RESUMO
A series of new 6-styryl-naphthalene-2-amidrazone derivatives were synthesized and evaluated as potential ASIC1a inhibitors. Among them, compound 5e showed the most activity to inhibit [Ca2+]i. elevation in acid-induced articular chondrocytes. Together with the important role of ASIC1a in the pathogenesis of tissue acidification diseases including rheumatoid arthritis, these results might provide a meaningful hint or inspiration in developing drugs targeting at tissue acidification diseases.
Assuntos
Ácidos Carboxílicos/química , Desenho de Fármacos , Agonistas de Canais de Sódio/síntese química , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Cálcio/metabolismo , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Naftalenos/química , Ratos , Agonistas de Canais de Sódio/química , Agonistas de Canais de Sódio/farmacologia , Relação Estrutura-AtividadeRESUMO
1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), the first organochlorine insecticide, and pyrethroid insecticides are sodium channel agonists. Although the use of DDT is banned in most of the world due to its detrimental impact on the ecosystem, indoor residual spraying of DDT is still recommended for malaria control in Africa. Development of resistance to DDT and pyrethroids is a serious global obstacle for managing disease vectors. Mapping DDT binding sites is necessary for understanding mechanisms of resistance and modulation of sodium channels by structurally different ligands. The pioneering model of the housefly sodium channel visualized the first receptor for pyrethroids, PyR1, in the II/III domain interface and suggested that DDT binds within PyR1. Previously, we proposed the second pyrethroid receptor, PyR2, at the I/II domain interface. However, whether DDT binds to both pyrethroid receptor sites remains unknown. Here, using computational docking of DDT into the Kv1.2-based mosquito sodium channel model, we predict that two DDT molecules can bind simultaneously within PyR1 and PyR2. The bulky trichloromethyl group of each DDT molecule fits snugly between four helices in the bent domain interface, whereas two p-chlorophenyl rings extend into two wings of the interface. Model-driven mutagenesis and electrophysiological analysis confirmed these propositions and revealed 10 previously unknown DDT-sensing residues within PyR1 and PyR2. Our study proposes a dual DDT-receptor model and provides a structural background for rational development of new insecticides.
Assuntos
Aedes , DDT/metabolismo , Proteínas de Insetos/metabolismo , Inseticidas/metabolismo , Modelos Moleculares , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Agonistas de Canais de Sódio/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , DDT/química , Proteínas de Insetos/agonistas , Proteínas de Insetos/química , Inseticidas/química , Canal de Potássio Kv1.2/química , Canal de Potássio Kv1.2/metabolismo , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Método de Monte Carlo , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/química , Estrutura Terciária de Proteína , Receptores de Neurotransmissores/química , Receptores de Neurotransmissores/metabolismo , Alinhamento de Sequência , Agonistas de Canais de Sódio/química , Homologia Estrutural de ProteínaRESUMO
Dravet syndrome (DS) is a catastrophic epileptic encephalopathy characterised by childhood-onset polymorphic seizures, multiple neuropsychiatric comorbidities, and increased risk of sudden death. Heterozygous loss-of-function mutations in one allele of SCN1A, the gene encoding the voltage-gated sodium channel 1.1 (NaV1.1), lead to DS. NaV1.1 is primarily found in the axon initial segment of fast-spiking GABAergic inhibitory interneurons in the brain, and the principle mechanism proposed to underlie seizure genesis in DS is loss of inhibitory input due to dysfunctional firing of GABAergic interneurons. We hypothesised that DS symptoms could be ameliorated by a drug that activates the reduced population of functional NaV1.1 channels in DS interneurons. We recently identified two homologous disulfide-rich spider-venom peptides (Hm1a and Hm1b) that selectively potentiate NaV1.1, and showed that selective activation of NaV1.1 by Hm1a restores the function of inhibitory interneurons in a mouse model of DS. Here we produced recombinant Hm1b (rHm1b) using an E. coli periplasmic expression system, and examined its selectivity against a panel of human NaV subtypes using whole-cell patch-clamp recordings. rHm1b is a potent and highly selective agonist of NaV1.1 and NaV1.3 (EC50 ~12 nM for both). rHm1b is a gating modifier that shifts the voltage dependence of channel activation and inactivation to hyperpolarised and depolarised potentials respectively, presumably by interacting with the channel's voltage-sensor domains. Like Hm1a, the structure of rHm1b determined by using NMR revealed a classical inhibitor cystine knot (ICK) motif. However, we show that rHm1b is an order of magnitude more stable than Hm1a in human cerebrospinal fluid. Overall, our data suggest that rHm1b is an exciting lead for a precision therapeutic targeted against DS.
Assuntos
Epilepsias Mioclônicas/tratamento farmacológico , Interneurônios/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Peptídeos/farmacologia , Agonistas de Canais de Sódio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Epilepsias Mioclônicas/metabolismo , Células HEK293 , Humanos , Interneurônios/metabolismo , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Técnicas de Patch-Clamp , Peptídeos/química , Peptídeos/genética , Homologia de Sequência de Aminoácidos , Agonistas de Canais de Sódio/química , Venenos de Aranha/metabolismoRESUMO
Voltage gated ion channels have become a subject of investigation as possible pharmaceutical targets. Research has linked the activity of ion channels directly to anti-inflammatory pathways, energy homeostasis, cancer proliferation and painful diabetic neuropathy. Sea anemones secrete a diverse array of bioactive compounds including potassium and sodium channel toxins. A putative novel sodium channel agonist (molecular mass of 4619.7â¯Da) with a predicted sequence: CLCNSDGPSV RGNTLSGILW LAGCPSGWHN CKKHKPTIGW CCK was isolated from Bunodosoma capense using a modified stimulation technique to induce the secretion of the neurotoxin rich mucus confirmed by an Artemia nauplii bio-assay. The peptide purification combined size-exclusion and reverse-phase high performance liquid chromatography. A thallium-based ion flux assay confirmed the presence of a sodium channel agonist/inhibitor and purity was determined using a modified tricine SDS-PAGE system. The peptide isolated indicated the presence of multiple disulfide bonds in a tight ß-defensin cystine conformation. An IC50 value of 26â¯nM was determined for total channel inhibition on MCF-7â¯cells. The unique putative sodium channel agonist initiating with a cystine bond indicates a divergent evolution to those previously isolated from Bunodosoma species.
Assuntos
Anêmonas-do-Mar/química , Agonistas de Canais de Sódio/química , Sequência de Aminoácidos , Animais , Artemia , Humanos , Células MCF-7 , Toxinas Marinhas , Neurotoxinas/química , Peptídeos/química , África do SulRESUMO
Acid-sensing ion channel (ASIC) channels belong to the family of ligand-gated ion channels known as acid-sensing (proton-gated) ion channels. Only a few activators of ASICs are known. These are exogenous and endogenous molecules that cause a persistent, slowly desensitized current, different from an acid-induced current. Here we describe a novel endogenous agonist of ASICs-peptide nocistatin produced by neuronal cells and neutrophils as a part of prepronociceptin precursor protein. The rat nocistatin evoked currents in X. laevis oocytes expressing rat ASIC1a, ASIC1b, ASIC2a, and ASIC3 that were very similar in kinetic parameters to the proton-gated response. Detailed characterization of nocistatin action on rASIC1a revealed a proton-like dose-dependence of activation, which was accompanied by a dose-dependent decrease in the sensitivity of the channel to the protons. The toxin mambalgin-2, antagonist of ASIC1a, inhibited nocistatin-induced current, therefore the close similarity of mechanisms for ASIC1a activation by peptide and protons could be suggested. Thus, nocistatin is the first endogenous direct agonist of ASICs. This data could give a key to understanding ASICs activation regulation in the nervous system and also could be used to develop new drugs to treat pathological processes associated with ASICs activation, such as neurodegeneration, inflammation, and pain.
Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Neuropeptídeos/farmacologia , Peptídeos Opioides/farmacologia , Agonistas de Canais de Sódio/farmacologia , Sequência de Aminoácidos , Animais , Neuropeptídeos/química , Peptídeos Opioides/química , Ratos , Agonistas de Canais de Sódio/químicaRESUMO
Voltage-gated sodium channels (Navs) play essential roles in excitable tissues, with their activation and opening resulting in the initial phase of the action potential. The cycling of Navs through open, closed and inactivated states, and their closely choreographed relationships with the activities of other ion channels lead to exquisite control of intracellular ion concentrations in both prokaryotes and eukaryotes. Here we present the 2.45 Å resolution crystal structure of the complete NavMs prokaryotic sodium channel in a fully open conformation. A canonical activated conformation of the voltage sensor S4 helix, an open selectivity filter leading to an open activation gate at the intracellular membrane surface and the intracellular C-terminal domain are visible in the structure. It includes a heretofore unseen interaction motif between W77 of S3, the S4-S5 interdomain linker, and the C-terminus, which is associated with regulation of opening and closing of the intracellular gate.
Assuntos
Agonistas de Canais de Sódio/química , Agonistas de Canais de Sódio/metabolismo , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/fisiologia , Sequência de Aminoácidos , Eletrofisiologia , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Canais Iônicos/química , Canais Iônicos/genética , Canais Iônicos/fisiologia , Cinética , Modelos Moleculares , Mutação , Células Procarióticas/química , Células Procarióticas/metabolismo , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Relação Estrutura-Atividade , Canais de Sódio Disparados por Voltagem/genética , Difração de Raios XRESUMO
The voltage dependent sodium channel Nav1.9, is expressed preferentially in peripheral sensory neurons and has been linked to human genetic pain disorders, which makes it target of interest for the development of new pain therapeutics. However, characterization of Nav1.9 pharmacology has been limited due in part to the historical difficulty of functionally expressing recombinant channels. Here we report the successful generation and characterization of human, mouse and rat Nav1.9 stably expressed in human HEK-293 cells. These cells exhibit slowly activating and inactivating inward sodium channel currents that have characteristics of native Nav1.9. Optimal functional expression was achieved by coexpression of Nav1.9 with ß1/ß2 subunits. While recombinantly expressed Nav1.9 was found to be sensitive to sodium channel inhibitors TC-N 1752 and tetracaine, potency was up to 100-fold less than reported for other Nav channel subtypes despite evidence to support an interaction with the canonical local anesthetic (LA) binding region on Domain 4 S6. Nav1.9 Domain 2 S6 pore domain contains a unique lysine residue (K799) which is predicted to be spatially near the local anesthetic interaction site. Mutation of this residue to the consensus asparagine (K799N) resulted in an increase in potency for tetracaine, but a decrease for TC-N 1752, suggesting that this residue can influence interaction of inhibitors with the Nav1.9 pore. In summary, we have shown that stable functional expression of Nav1.9 in the widely used HEK-293 cells is possible, which opens up opportunities to better understand channel properties and may potentially aid identification of novel Nav1.9 based pharmacotherapies.
Assuntos
Expressão Gênica , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Canal de Sódio Disparado por Voltagem NAV1.9/metabolismo , Sequência de Aminoácidos , Anestésicos Locais/química , Anestésicos Locais/farmacologia , Animais , Sítios de Ligação , Células HEK293 , Humanos , Concentração Inibidora 50 , Ativação do Canal Iônico/efeitos dos fármacos , Lisina/química , Lisina/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Modelos Moleculares , Conformação Molecular , Canal de Sódio Disparado por Voltagem NAV1.9/química , Ligação Proteica , Ratos , Agonistas de Canais de Sódio/química , Agonistas de Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologiaRESUMO
ATP-gated P2X receptors and acid-sensing ion channels are cation-selective, trimeric ligand-gated ion channels unrelated in amino acid sequence. Nevertheless, initial crystal structures of the P2X4 receptor and acid-sensing ion channel 1a in resting/closed and in non conductive/desensitized conformations, respectively, revealed common elements of architecture. Recent structures of both channels have revealed the ion channels in open conformations. Here we focus on common elements of architecture, conformational change and ion permeation, emphasizing general principles of structure and mechanism in P2X receptors and in acid-sensing ion channels and showing how these two sequence-disparate families of ligand-gated ion channel harbor unexpected similarities when viewed through a structural lens.
Assuntos
Canais Iônicos Sensíveis a Ácido/química , Modelos Moleculares , Conformação Proteica , Receptores Purinérgicos P2X/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Sítios de Ligação , Ativação do Canal Iônico , Íons/química , Íons/metabolismo , Ligação Proteica , Subunidades Proteicas/química , Agonistas do Receptor Purinérgico P2X/química , Agonistas do Receptor Purinérgico P2X/metabolismo , Receptores Purinérgicos P2X/metabolismo , Agonistas de Canais de Sódio/química , Agonistas de Canais de Sódio/metabolismoRESUMO
Ion channels are targets for many naturally occurring toxins and small-molecule drugs. Despite great progress in the X-ray crystallography of ion channels, we still do not have a complete understanding of the atomistic mechanisms of channel modulation by ligands. In particular, the importance of the simultaneous interaction of permeant ions with the ligand and the channel protein has not been the focus of much attention. Considering these interactions often allows one to rationalize the highly diverse experimental data within the framework of relatively simple structural models. This has been illustrated in earlier studies on the action of local anesthetics, sodium channel activators, as well as blockers of potassium and calcium channels. Here, we discuss the available data with a view to understanding the use-, voltage-, and current carrying cation-dependence of the ligand action, paradoxes in structure--activity relationships, and effects of mutations in these ion channels.