Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.028
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 601(7892): 257-262, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937940

RESUMO

The methanogenic degradation of oil hydrocarbons can proceed through syntrophic partnerships of hydrocarbon-degrading bacteria and methanogenic archaea1-3. However, recent culture-independent studies have suggested that the archaeon 'Candidatus Methanoliparum' alone can combine the degradation of long-chain alkanes with methanogenesis4,5. Here we cultured Ca. Methanoliparum from a subsurface oil reservoir. Molecular analyses revealed that Ca. Methanoliparum contains and overexpresses genes encoding alkyl-coenzyme M reductases and methyl-coenzyme M reductases, the marker genes for archaeal multicarbon alkane and methane metabolism. Incubation experiments with different substrates and mass spectrometric detection of coenzyme-M-bound intermediates confirm that Ca. Methanoliparum thrives not only on a variety of long-chain alkanes, but also on n-alkylcyclohexanes and n-alkylbenzenes with long n-alkyl (C≥13) moieties. By contrast, short-chain alkanes (such as ethane to octane) or aromatics with short alkyl chains (C≤12) were not consumed. The wide distribution of Ca. Methanoliparum4-6 in oil-rich environments indicates that this alkylotrophic methanogen may have a crucial role in the transformation of hydrocarbons into methane.


Assuntos
Euryarchaeota , Hidrocarbonetos , Metano , Alcanos/metabolismo , Biodegradação Ambiental , Euryarchaeota/enzimologia , Euryarchaeota/genética , Hidrocarbonetos/metabolismo , Metano/metabolismo , Oxirredutases/metabolismo , Filogenia
2.
Nature ; 610(7931): 302-307, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35952713

RESUMO

The catalytic asymmetric construction of Csp3-Csp3 bonds remains one of the foremost challenges in organic synthesis1. Metal-catalysed cross-electrophile couplings (XECs) have emerged as a powerful tool for C-C bond formation2-5. However, coupling two distinct Csp3 electrophiles with high cross-selectivity and stereoselectivity continues as an unmet challenge. Here we report a highly chemoselective and enantioselective Csp3-Csp3 XEC between alkyl halides and nitroalkanes catalysed by flavin-dependent 'ene'-reductases (EREDs). Photoexcitation of the enzyme-templated charge-transfer complex between an alkyl halide and a flavin cofactor enables the chemoselective reduction of alkyl halide over the thermodynamically favoured nitroalkane partner. The key C-C bond-forming step occurs by means of the reaction of an alkyl radical with an in situ-generated nitronate to form a nitro radical anion that collapses to form nitrite and an alkyl radical. An enzyme-controlled hydrogen atom transfer (HAT) affords high levels of enantioselectivity. This reactivity is unknown in small-molecule catalysis and highlights the potential for enzymes to use new mechanisms to address long-standing synthetic challenges.


Assuntos
Alcanos , Técnicas de Química Sintética , Oxirredutases , Alcanos/metabolismo , Biocatálise , Flavinas/metabolismo , Hidrogênio/metabolismo , Nitritos/metabolismo , Oxirredutases/metabolismo , Termodinâmica
3.
Annu Rev Microbiol ; 76: 553-577, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35917471

RESUMO

Alkanes are saturated apolar hydrocarbons that range from their simplest form, methane, to high-molecular-weight compounds. Although alkanes were once considered biologically recalcitrant under anaerobic conditions, microbiological investigations have now identified several microbial taxa that can anaerobically degrade alkanes. Here we review recent discoveries in the anaerobic oxidation of alkanes with a specific focus on archaea that use specific methyl coenzyme M reductases to activate their substrates. Our understanding of the diversity of uncultured alkane-oxidizing archaea has expanded through the use of environmental metagenomics and enrichment cultures of syntrophic methane-, ethane-, propane-, and butane-oxidizing marine archaea with sulfate-reducing bacteria. A recently cultured group of archaea directly couples long-chain alkane degradation with methane formation, expanding the range of substrates used for methanogenesis. This article summarizes the rapidly growing knowledge of the diversity, physiology, and habitat distribution of alkane-degrading archaea.


Assuntos
Alcanos , Archaea , Alcanos/metabolismo , Anaerobiose , Metano/metabolismo , Oxirredução , Filogenia
4.
Plant Cell Physiol ; 65(3): 428-446, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38174441

RESUMO

Many terrestrial plants produce large quantities of alkanes for use in epicuticular wax and the pollen coat. However, their carbon chains must be long to be useful as fuel or as a petrochemical feedstock. Here, we focus on Nymphaea odorata, which produces relatively short alkanes in its anthers. We identified orthologs of the Arabidopsis alkane biosynthesis genes AtCER1 and AtCER3 in N. odorata and designated them NoCER1A, NoCER3A and NoCER3B. Expression analysis of NoCER1A and NoCER3A/B in Arabidopsis cer mutants revealed that the N. odorata enzymes cooperated with the Arabidopsis enzymes and that the NoCER1A produced shorter alkanes than AtCER1, regardless of which CER3 protein it interacted with. These results indicate that AtCER1 frequently uses a C30 substrate, whereas NoCER1A, NoCER3A/B and AtCER3 react with a broad range of substrate chain lengths. The incorporation of shorter alkanes disturbed the formation of wax crystals required for water-repellent activity in stems, suggesting that chain-length specificity is important for surface cleaning. Moreover, cultured tobacco cells expressing NoCER1A and NoCER3A/B effectively produced C19-C23 alkanes, indicating that the introduction of the two enzymes is sufficient to produce alkanes. Taken together, our findings suggest that these N. odorata enzymes may be useful for the biological production of alkanes of specific lengths. 3D modeling revealed that CER1s and CER3s share a similar structure that consists of N- and C-terminal domains, in which their predicted active sites are respectively located. We predicted the complex structure of both enzymes and found a cavity that connects their active sites.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nymphaea , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nymphaea/metabolismo , Alcanos/metabolismo , Carbono-Carbono Liases/metabolismo
5.
Appl Environ Microbiol ; 90(1): e0162523, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38168668

RESUMO

Many Acinetobacter species can grow on n-alkanes of varying lengths (≤C40). AlmA, a unique flavoprotein in these Acinetobacter strains, is the only enzyme proven to be required for the degradation of long-chain (LC) n-alkanes, including C32 and C36 alkanes. Although it is commonly presumed to be a terminal hydroxylase, its role in n-alkane degradation remains elusive. In this study, we conducted physiological, biochemical, and bioinformatics analyses of AlmA to determine its role in n-alkane degradation by Acinetobacter baylyi ADP1. Consistent with previous reports, gene deletion analysis showed that almA was vital for the degradation of LC n-alkanes (C26-C36). Additionally, enzymatic analysis revealed that AlmA catalyzed the conversion of aliphatic 2-ketones (C10-C16) to their corresponding esters, but it did not conduct n-alkane hydroxylation under the same conditions, thus suggesting that AlmA in strain ADP1 possesses Baeyer-Villiger monooxygenase (BVMO) activity. These results were further confirmed by bioinformatics analysis, which revealed that AlmA was closer to functionally identified BVMOs than to hydroxylases. Altogether, the results of our study suggest that LC n-alkane degradation by strain ADP1 possibly follows a novel subterminal oxidation pathway that is distinct from the terminal oxidation pathway followed for short-chain n-alkane degradation. Furthermore, our findings suggest that AlmA catalyzes the third reaction in the LC n-alkane degradation pathway.IMPORTANCEMany microbial studies on n-alkane degradation are focused on the genes involved in short-chain n-alkane (≤C16) degradation; however, reports on the genes involved in long-chain (LC) n-alkane (>C20) degradation are limited. Thus far, only AlmA has been reported to be involved in LC n-alkane degradation by Acinetobacter spp.; however, its role in the n-alkane degradation pathway remains elusive. In this study, we conducted a detailed characterization of AlmA in A. baylyi ADP1 and found that AlmA exhibits Baeyer-Villiger monooxygenase activity, thus indicating the presence of a novel LC n-alkane biodegradation mechanism in strain ADP1.


Assuntos
Acinetobacter , Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Alcanos/metabolismo , Oxirredução , Acinetobacter/genética
6.
Acc Chem Res ; 56(24): 3665-3675, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38032826

RESUMO

ConspectusEvery year, perhaps as much as 800 million tons of hydrocarbons enters the environment; alkanes make up a large percentage of it. Most are transformed by organisms that utilize these molecules as sources of energy and carbon. Both aerobic and anaerobic alkane transformation chemistries exist, capitalizing on the presence of alkanes in both oxic and anoxic environments. Over the past 40 years, tremendous progress has been made in understanding the structure and mechanism of enzymes that catalyze the transformation of methane. By contrast, progress involving enzymes that transform liquid alkanes has been slower with the first structures of AlkB, the predominant aerobic alkane hydroxylase in the environment, appearing in 2023. Because of the fundamental importance of C-H bond activation chemistries, interest in understanding how biology activates and transforms alkanes is high.In this Account, we focus on steps we have taken to understand the mechanism and structure of alkane monooxygenase (AlkB), the metalloenzyme that dominates the transformation of liquid alkanes in the environment (not to be confused with another AlkB that is an α-ketogluturate-dependent enzyme involved in DNA repair). First, we briefly describe what is known about the prevalence of AlkB in the environment and its role in the carbon cycle. Then we review the key findings from our recent high-resolution cryoEM structure of AlkB and highlight important similarities and differences in the structures of members of class III diiron enzymes. Functional studies, which we summarize, from a number of single residue variants enable us to say a great deal about how the structure of AlkB facilitates its function. Next, we overview work from our laboratories using mechanistically diagnostic radical clock substrates to characterize the mechanism of AlkB and contextualize the results we have obtained on AlkB with results we have obtained on other alkane-oxidizing enzymes and explain these results in light of the enzyme's structure. Finally, we integrate recent work in our laboratories with information from prior studies of AlkB, and relevant model systems, to create a holistic picture of the enzyme. We end by pointing to critical questions that still need to be answered, questions about the electronic structure of the active site of the enzyme throughout the reaction cycle and about whether and to what extent the enzyme plays functional roles in biology beyond simply initiating the degradation of alkanes.


Assuntos
Alcanos , Hidrocarbonetos , Citocromo P-450 CYP4A/química , Citocromo P-450 CYP4A/genética , Citocromo P-450 CYP4A/metabolismo , Alcanos/química , Alcanos/metabolismo
7.
Langmuir ; 40(21): 11106-11115, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38745419

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), as persistent environmental pollutants, often reside in nonaqueous-phase liquids (NAPLs). Mycobacterium sp. WY10, boasting highly hydrophobic surfaces, can adsorb to the oil-water interface, stabilizing the Pickering emulsion and directly accessing PAHs for biodegradation. We investigated the impact of Triton X-100 (TX100) on this interfacial uptake of phenanthrene (PHE) by Mycobacteria, using n-tetradecane (TET) and bis-(2-ethylhexyl) phthalate (DEHP) as NAPLs. Interfacial tension, phase behavior, and emulsion stability studies, alongside confocal laser scanning microscopy and electron microscope observations, unveiled the intricate interplay. In surfactant-free systems, Mycobacteria formed stable W/O Pickering emulsions, directly degrading PHE within the NAPLs because of their intimate contact. Introducing low-dose TX100 disrupted this relationship. Preferentially binding to the cells, the surfactant drastically increased the cell hydrophobicity, triggering desorption from the interface and phase separation. Consequently, PAH degradation plummeted due to hindered NAPL access. Higher TX100 concentrations flipped the script, creating surfactant-stabilized O/W emulsions devoid of interfacial cells. Surprisingly, PAH degradation remained efficient. This paradox can be attributed to NAPL emulsification, driven by the surfactant, which enhanced mass transfer and brought the substrate closer to the cells, despite their absence at the interface. This study sheds light on the complex effect of surfactants on Mycobacteria and PAH uptake, revealing an antagonistic effect at low concentrations that ultimately leads to enhanced degradation through emulsification at higher doses. These findings offer valuable insights into optimizing bioremediation strategies in PAH-contaminated environments.


Assuntos
Biodegradação Ambiental , Mycobacterium , Octoxinol , Fenantrenos , Tensoativos , Fenantrenos/química , Fenantrenos/farmacologia , Fenantrenos/metabolismo , Tensoativos/química , Tensoativos/farmacologia , Mycobacterium/metabolismo , Mycobacterium/efeitos dos fármacos , Mycobacterium/química , Octoxinol/química , Emulsões/química , Alcanos/química , Alcanos/metabolismo , Interações Hidrofóbicas e Hidrofílicas
8.
Microb Cell Fact ; 23(1): 139, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750603

RESUMO

BACKGROUND: Increasing concerns about climate change and global petroleum supply draw attention to the urgent need for the development of alternative methods to produce fuels. Consequently, the scientific community must devise novel ways to obtain fuels that are both sustainable and eco-friendly. Bacterial alkanes have numerous potential applications in the industry sector. One significant application is biofuel production, where bacterial alkanes can serve as a sustainable eco-friendly alternative to fossil fuels. This study represents the first report on the production of alkanes by endophytic bacteria. RESULTS: In this study, three Bacillus species, namely Bacillus atrophaeus Camph.1 (OR343176.1), Bacillus spizizenii Camph.2 (OR343177.1), and Bacillus aerophilus Camph.3 (OR343178.1), were isolated from the leaves of C. camphora. The isolates were then screened to determine their ability to produce alkanes in different culture media including nutrient broth (NB), Luria-Bertani (LB) broth, and tryptic soy broth (TSB). Depending on the bacterial isolate and the culture media used, different profiles of alkanes ranging from C8 to C31 were detected. CONCLUSIONS: The endophytic B. atrophaeus Camph.1 (OR343176.1), B. spizizenii Camph.2 (OR343177.1), and B. aerophilus Camph.3 (OR343178.1), associated with C. camphora leaves, represent new eco-friendly approaches for biofuel production, aiming towards a sustainable future. Further research is needed to optimize the fermentation process and scale up alkane production by these bacterial isolates.


Assuntos
Alcanos , Bacillus , Biocombustíveis , Cinnamomum camphora , Bacillus/metabolismo , Bacillus/isolamento & purificação , Bacillus/classificação , Biocombustíveis/microbiologia , Cinnamomum camphora/metabolismo , Cinnamomum camphora/microbiologia , Alcanos/metabolismo , Folhas de Planta/microbiologia , Endófitos/metabolismo , Endófitos/isolamento & purificação , Meios de Cultura
9.
Environ Res ; 252(Pt 2): 118751, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522738

RESUMO

Haloarchaea with the capacity to degrade alkanes is promising to deal with petroleum pollution in hypersaline environments. However, only a limited number of haloarchaeal species are investigated, and their pathway and mechanism for alkane degradation remain unclear. In this study, Halogranum rubrum RO2-11, a haloarchaeal strain, verified the ability to degrade kerosene and hexadecane in 184 g/L NaCl, with 53% and 52% degradation rates after 9 and 4 days, respectively. Genome sequencing and gene annotation indicated that strain RO2-11 possesses a complete potential alkane-degrading pathway, of which alkane hydroxylases may include CYP450, AlmA, and LadA. Transcriptome and metabolome analyses revealed that the upregulation of related genes in TCA cycle, lysine biosynthesis, and acetylation may help improve hexadecane degradation. Additionally, an alternative degrading pathway of hexadecane based on dual-terminal ß-oxidation may occur in strain RO2-11. It is likely to be the first report of alkane degradation by the genus Halogranum, which may be helpful for applications of oil-pollution bioremediation under high-salt conditions.


Assuntos
Alcanos , Biodegradação Ambiental , Alcanos/metabolismo , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Multiômica
10.
Environ Res ; 246: 118145, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38191044

RESUMO

A novel n-alkane- and phenolic acid-degrading Acinetobacter strain (designated C16S1T) was isolated from rhizosphere soil. The strain was identified as a novel species named Acinetobacter suaedae sp. nov. using a polyphasic taxonomic approach. Strain C16S1T showed preferential degradation of three compounds: p-hydroxybenzoate (PHBA) > ferulic acid (FA) > n-hexadecane. In a medium containing two or three of these allelochemicals, coexisting n-hexadecane and PHBA accelerated each other's degradation and that of FA. FA typically hindered the degradation of n-hexadecane but accelerated PHBA degradation. The upregulated expression of n-hexadecane- and PHBA-degrading genes induced, by their related substrates, was mutually enhanced by coexisting PHBA or n-hexadecane; in contrast, expression of both gene types was reduced by FA. Coexisting PHBA or n-hexadecane enhanced the upregulation of FA-degrading genes induced by FA. The expressions of degrading genes affected by coexisting chemicals coincided with the observed degradation efficiencies. Iron shortage limited the degradation efficiency of all three compounds and changed the degradation preference of Acinetobacter. The present study demonstrated that the biodegradability of the chemicals, the effects of coexisting chemicals on the expression of degrading genes and the strain's growth, the shortage of essential elements, and the toxicity of the chemicals were the four major factors affecting the removal rates of the coexisting allelochemicals.


Assuntos
Acinetobacter , Acinetobacter/genética , Alcanos/metabolismo , Alcanos/farmacologia , Genômica , Biodegradação Ambiental
11.
Biosci Biotechnol Biochem ; 88(8): 979-982, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38794895

RESUMO

To clarify the growth mechanisms of Rhodococcus in the alkane phase, we measured oxygen utilization in the alkane phase. The results showed that dissolved oxygen decreased significantly when viable cells were present in the alkane phase. The findings suggested that Rhodococcus strains can grow in alkanes and utilize the resident dissolved oxygen.


Assuntos
Alcanos , Oxigênio , Rhodococcus , Rhodococcus/metabolismo , Rhodococcus/crescimento & desenvolvimento , Alcanos/metabolismo , Oxigênio/metabolismo , Água/química , Água/metabolismo
12.
Lett Appl Microbiol ; 77(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38650069

RESUMO

Environmental pollution with aromatic and aliphatic hydrocarbons caused by oil and petrochemical industries has very toxic and carcinogenic effects on living organisms and should be removed from the environment. In this research, after analyzing the oil sludge of the Bahregan area, it was found that most aliphatic paraffin compounds are related to octadecane, most liquid aliphatic compounds are related to hexadecane, and most aromatic compounds are related to naphthalene, phenanthrene, fluoranthene, and anthracene. Then, we investigated the ability of native bacteria from this area, such as Thalassospira, Chromohalobacter, and a bacterial consortium, to biodegrade the dominant aromatic and aliphatic hydrocarbons found in oil sludge. The results of Gas Chromatography-Mass Spectrometry analysis showed that among the tested hydrocarbon sources, Thalassospira can completely remove octadecane and hexadecane, and Chromohalobacter can reduce hexadecane from 15.9 to 9.9%. The bacterial consortium can completely remove octadecane and reduce hexadecane from 15.9 to 5.1%, toluene from 25.6 to 0.6%, and phenanthrene from 12.93 to 6%. According to the obtained results, the bacterial consortium effectively plays a role in the biodegradation of aromatic and aliphatic hydrocarbons, making it a viable solution for treating hydrocarbon pollutants in various environments.


Assuntos
Bactérias , Biodegradação Ambiental , Hidrocarbonetos Aromáticos , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Hidrocarbonetos Aromáticos/metabolismo , Alcanos/metabolismo , Esgotos/microbiologia , Fenantrenos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Petróleo/metabolismo , Petróleo/microbiologia , Consórcios Microbianos
13.
Molecules ; 29(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474545

RESUMO

Sol g 2 is the major protein in Solenopsis geminata fire ant venom. It shares the highest sequence identity with Sol i 2 (S. invicta) and shares high structural homology with LmaPBP (pheromone-binding protein (PBP) from the cockroach Leucophaea maderae). We examined the specific Sol g 2 protein ligands from fire ant venom. The results revealed that the protein naturally formed complexes with hydrocarbons, including decane, undecane, dodecane, and tridecane, in aqueous venom solutions. Decane showed the highest affinity binding (Kd) with the recombinant Sol g 2.1 protein (rSol g 2.1). Surprisingly, the mixture of alkanes exhibited a higher binding affinity with the rSol g 2.1 protein compared to a single one, which is related to molecular docking simulations, revealing allosteric binding sites in the Sol g 2.1 protein model. In the trail-following bioassay, we observed that a mixture of the protein sol g 2.1 and hydrocarbons elicited S. geminata worker ants to follow trails for a longer time and distance compared to a mixture containing only hydrocarbons. This suggests that Sol g 2.1 protein may delay the evaporation of the hydrocarbons. Interestingly, the piperidine alkaloids extracted have the highest attraction to the ants. Therefore, the mixture of hydrocarbons and piperidines had a synergistic effect on the trail-following of ants when both were added to the protein.


Assuntos
Venenos de Formiga , Formigas , Animais , Proteínas de Transporte/metabolismo , Formigas Lava-Pés , Feromônios/química , Ligantes , Simulação de Acoplamento Molecular , Formigas/química , Alcanos/metabolismo
14.
Plant J ; 112(2): 339-351, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35984735

RESUMO

The cuticular wax layer on leaf surfaces limits non-stomatal water loss to the atmosphere and protects against pathogen invasion. Although many genes associated with wax biosynthesis and wax transport in plants have been identified, their regulatory mechanisms remain largely unknown. Here, we show that the MYB transcription factor OsMYB60 positively regulates cuticular wax biosynthesis and this helps rice (Oryza sativa) plants tolerate drought stress. Compared with the wild type (japonica cultivar 'Dongjin'), osmyb60 null mutants (osmyb60-1 and osmyb60-2) exhibited increased drought sensitivity, with more chlorophyll leaching and higher rates of water loss. Quantitative reverse-transcription PCR showed that the loss of function of OsMYB60 led to downregulation of wax biosynthesis genes, leading to reduced amounts of total wax components on leaf surfaces under normal conditions. Yeast one-hybrid, luciferase transient transcriptional activity, and chromatin immunoprecipitation assays revealed that OsMYB60 directly binds to the promoter of OsCER1 (a key gene involved in very-long-chain alkane biosynthesis) and upregulates its expression. Taken together, these results demonstrate that OsMYB60 enhances rice resilience to drought stress by promoting cuticular wax biosynthesis on leaf surfaces.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ceras/metabolismo , Plantas Geneticamente Modificadas/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mutação , Clorofila/metabolismo , Água/metabolismo , Alcanos/metabolismo , Luciferases/genética
15.
Plant Physiol ; 190(3): 1640-1657, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36000923

RESUMO

Cuticular waxes cover the aerial surfaces of land plants and protect them from various environmental stresses. Alkanes are major wax components and contribute to plant drought tolerance, but the biosynthesis and regulation of alkanes remain largely unknown in wheat (Triticum aestivum L.). Here, we identified and functionally characterized a key alkane biosynthesis gene ECERIFERUM1-6A (TaCER1-6A) from wheat. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated knockout mutation in TaCER1-6A greatly reduced the contents of C27, C29, C31, and C33 alkanes in wheat leaves, while TaCER1-6A overexpression significantly increased the contents of these alkanes in wheat leaves, suggesting that TaCER1-6A is specifically involved in the biosynthesis of C27, C29, C31, and C33 alkanes on wheat leaf surfaces. TaCER1-6A knockout lines exhibited increased cuticle permeability and reduced drought tolerance, whereas TaCER1-6A overexpression lines displayed reduced cuticle permeability and enhanced drought tolerance. TaCER1-6A was highly expressed in flag leaf blades and seedling leaf blades and could respond to abiotic stresses and abscisic acid. TaCER1-6A was located in the endoplasmic reticulum, which is the subcellular compartment responsible for wax biosynthesis. A total of three haplotypes (HapI/II/III) of TaCER1-6A were identified in 43 wheat accessions, and HapI was the dominant haplotype (95%) in these wheat varieties. Additionally, we identified two R2R3-MYB transcription factors TaMYB96-2D and TaMYB96-5D that bound directly to the conserved motif CAACCA in promoters of the cuticular wax biosynthesis genes TaCER1-6A, TaCER1-1A, and fatty acyl-CoA reductase4. Collectively, these results suggest that TaCER1-6A is required for C27, C29, C31, and C33 alkanes biosynthesis and improves drought tolerance in wheat.


Assuntos
Secas , Triticum , Triticum/fisiologia , Alcanos/metabolismo , Regulação da Expressão Gênica de Plantas , Ceras/metabolismo , Folhas de Planta/metabolismo
16.
Environ Res ; 219: 115064, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549230

RESUMO

The key to enhancing the efficacy of bioremediation of hydrocarbon-contaminated soil is the precise and highly efficient screening of functional isolates. Low screening effectiveness, narrow screening range and an unstable structure of the constructed microflora during bioremediation are the shortcomings of the traditional shaking culture (TSC) method. To improve the secondary screening of isolates and microflora implemented for alkane degradation, this work evaluated the characterization relationship between bacterial function and enzyme activity and devised an enzyme activity assay (EAA) method. The results indicated a substantial positive correlation (r = 0.97) between 24 candidate isolates and their whole enzymes, proving that whole enzyme activity properly reflects the metabolic functions of microorganisms. The functional analysis of the isolates demonstrated that the EAA method in conjunction with microbial abundance and metabolite determination could broaden the screening range of functional isolates, including aliphatic acid-metabolizing isolates (isolates H4 and H7) and aliphatic acid-sensitive isolates (isolate H2) with n-hexadecane degradation ability. The EAA method also guided the construction of functional microflora and optimized the mode of application using combinations of alkane-degrading bacteria and aliphatic acid-degrading bacteria successively (e.g., F1+H7+H7). The combinations maintained a high abundance of functional isolates and stable α diversity and community composition throughout the experiment, which contributed to more advanced alkane degradation and mineralization ability (p < 0.01). Assuming a workload of 100 tests, the screening efficiency of the EAA method is more than 16 times that of the TSC method, and the greater the quantity of isolates, the higher the screening efficiency, enabling high-throughput screening. In conclusion, the EAA method has a broad-spectrum, accurate and highly efficient screening ability for functional isolates and microflora, which can provide intensive technical support for the development of bioremediation materials and the application of bioremediation technology.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Petróleo/metabolismo , Petróleo/microbiologia , Poluentes do Solo/análise , Microbiologia do Solo , Hidrocarbonetos , Alcanos/metabolismo , Solo
17.
Can J Microbiol ; 69(9): 362-368, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235883

RESUMO

Anaerobic microorganisms in Canada Natural Upgrading Limited (CNUL) fluid fine tailings (FFT) are sustained by residual solvent hydrocarbons. Although FFT are methanogenic in nature, sulfate-reducing microorganisms represent a significant portion of FFT bacterial community. In this study, we examined biodegradation of three iso-alkanes (2-methylbutane, 2-methylpentane, and 3-methylpentane), representing major iso-alkanes in paraffinic solvent, in CNUL FFT under sulfate-reducing conditions. During ∼1100 days of incubation, only 2-methylpentane was degraded partially, whereas 2-methylbutane and 3-methylpentane were not degraded. During active degradation of 2-methylpentane, the bacterial community was dominated by Anaerolineaceae followed by Syntrophaceae, Peptococcaceae, Desulfobacteraceae, and Desulfobulbaceae. The archaeal community was co-dominated by acetoclastic (Methanosaetaceae) and hydrogenotrophic (Methanobacteriaceae) methanogens. This study underlines the limited capability of the microbial community indigenous to CNUL FFT in degrading recalcitrant iso-alkanes under sulfate-reducing conditions.


Assuntos
Euryarchaeota , Petróleo , Alcanos/metabolismo , Metano/metabolismo , Sulfatos/metabolismo , Campos de Petróleo e Gás , Petróleo/metabolismo , Solventes/metabolismo , Biodegradação Ambiental
18.
Proc Natl Acad Sci U S A ; 117(20): 11029-11037, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32354993

RESUMO

Marine cold seeps transmit fluids between the subseafloor and seafloor biospheres through upward migration of hydrocarbons that originate in deep sediment layers. It remains unclear how geofluids influence the composition of the seabed microbiome and if they transport deep subsurface life up to the surface. Here we analyzed 172 marine surficial sediments from the deep-water Eastern Gulf of Mexico to assess whether hydrocarbon fluid migration is a mechanism for upward microbial dispersal. While 132 of these sediments contained migrated liquid hydrocarbons, evidence of continuous advective transport of thermogenic alkane gases was observed in 11 sediments. Gas seeps harbored distinct microbial communities featuring bacteria and archaea that are well-known inhabitants of deep biosphere sediments. Specifically, 25 distinct sequence variants within the uncultivated bacterial phyla Atribacteria and Aminicenantes and the archaeal order Thermoprofundales occurred in significantly greater relative sequence abundance along with well-known seep-colonizing members of the bacterial genus Sulfurovum, in the gas-positive sediments. Metabolic predictions guided by metagenome-assembled genomes suggested these organisms are anaerobic heterotrophs capable of nonrespiratory breakdown of organic matter, likely enabling them to inhabit energy-limited deep subseafloor ecosystems. These results point to petroleum geofluids as a vector for the advection-assisted upward dispersal of deep biosphere microbes from subsurface to surface environments, shaping the microbiome of cold seep sediments and providing a general mechanism for the maintenance of microbial diversity in the deep sea.


Assuntos
Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Microbiota/fisiologia , Água do Mar/microbiologia , Alcanos/metabolismo , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Biodiversidade , Sedimentos Geológicos/química , Golfo do México , Metagenoma , Metagenômica , Petróleo/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/química
19.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901718

RESUMO

Very-long-chain alkane plays an important role as an aliphatic barrier. We previously reported that BnCER1-2 was responsible for alkane biosynthesis in Brassica napus and improved plant tolerance to drought. However, how the expression of BnCER1-2 is regulated is still unknown. Through yeast one-hybrid screening, we identified a transcriptional regulator of BnCER1-2, BnaC9.DEWAX1, which encodes AP2\ERF transcription factor. BnaC9.DEWAX1 targets the nucleus and displays transcriptional repression activity. Electrophoretic mobility shift and transient transcriptional assays suggested that BnaC9.DEWAX1 repressed the transcription of BnCER1-2 by directly interacting with its promoter. BnaC9.DEWAX1 was expressed predominantly in leaves and siliques, which was similar to the expression pattern of BnCER1-2. Hormone and major abiotic stresses such as drought and high salinity affected the expression of BnaC9.DEWAX1. Ectopic expression of BnaC9.DEWAX1 in Arabidopsis plants down-regulated CER1 transcription levels and resulted in a reduction in alkanes and total wax loads in leaves and stems when compared with the wild type, whereas the wax depositions in the dewax mutant returned to the wild type level after complementation of BnaC9.DEWAX1 in the mutant. Moreover, both altered cuticular wax composition and structure contribute to increased epidermal permeability in BnaC9.DEWAX1 overexpression lines. Collectively, these results support the notion that BnaC9.DEWAX1 negatively regulates wax biosynthesis by binding directly to the BnCER1-2 promoter, which provides insights into the regulatory mechanism of wax biosynthesis in B. napus.


Assuntos
Brassica napus , Proteínas de Plantas , Alcanos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica napus/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Ceras/metabolismo
20.
J Environ Manage ; 326(Pt B): 116780, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36402014

RESUMO

Accurate reconstructions of past environments are critical and urgent because they can help understand how modern environments might respond to current climatic and land-use changes. However, the effect of microbial degradation and consequential modification in plant-derived-biomarkers during the early degradation phase is not yet apparent, that might bias the paleoenvironmental investigation. In this regard, a litterbag experiment was conducted to reveal the microbial effects on n-alkane-associated biomarker changes associated with three habitats (ravine, windward, and leeward) in a lowland subtropical rainforest in southern Taiwan. Freshly collected leaves of plant species Iles rotunda, Ficus benjamina, and Castanopsis carlesii were distributed in the habitat leaf litterbag experiment for 15 and 75 days incubation, respectively. The results revealed that the average leaf decomposition rate was 19.4% ± 6.4% during the first 15 days and 39% ± 11% within 75 days incubation for all leaves. The overall leaf mass degradation of I. rotunda, F. benjamina and C. carlesii in the ravine after 75 days was 58%, 51% and 41%, respectively, which were higher than those in the windward (28%, 36% and 38%) and leeward habitats (35%, 26% and 42%, respectively) indicating higher decomposition rate in the ravine habitat than the others. The predominant n-alkanes in I. rotunda were C31 and C29, whereas in F. benjamina these were C31, C29, and C33, and in C. carlesii it was C31. After 75 days, the ravine habitat showed a 60% decrease in the total n-alkane concentration compared to windward and leeward habitats, suggesting the microbial community associated with the ravine habitat has a higher efficiency of degrading n-alkanes. However, the biomarkers such as carbon preference index (CPI), average carbon length (ACL) and the C31/C29 ratio did not show statistical difference in all habitats from 15 to 75 days incubation. The next-generation sequencing revealed that microbial communities changed significantly from 15 to 75 days in all habitats. The alkB gene-containing bacteria and their family lineages increased substantially during the first 15 days incubation in all habitats. Furthermore, several bacterial genera were exclusively present in the ravine habitat, whereas some were only in the leeward and windward habitats. Despite the heterogeneity of microbial proliferation, difference in biomass and n-alkane degradation among the three habitats, most of the n-alkane-associated biomarkers remained the same. Therefore, we concluded that the microbial effects on n-alkane degradation during the early phase in plant leaves had little influence on the results of most n-alkane biomarkers.


Assuntos
Alcanos , Floresta Úmida , Alcanos/análise , Alcanos/metabolismo , Taiwan , Carbono/análise , Bactérias/metabolismo , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA