and apoptotic pathways in the hippocampus of rats. After MCAO, the AT1 receptor in the brain was stimulated, resulting in activation of Janus kinase 2/signal transducers and activators of transcription 3 signaling generating more neuroinflammatory milieu and destructive actions on the hippocampus. Augmentation of caspase-3 level by MCAO enhanced neuronal apoptosis synchronized with neurodegenerative effects of oxidative stress biomarkers. Pretreatment with EPRO opposed motor impairment and decreased oxidative and apoptotic mediators in the hippocampus of rats. The anti-inflammatory activity of EPRO was revealed by downregulation of nuclear factor-kappa B and tumor necrosis factor-ß levels and (C-X-C motif) ligand 1 messenger RNA (mRNA) expression. Moreover, the study confirmed the role of EPRO against a unique pathway of hypoxia-inducible factor-1α and its subsequent inflammatory mediators. Furthermore, upregulation of caveolin-1 mRNA level was also observed along with decreased oxidative stress marker levels and brain edema. Therefore, EPRO showed neuroprotective effects in MCAO-induced cerebral ischemia in rats via attenuation of oxidative, apoptotic, and inflammatory pathways.


Assuntos
Acrilatos/farmacologia , Encéfalo/metabolismo , Transtornos Cerebrovasculares/prevenção & controle , Imidazóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Tiofenos/farmacologia , Animais , Encéfalo/patologia , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/patologia , Masculino , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos
12.
Exp Cell Res ; 391(1): 111886, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32017927

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease with poor prognosis. Epithelial-mesenchymal transition (EMT) has been reported to play an important role in IPF. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) cascade, which regulates EMT and oncogenesis, has been implicated in the pathogenesis of IPF. Calpains, Ca2+-dependent cysteine proteinases that mediate controlled proteolysis of many specific substrates including epithelial cell marker E-cadherin, participate in organ fibrosis. Calpain-1 and calpain-2 of calpain family are ubiquitous calpains. ERK1/2 signaling stimulates the ubiquitous calpains activity in cancer development, but whether ERK1/2 signaling mediates the ubiquitous calpains activity in pulmonary fibrosis is unknown. Here we investigated whether inhibition of ERK1/2 signaling and the ubiquitous calpains attenuated experimental pulmonary fibrosis and examined the potential mechanism. Our results showed that inhibition of ERK1/2 signaling and the ubiquitous calpains both attenuated bleomycin (BLM)-induced lung fibrosis in mice. Inhibition of ERK1/2 signaling downregulated the expression of calpain-1 and calpain-2 in vivo and in vitro. We detected decreased E-cadherin expression and increased calpain-1 expression in IPF patients. Inhibition of ERK1/2 signaling and the ubiquitous calpains both suppressed the development of EMT in vivo and in vitro. Our study indicated that inhibition of the ERK1/2-ubiquitous calpains pathway protected pulmonary fibrosis from BLM, possibly via inhibition of EMT. Therefore, targeting ubiquitous calpains may be a potential strategy to attenuate IPF.


Assuntos
Calpaína/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Fibrose Pulmonar/tratamento farmacológico , Células A549 , Acrilatos/farmacologia , Idoso , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Bleomicina/administração & dosagem , Butadienos/farmacologia , Caderinas/genética , Caderinas/metabolismo , Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação da Expressão Gênica , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nitrilas/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/farmacologia
13.
Proc Natl Acad Sci U S A ; 115(16): 4152-4157, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610354

RESUMO

Recent studies point out the link between altered mitochondrial metabolism and cancer, and detailed understanding of mitochondrial metabolism requires real-time detection of its metabolites. Employing heteronuclear 2D NMR spectroscopy and 13C3-pyruvate, we propose in-organelle metabolomics that allows for the monitoring of mitochondrial metabolic changes in real time. The approach identified acetyl phosphate from human mitochondria, whose production has been largely neglected in eukaryotic metabolism since its first description about 70 years ago in bacteria. The kinetic profile of acetyl phosphate formation was biphasic, and its transient nature suggested its role as a metabolic intermediate. The method also allowed for the estimation of pyruvate dehydrogenase (PDH) enzyme activity through monitoring of the acetyl-CoA formation, independent of competing cytosolic metabolism. The results confirmed the positive regulation of mitochondrial PDH activity by p53, a well-known tumor suppressor. Our approach can easily be applied to other organelle-specific metabolic studies.


Assuntos
Metabolômica/métodos , Mitocôndrias/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Organofosfatos/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Acrilatos/farmacologia , Sistemas Computacionais , Técnicas de Inativação de Genes , Genes p53 , Células HCT116 , Humanos , Fosforilação Oxidativa , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Complexo Piruvato Desidrogenase/metabolismo , Proteína Supressora de Tumor p53/deficiência
14.
Arch Pharm (Weinheim) ; 354(7): e2000331, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33710656

RESUMO

A rationally designed series of 2-(N-cyclicamino)quinolines coupled with methyl (E)-3-(2/3/4-aminophenyl)acrylates was synthesized and subjected to in vitro screening bioassays for potential antiplasmodial and antitrypanosomal activities against a chloroquine-sensitive (3D7) strain of Plasmodium falciparum and nagana Trypanosoma brucei brucei 427, respectively. Substituent effects on activity were evaluated; meta-acrylate 24 and the ortho-acrylate 29 exhibited the highest antiplasmodial (IC50 = 1.4 µM) and antitrypanosomal (IC50 = 10.4 µM) activities, respectively. The activity against HeLa cells showed that the synthesized analogs are not cytotoxic at the maximum tested concentration. The ADME (absorption, distribution, metabolism, and excretion) drug-like properties of the synthesized compounds were predicted through the SwissADME software.


Assuntos
Acrilatos/farmacologia , Antimaláricos/farmacologia , Quinolinas/farmacologia , Tripanossomicidas/farmacologia , Acrilatos/síntese química , Acrilatos/química , Antimaláricos/síntese química , Antimaláricos/química , Células HeLa , Humanos , Concentração Inibidora 50 , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Trypanosoma brucei brucei/efeitos dos fármacos
15.
Int Heart J ; 62(4): 900-909, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34234076

RESUMO

Virus myocarditis (VMC) is a common cardiovascular disease and a major cause of sudden death in young adults. However, there is still a lack of effective treatments. Our previous studies found that calpain activation was involved in VMC pathogenesis. This study aims to explore the underlying mechanisms further. Neonatal rat cardiomyocytes (NRCMs) and transgenic mice overexpressing calpastatin (Tg-CAST), the endogenous calpain inhibitor, were used to establish VMC model. Hematoxylin and eosin and Masson staining revealed inflammatory cell infiltration and fibrosis. An ELISA array detected myocardial injury. Cardiac function was measured using echocardiography. CVB3 replication was assessed by capsid protein VP1. Apoptosis was measured by TUNEL staining, flow cytometry, and western blot. The endoplasmic reticulum (ER) stress-related proteins were detected by western blot. Our data showed that CVB3 infection resulted in cardiac injury, as evidenced by increased inflammatory responses and fibrosis, which induced myocardial apoptosis. Inhibiting calpain, both by PD150606 and calpastatin overexpression, could attenuate these effects. Furthermore, ER stress was activated during CVB3 infection. However, calpain inhibition could downregulate some ER stress-associated protein levels such as GRP78, pancreatic ER kinase-like ER kinase (PERK), and inositol-requiring enzyme-1α (IRE-1α), and ER stress-related apoptotic factors, during CVB3 infection. In conclusion, calpain inhibition attenuated CVB3-induced myocarditis by suppressing ER stress, thereby inhibiting cardiomyocyte apoptosis.


Assuntos
Acrilatos/uso terapêutico , Calpaína/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Miocardite/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Acrilatos/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Calpaína/antagonistas & inibidores , Infecções por Coxsackievirus/tratamento farmacológico , Infecções por Coxsackievirus/metabolismo , Avaliação Pré-Clínica de Medicamentos , Chaperona BiP do Retículo Endoplasmático , Enterovirus Humano B , Camundongos Transgênicos , Miocardite/tratamento farmacológico , Miocardite/virologia , Ratos Sprague-Dawley
16.
Bioorg Med Chem Lett ; 30(11): 127145, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32249119

RESUMO

Two new chlorinated secondary metabolites, saccharochlorines A and B (1 and 2), were isolated from the saline cultivation of a marine-derived bacterium Saccharomonospora sp. (KCTC-19160). The chemical structures of the saccharochlorines were elucidated by 2D NMR and MS spectroscopic data. Saccharochlorines A and B (1 and 2) exhibit weak inhibition of ß-secretase (BACE1) in biochemical inhibitory assay, but they induced the release of Aß (1-40) and Aß (1-42) in H4-APP neuroglial cells. This discrepancy might be derived from the differences between the cellular and sub-cellular environments or the epigenetic stimulation of BACE1 expression.


Assuntos
Acrilatos/química , Actinobacteria/química , Acrilatos/isolamento & purificação , Acrilatos/metabolismo , Acrilatos/farmacologia , Actinobacteria/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Conformação Molecular , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Fragmentos de Peptídeos/metabolismo
17.
J Nat Prod ; 83(4): 905-917, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32193929

RESUMO

Fourteen new compounds, oudemansins 1-4, oudemansinols 5-7, favolasins 8-10, favolasinin (12), polyketides 13-15, and (R,E)-2,4-dimethyl-5-phenyl-4-pentene-2,3-diol (16), together with nine known compounds were isolated from the basidiomycete fungus Favolaschia sp. BCC 18686. Two new compounds, favolasin E (11) and 9-oxostrobilurin E (17), were isolated from the closely related organism Favolaschia calocera BCC 36684 along with nine ß-methoxyacrylate-type derivatives. Compounds in the class of oudemansins and strobilurins exhibited moderate to strong antimalarial activity with relatively low cytotoxicity against Vero cells (African green monkey kidney fibroblasts). Potent antimalarial activity was demonstrated for 9-methoxystrobilurins G, K, and E (IC50 values 0.061, 0.089, and 0.14 µM, respectively). The structure-activity relationships (SAR) for antimalarial activity is proposed on the basis of the activity of the new and several known ß-methoxyacrylate derivatives in combination with the data from previously isolated compounds. Furthermore, several compounds showed specific cytotoxicity against NCI-187 cells (human small-cell lung cancer), although the SAR was different from that for antimalarial activity.


Assuntos
Agaricales/química , Antimaláricos/química , Antimaláricos/farmacologia , Policetídeos/química , Policetídeos/farmacologia , Estrobilurinas/química , Estrobilurinas/farmacologia , Acrilatos/química , Acrilatos/farmacologia , Animais , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Ensaios de Seleção de Medicamentos Antitumorais , Fermentação , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Células Vero
18.
Molecules ; 25(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722453

RESUMO

A series of novel phenyl methoxyacrylate derivatives containing a 2-alkenylthiopyrimidine substructure were designed, synthesized, and evaluated in terms of acaricidal activity. The structures of the title compounds were identified by 1H NMR, 13C NMR and high-resolution mass spectra (HRMS). Compound (E)-methyl 2-(2-((2-(3,3-dichloroallylthio)-6-(trifluoromethyl)pyrimidin-4-yloxy)methyl)phenyl)-3-methoxyacr-ylate (4j) exhibited significant acaricidal activity against Tetranychus cinnabarinus (T. cinnabarinus) in greenhouse tests possessing nearly twice the larvicidal and ovicidal activity compared to fluacrypyrim. Furthermore, the results of the field trials demonstrated that compound 4j could effectively control Panonychuscitri with long-lasting persistence and rapid action. The toxicology data in terms of LD50 value confirmed that compound 4j has a relatively low acute toxicity to mammals, birds, and honeybees.


Assuntos
Acaricidas/química , Inseticidas/química , Pirimidinas/química , Tetranychidae/efeitos dos fármacos , Acaricidas/síntese química , Acrilatos/síntese química , Acrilatos/química , Acrilatos/farmacologia , Animais , Inseticidas/síntese química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/patogenicidade , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/farmacologia , Tetranychidae/patogenicidade
19.
Bull Exp Biol Med ; 170(1): 53-57, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33222083

RESUMO

The antiviral activity of eprosartan (compound selected in silico) towards highly and low-virulent strains of tick-borne encephalitis virus was compared in vitro with activity of ribavirin. Study of the cytopathogenic activity of the virus on SPEV cells by ELISA, IFAT, and PCR showed similar results: both substances (eprosartan and ribavirin) promoted elimination of tick-borne encephalitis virus. Ribavirin exhibited intracellular inhibition towards both strains: the selectivity index for highly virulent Dal'negorsk strain was 160, for low-virulent Primorye-437 strain - 113. Eprosartan inhibited intracellular replication of Dal'negorsk strain (13.7) and less so that of Primorye-437 strain (2.9). The efficiency of virtual screening of the ligand (eprosartan) was demonstrated for highly virulent, but not low virulent tick-borne encephalitis strain.


Assuntos
Acrilatos/farmacologia , Antivirais/farmacologia , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Imidazóis/farmacologia , Ribavirina/farmacologia , Tiofenos/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/crescimento & desenvolvimento , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/virologia , Rim/patologia , Rim/virologia , Testes de Sensibilidade Microbiana , Suínos , Replicação Viral/genética
20.
Bioorg Med Chem ; 27(23): 115153, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31648877

RESUMO

In this study, a series of shikonin derivatives combined with benzoylacrylic had been designed and synthesized, which showed an inhibitory effect on both tubulin and the epidermal growth factor receptor (EGFR). In vitro EGFR and cell growth inhibition assay demonstrated that compound PMMB-317 exhibited the most potent anti-EGFR (IC50 = 22.7 nM) and anti-proliferation activity (IC50 = 4.37 µM) against A549 cell line, which was comparable to that of Afatinib (EGFR, IC50 = 15.4 nM; A549, IC50 = 6.32 µM). Our results on mechanism research suggested that, PMMB-317 could induce the apoptosis of A549 cells in a dose- and time-dependent manner, along with decrease in mitochondrial membrane potential (MMP), production of ROS and alterations in apoptosis-related protein levels. Also, PMMB-317 could arrest cell cycle at G2/M phase to induce cell apoptosis, and inhibit the EGFR activity through blocking the signal transduction downstream of the mitogen-activated protein MAPK pathway and the anti-apoptotic kinase AKT pathway; typically, such results were comparable to those of afatinib. In addition, PMMB-317 could suppress A549 cell migration through the Wnt/ß-catenin signaling pathway in a dose-dependent manner. Additionally, molecular docking simulation revealed that, PMMB-317 could simultaneously combine with EGFR protein (5HG8) and tubulin (1SA0) through various forces. Moreover, 3D-QSAR study was also carried out, which could optimize our compound through the structure-activity relationship analysis. Furthermore, the in vitro and in vivo results had collectively confirmed that PMMB-317 might serve as a promising lead compound to further develop the potential therapeutic anticancer agents.


Assuntos
Acrilatos/farmacologia , Antineoplásicos/farmacologia , Benzoatos/farmacologia , Naftoquinonas/farmacologia , Moduladores de Tubulina/farmacologia , Células A549 , Acrilatos/química , Acrilatos/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzoatos/química , Benzoatos/uso terapêutico , Desenho de Fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Camundongos Nus , Simulação de Acoplamento Molecular , Naftoquinonas/química , Naftoquinonas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA