Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.057
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Pathog ; 20(8): e1012435, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39172749

RESUMO

Entamoeba histolytica is a protozoan parasite belonging to the phylum Amoebozoa that causes amebiasis, a global public health problem. E. histolytica alternates its form between a proliferative trophozoite and a dormant cyst. Trophozoite proliferation is closely associated with amebiasis symptoms and pathogenesis whereas cysts transmit the disease. Drugs are available for clinical use; however, they have issues of adverse effects and dual targeting of disease symptoms and transmission remains to be improved. Development of new drugs is therefore urgently needed. An untargeted lipidomics analysis recently revealed structural uniqueness of the Entamoeba lipidome at different stages of the parasite's life cycle involving very long (26-30 carbons) and/or medium (8-12 carbons) acyl chains linked to glycerophospholipids and sphingolipids. Here, we investigated the physiology of this unique acyl chain diversity in Entamoeba, a non-photosynthetic protist. We characterized E. histolytica fatty acid elongases (EhFAEs), which are typically components of the fatty acid elongation cycle of photosynthetic protists and plants. An approach combining genetics and lipidomics revealed that EhFAEs are involved in the production of medium and very long acyl chains in E. histolytica. This approach also showed that the K3 group herbicides, flufenacet, cafenstrole, and fenoxasulfone, inhibited the production of very long acyl chains, thereby impairing Entamoeba trophozoite proliferation and cyst formation. Importantly, none of these three compounds showed toxicity to a human cell line; therefore, EhFAEs are reasonable targets for developing new anti-amebiasis drugs and these compounds are promising leads for such drugs. Interestingly, in the Amoebazoan lineage, gain and loss of the genes encoding two different types of fatty acid elongase have occurred during evolution, which may be relevant to parasite adaptation. Acyl chain diversity in lipids is therefore a unique and indispensable feature for parasitic adaptation of Entamoeba.


Assuntos
Entamoeba histolytica , Elongases de Ácidos Graxos , Elongases de Ácidos Graxos/metabolismo , Elongases de Ácidos Graxos/genética , Humanos , Entamoeba histolytica/efeitos dos fármacos , Entamoeba histolytica/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Entamoeba/efeitos dos fármacos , Entamoeba/metabolismo , Amebíase/tratamento farmacológico , Amebíase/parasitologia , Entamebíase/parasitologia , Entamebíase/tratamento farmacológico , Entamebíase/metabolismo , Trofozoítos/efeitos dos fármacos , Trofozoítos/metabolismo , Antiprotozoários/farmacologia , Ácidos Graxos/metabolismo
2.
Infect Immun ; 92(10): e0018324, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39235225

RESUMO

Naegleria fowleri (N. fowleri) infection via the upper respiratory tract causes a fatal CNS disease known as primary amoebic meningoencephalitis (PAM). The robust in vivo immune response to N. fowleri infection underlies the immunopathology that characterizes the disease. However, little is known about why this pathogen evades immune control. Infections occur in seemingly healthy individuals and effective clinical options are lacking, thus a nearly 98% fatality rate. It is unclear how or if host factors may contribute to susceptibility or disease exacerbation, yet mechanistic studies of the in vivo immune response and disease progression are hampered by a lack of tools. In this study, we have generated monoclonal antibodies to N. fowleri surface antigens and shown them to be excellent tools for studying the in vivo immune response. We also identified one monoclonal, 2B6, with potent inherent anti-amoebastatic activity in vitro. This antibody is also able to therapeutically prolong host survival in vivo and furthermore, recombinant antibodies with an isotype more capable of directing immune effector activity further improved survival when given therapeutically. Thus, we report the generation of a novel monoclonal antibody to N. fowleri that can enhance beneficial immune functions, even when given therapeutically during disease. We believe this provides evidence for the potential of therapeutic antibody treatments in PAM.IMPORTANCENaegleria fowleri (N. fowleri) is a free-living amoeba that is found ubiquitously in warm freshwater. While human exposure is common, it rarely results in pathogenesis. However, when N. fowleri gains access to the upper airway, specifically the olfactory mucosa, infection leads to a lethal disease known as primary amoebic meningoencephalitis (PAM). As a free-living amoeba, N. fowleri does not need a mammalian host; indeed, it can be accurately described as an accidental opportunistic pathogen. While most opportunistic infections occur in humans who are immunocompromised, there are no reported immune dysfunctions associated with N. fowleri infection. Therefore, the basis for N. fowleri opportunism is not known, and the reasons why some humans develop PAM while others do not are simply not well understood. It is reasonable to speculate that local or acute immune failures, potentially even a lack of prior adaptive immunity, are related to disease susceptibility. Careful immune profiling and characterization of the in vivo immune response to N. fowleri in a mammalian host are desperately needed to understand which host factors are critical to defense, and how these responses might be compromised in a way that results in lethal infection. To identify genes and pathways that provide resistance against in vivo N. fowleri infection, we generated surface reactive monoclonal antibodies (Abs) that provide rapid amoeba detection and quantification in vivo. Interestingly, N. fowleri binding Abs have been readily detected in the serum and saliva of humans and animals suggesting that non-lethal exposure drives a humoral immune response against the amoeba. Yet, how Abs might interact with Naegleria in vivo or contribute to preventing lethal infection is not well understood. In this study, we have generated and characterized a monoclonal antibody (Ab), Clone 2B6, that recognizes a glycosylated surface antigen present in cultured in vitro N. fowleri as well as mouse passaged N. fowleri. When clone 2B6 binds to N. fowleri, it inhibits amoeba motility and feeding behavior, leading to strong growth inhibition. Mice treated systemically and intracerebrally with Ab displayed a delayed disease onset and prolonged survival. In addition, we found that enhancing immune-directed effector activity via antibody isotype could further enhance survival without obvious immunopathogenic side effects. These findings show the potential for antibody treatment as an additional therapeutic to those used currently in PAM.


Assuntos
Anticorpos Monoclonais , Anticorpos Antiprotozoários , Infecções Protozoárias do Sistema Nervoso Central , Naegleria fowleri , Naegleria fowleri/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Infecções Protozoárias do Sistema Nervoso Central/imunologia , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Camundongos , Anticorpos Antiprotozoários/imunologia , Meningoencefalite/imunologia , Meningoencefalite/parasitologia , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Amebíase/imunologia , Amebíase/parasitologia , Humanos , Antígenos de Protozoários/imunologia , Feminino
3.
Emerg Infect Dis ; 30(4): 783-785, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526242

RESUMO

We describe 10 patients with nonkeratitis Acanthamoeba infection who reported performing nasal rinsing before becoming ill. All were immunocompromised, 7 had chronic sinusitis, and many used tap water for nasal rinsing. Immunocompromised persons should be educated about safe nasal rinsing to prevent free-living ameba infections.


Assuntos
Amebíase , Nariz , Humanos , Estados Unidos/epidemiologia , Amebíase/epidemiologia , Hospedeiro Imunocomprometido
4.
Emerg Infect Dis ; 30(9): 1922-1925, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39174030

RESUMO

We investigated a fatal case of primary amoebic meningoencephalitis from an indoor surfing center in Taiwan. The case was detected through encephalitis syndromic surveillance. Of 56 environmental specimens, 1 was positive for Naegleria fowleri ameba. This report emphasizes the risk for N. fowleri infection from inadequately disinfected recreational waters, even indoors.


Assuntos
Infecções Protozoárias do Sistema Nervoso Central , Naegleria fowleri , Humanos , Naegleria fowleri/isolamento & purificação , Naegleria fowleri/genética , Taiwan/epidemiologia , Infecções Protozoárias do Sistema Nervoso Central/parasitologia , Infecções Protozoárias do Sistema Nervoso Central/diagnóstico , Infecções Protozoárias do Sistema Nervoso Central/epidemiologia , Evolução Fatal , Masculino , Meningoencefalite/parasitologia , Meningoencefalite/diagnóstico , Amebíase/diagnóstico , Amebíase/parasitologia , Adulto
5.
Antimicrob Agents Chemother ; 68(1): e0073123, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38063401

RESUMO

The intestinal parasites Giardia lamblia and Entamoeba histolytica are major causes of morbidity and mortality associated with diarrheal diseases. Metronidazole is the most common drug used to treat giardiasis and amebiasis. Despite its efficacy, treatment failures in giardiasis occur in up to 5%-40% of cases. Potential resistance of E. histolytica to metronidazole is an increasing concern. Therefore, it is critical to search for more effective drugs to treat giardiasis and amebiasis. We identified antigiardial and antiamebic activities of the rediscovered nitroimidazole compound, fexinidazole, and its sulfone and sulfoxide metabolites. Fexinidazole is equally active against E. histolytica and G. lamblia trophozoites, and both metabolites were 3- to 18-fold more active than the parent drug. Fexinidazole and its metabolites were also active against a metronidazole-resistant strain of G. lamblia. G. lamblia and E. histolytica cell extracts exhibited decreased residual nitroreductase activity when metabolites were used as substrates, indicating nitroreductase may be central to the mechanism of action of fexinidazole. In a cell invasion model, fexinidazole and its metabolites significantly reduced the invasiveness of E. histolytica trophozoites through basement membrane matrix. A q.d. oral dose of fexinidazole and its metabolites at 10 mg/kg for 3 days reduced G. lamblia infection significantly in mice compared to control. The newly discovered antigiardial and antiamebic activities of fexinidazole, combined with its FDA-approval and inclusion in the WHO Model List of Essential Medicines for the treatment of human African trypanosomiasis, offer decreased risk and a shortened development timeline toward clinical use of fexinidazole for treatment of giardiasis or amebiasis.


Assuntos
Amebíase , Entamoeba histolytica , Giardia lamblia , Giardíase , Nitroimidazóis , Camundongos , Animais , Humanos , Giardíase/tratamento farmacológico , Giardíase/parasitologia , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Nitroimidazóis/farmacologia , Nitrorredutases
6.
PLoS Pathog ; 18(9): e1010880, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36178974

RESUMO

The severity of Entamoeba histolytica infection is determined by host immunology, pathogen virulence, and the intestinal environment. Conventional research for assessing pathogen virulence has been mainly performed using laboratory strains, such as a virulent HM-1: IMSS (HM-1) and an avirulent Rahman, under various artificial environmental conditions because of the difficulties of axenic isolation of the clinical strains. However, it is still unclear whether scientific knowledge based on laboratory strains are universally applicable to the true pathogenesis. Hereby, we performed transcriptomic analysis of clinical strains from patients with different degrees of disease severity, as well as HM-1 under different conditions. Even after several months of axenization, Clinical strains show the distinct profile in gene expression during in vitro passage, moreover, difference between any 2 of these strains was much greater than the changes on the liver challenge. Interestingly, 26 DEGs, which were closely related to the biological functions, were oppositely up- or down regulated between virulent Ax 19 (liver abscess) and avirulent Ax 11 (asymptomatic carrier). Additionally, RNAseq using laboratory strain (HM1) showed more than half of genes were differently expressed between continuously in vitro passaged HM1 (in vitro HM1) and periodically liver passaged HM1 (virulent HM1), which was much greater than the changes on the liver passage of virulent HM1. Also, transcriptomic analysis of a laboratory strain revealed that continuous environmental stress enhances its virulence via a shift in its gene expression profile. Changes in gene expression patterns on liver abscess formation were not consistent between clinical and laboratory strains.


Assuntos
Amebíase , Disenteria Amebiana , Entamoeba histolytica , Abscesso Hepático , Expressão Gênica , Humanos , Índice de Gravidade de Doença
7.
Curr Top Microbiol Immunol ; 441: 209-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37695430

RESUMO

Infection with the protozoan parasite Entamoeba histolytica is much more likely to cause severe, focal liver damage in males than females, although the infection rate is the same in both sexes. The differences in disease susceptibility may be due to modulation of key mechanisms of the innate immune response by sex hormones. Complement-mediated mechanisms and estrogen-dependent activated natural killer T cells lead to early elimination of the parasite in females, whereas a pathological immune axis is triggered in males. Testosterone, which is generally thought to have more immunosuppressive properties on cells of the immune response, leads to overwhelming activation of monocytes and host-dependent destruction of liver tissue in males resulting in worse outcomes.


Assuntos
Amebíase , Caracteres Sexuais , Feminino , Masculino , Humanos , Imunidade Inata , Fígado
8.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373822

RESUMO

AIM: The aim of the study was to evaluate the efficiency of mimivirus as a potential therapeutic and prophylactic tool against Acanthamoeba castellanii, the etiological agent of Acanthamoeba keratitis, a progressive corneal infection, that is commonly associated with the use of contact lenses and can lead to blindness if not properly treated. METHODS AND RESULTS: Mimivirus particles were tested in different multiplicity of infection, along with commercial multipurpose contact lenses' solutions, aiming to assess their ability to prevent encystment and excystment of A. castellanii. Solutions were evaluated for their amoebicidal potential and cytotoxicity in MDCK cells, as well as their effectiveness in preventing A. castellanii damage in Madin-Darby canine kidney (MDCK) cells. Results indicated that mimivirus was able to inhibit the formation of A. castellanii cysts, even in the presence of Neff encystment solution. Mimivirus also showed greater effectiveness in controlling A. castellanii excystment compared to commercial solutions. Additionally, mimivirus solution was more effective in preventing damage caused by A. castellanii, presented greater amoebicidal activity, and were less cytotoxic to MDCK cells than commercial MPS. CONCLUSIONS: Mimivirus demonstrates a greater ability to inhibit A. castellanii encystment and excystment compared to commercial multipurpose contact lens solutions. Additionally, mimivirus is less toxic to MDCK cells than those commercial solutions. New studies utilizing in vivo models will be crucial for confirming safety and efficacy parameters.


Assuntos
Amebíase , Vírus Gigantes , Animais , Cães , Biotecnologia
9.
BMC Vet Res ; 20(1): 340, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090695

RESUMO

BACKGROUND: Understanding the relationship between resident microbiota and disease in cultured fish represents an important and emerging area of study. Marine gill disorders in particular are considered an important challenge to Atlantic salmon (Salmo salar) aquaculture, however relatively little is known regarding the role resident gill microbiota might play in providing protection from or potentiating different gill diseases. Here, 16S rRNA sequencing was used to examine the gill microbiome alongside fish health screening in farmed Atlantic salmon. Results were used to explore the relationship between microbial communities and gill disease. RESULTS: Microbial community restructuring was observed throughout the sampling period and linked to varied drivers of change, including environmental conditions and severity of gill pathology. Taxa with significantly greater relative abundance on healthier gills included isolates within genus Shewanella, and taxa within family Procabacteriaceae. In contrast, altered abundance of Candidatus Branchiomonas and Rubritalea spp. were associated with damaged gills. Interestingly, more general changes in community richness and diversity were not associated with altered gill health, and thus not apparently deleterious to fish. Gross and histological gill scoring demonstrated seasonal shifts in gill pathology, with increased severity of gill damage in autumn. Specific infectious causes that contributed to observed pathology within the population included the gill disorder amoebic gill disease (AGD), however due to the uncontrolled nature of this study and likely mixed contribution of various causes of gill disease to observed pathology results do not strongly support an association between the microbial community and specific infectious or non-infectious drivers of gill pathology. CONCLUSIONS: Results suggest that the microbial community of farmed Atlantic salmon gills undergo continual restructuring in the marine environment, with mixed influences upon this change including environmental, host, and pathogenic factors. A significant association of specific taxa with different gill health states suggests these taxa might make meaningful indicators of gill health. Further research with more frequent sampling and deliberate manipulation of gills would provide important advancement of knowledge in this area. Overall, although much is still to be learnt regarding what constitutes a healthy or maladapted gill microbial community, the results of this study provide clear advancement of the field, providing new insight into the microbial community structure of gills during an annual production cycle of marine-stage farmed Atlantic salmon.


Assuntos
Aquicultura , Doenças dos Peixes , Brânquias , Microbiota , Salmo salar , Animais , Salmo salar/microbiologia , Brânquias/microbiologia , Brânquias/patologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/patologia , RNA Ribossômico 16S/genética , Estações do Ano , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Amebíase
10.
Exp Parasitol ; 262: 108774, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754618

RESUMO

Acanthamoeba spp., are common free-living amoebae found in nature that can serve as reservoirs for certain microorganisms. The SARS-CoV-2 virus is a newly emerged respiratory infection, and the investigation of parasitic infections remains an area of limited research. Given that Acanthamoeba can act as a host for various endosymbiotic microbial pathogens and its pathogenicity assay is not fully understood, this study aimed to identify Acanthamoeba and its bacterial and fungal endosymbionts in patients with chronic respiratory disorders and hospitalized COVID-19 patients in northern Iran. Additionally, a pathogenicity assay was conducted on Acanthamoeba isolates. Urine, nasopharyngeal swab, and respiratory specimens were collected from two groups, and each sample was cultured on 1.5% non-nutrient agar medium. The cultures were then incubated at room temperature and monitored daily for a period of two weeks. Eight Acanthamoeba isolates were identified, and PCR was performed to confirm the presence of amoebae and identify their endosymbionts. Four isolates were found to have bacterial endosymbionts, including Stenotrophomonas maltophilia and Achromobacter sp., while two isolates harbored fungal endosymbionts, including an uncultured fungus and Gloeotinia sp. In the pathogenicity assay, five isolates exhibited a higher degree of pathogenicity compared to the other three. This study provides significant insights into the comorbidity of acanthamoebiasis and COVID-19 on a global scale, and presents the first evidence of Gloeotinia sp. as a fungal endosymbiont. Nevertheless, further research is required to fully comprehend the symbiotic patterns and establish effective treatment protocols.


Assuntos
Acanthamoeba , COVID-19 , SARS-CoV-2 , Simbiose , Humanos , Irã (Geográfico) , Acanthamoeba/isolamento & purificação , Acanthamoeba/patogenicidade , Masculino , Feminino , Stenotrophomonas maltophilia/isolamento & purificação , Stenotrophomonas maltophilia/patogenicidade , Pessoa de Meia-Idade , Adulto , Amebíase/parasitologia , Reação em Cadeia da Polimerase , Idoso , Células Vero , Hospitalização , Chlorocebus aethiops
11.
Neuropathology ; 44(1): 68-75, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37381626

RESUMO

A 76-year-old female with no apparent immunosuppressive conditions and no history of exposure to freshwater and international travel presented with headache and nausea 3 weeks before the presentation. On admission, her consciousness was E4V4V6. Cerebrospinal fluid analysis showed pleocytosis with mononuclear cell predominance, elevated protein, and decreased glucose. Despite antibiotic and antiviral therapy, her consciousness and neck stiffness gradually worsened, right eye-movement restriction appeared, and the right direct light reflex became absent. Brain magnetic resonance imaging revealed hydrocephalus in the inferior horn of the left lateral ventricle and meningeal enhancement around the brainstem and cerebellum. Tuberculous meningitis was suspected, and pyrazinamide, ethambutol, rifampicin, isoniazid, and dexamethasone were started. In addition, endoscopic biopsy was performed from the white matter around the inferior horn of the left lateral ventricle to exclude brain tumor. A brain biopsy specimen revealed eosinophilic round cytoplasm with vacuoles around blood vessels, and we diagnosed with amoebic encephalitis. We started azithromycin, flucytosine, rifampicin, and fluconazole, but her symptoms did not improve. She died 42 days after admission. In autopsy, the brain had not retained its structure due to autolysis. Hematoxylin and eosin staining of her brain biopsy specimen showed numerous amoebic cysts in the perivascular brain tissue. Analysis of the 16S ribosomal RNA region of amoebas from brain biopsy and autopsy specimens revealed a sequence consistent with Balamuthia mandrillaris. Amoebic meningoencephalitis can present with features characteristic of tuberculous meningitis, such as cranial nerve palsies, hydrocephalus, and basal meningeal enhancement. Difficulties in diagnosing amoebic meningoencephalitis are attributed to the following factors: (1) excluding tuberculous meningitis by microbial testing is difficult, (2) amoebic meningoencephalitis has low incidence and can occur without obvious exposure history, (3) invasive brain biopsy is essential in diagnosing amoebic meningoencephalitis. We should recognize the possibility of amoebic meningoencephalitis when evidence of tuberculosis meningitis cannot be demonstrated.


Assuntos
Amebíase , Amoeba , Balamuthia mandrillaris , Infecções Protozoárias do Sistema Nervoso Central , Hidrocefalia , Encefalite Infecciosa , Tuberculose Meníngea , Humanos , Feminino , Idoso , Tuberculose Meníngea/diagnóstico , Tuberculose Meníngea/patologia , Infecções Protozoárias do Sistema Nervoso Central/diagnóstico , Rifampina , Amebíase/diagnóstico , Amebíase/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encefalite Infecciosa/diagnóstico , Encefalite Infecciosa/patologia , Hidrocefalia/patologia
12.
J Fish Dis ; 47(6): e13933, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38400598

RESUMO

Nodular gill disease (NGD) is an emerging condition associated with amoeba trophozoites in freshwater salmonid farms. However, unambiguous identification of the pathogens still must be achieved. This study aimed to identify the amoeba species involved in periodic NGD outbreaks in two rainbow trout (Oncorhynchus mykiss) farms in Northeastern Italy. During four episodes (February-April 2023), 88 fish were euthanized, and their gills were evaluated by macroscopic, microscopic and histopathological examination. The macroscopic and microscopic severity of the lesions and the degree of amoebae infestation were scored and statistically evaluated. One gill arch from each animal was put on non-nutrient agar (NNA) Petri dishes for amoeba isolation, cultivation and subsequent identification with SSU rDNA sequencing. Histopathology confirmed moderate to severe lesions consistent with NGD and mild to moderate amoeba infestation. The presence of amoebae was significantly correlated with lesion severity. Light microscopy of cultured amoebae strains and SSU rDNA analysis revealed the presence of a previously characterized amoeba Naegleria sp. strain GERK and several new strains: two strains from Hartmannelidae, three vannelid amoebae from the genus Ripella and cercozoan amoeba Rosculus. Despite the uncertainty in NGD etiopathogenesis and amoebae pathogenic role, identifying known and new amoebae leans towards a possible multi-aetiological origin.


Assuntos
Amebíase , Doenças dos Peixes , Brânquias , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/parasitologia , Doenças dos Peixes/parasitologia , Doenças dos Peixes/epidemiologia , Itália , Amebíase/veterinária , Amebíase/parasitologia , Brânquias/parasitologia , Brânquias/patologia , Amoeba/genética , Amoeba/isolamento & purificação , Amoeba/classificação , Aquicultura , Amebozoários/genética , Amebozoários/isolamento & purificação , Amebozoários/classificação , Amebozoários/fisiologia , Filogenia
13.
Parasitol Res ; 123(3): 163, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499865

RESUMO

Balamuthia mandrillaris is a free-living amoeba that causes meningoencephalitis in mammals. Over 200 cases of infection were reported worldwide, with a fatality rate of over 95%. A clear route of infection was unknown for a long time until a girl died of granulomatous amoebic encephalitis (GAE) in California, USA, in 2003 due to infection with B. mandrillaris detected in a potted plant. Since then, epidemiological studies were conducted worldwide to detect B. mandrillaris in soil and other environmental samples. We previously reported the isolation of B. mandrillaris from the soil in Japan; however, the existing B. mandrillaris culture method with BM3 medium and COS-7 cells was unsuccessful. Therefore, in this study, we aimed to conduct soil analysis to determine the growth conditions of B. mandrillaris. B. mandrillaris-positive soils were defined as soils from which B. mandrillaris was isolated and environmental DNA was PCR-positive. Soils inhabited by B. mandrillaris were alkaline, with high electrical conductivity and characteristics of nutrient-rich soils of loam and clay loam. The results of this study suggest a possible reason for the high prevalence of GAE caused by B. mandrillaris among individuals employed in agriculture-related occupations.


Assuntos
Amebíase , Amoeba , Balamuthia mandrillaris , Encefalite Infecciosa , Humanos , Animais , Feminino , Balamuthia mandrillaris/genética , Solo , Amebíase/epidemiologia , Mamíferos
14.
Parasitol Res ; 123(3): 173, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536506

RESUMO

Balamuthia mandrillaris is the causative agent of granulomatous amoebic encephalitis, a rare and often fatal infection affecting the central nervous system. The amoeba is isolated from diverse environmental sources and can cause severe infections in both immunocompromised and immunocompetent individuals. Given the limited understanding of B. mandrillaris, our research aimed to explore its protein profile, identifying potential immunogens crucial for early granulomatous amoebic encephalitis diagnosis. Cultures of B. mandrillaris and other amoebas were grown under axenic conditions, and total amoebic extracts were obtained. Proteomic analyses, including two-dimensional electrophoresis and mass spectrometry, were performed. A 50-kDa band showed a robust recognition of antibodies from immunized BALB/c mice; peptides contained in this band were matched with elongation factor-1 alpha, which emerged as a putative key immunogen. Besides, lectin blotting revealed the presence of glycoproteins in B. mandrillaris, and confocal microscopy demonstrated the focal distribution of the 50-kDa band throughout trophozoites. Cumulatively, these observations suggest the participation of the 50-kDa band in adhesion and recognition mechanisms. Thus, these collective findings demonstrate some protein characteristics of B. mandrillaris, opening avenues for understanding its pathogenicity and developing diagnostic and therapeutic strategies.


Assuntos
Amebíase , Amoeba , Balamuthia mandrillaris , Encefalite Infecciosa , Animais , Camundongos , Proteômica , Amebíase/tratamento farmacológico
15.
Parasitol Res ; 123(2): 116, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289423

RESUMO

Acanthamoeba castellanii, a ubiquitous protozoan, is responsible for significant diseases such as Acanthamoeba keratitis and granulomatous amoebic encephalitis. A crucial survival strategy of A. castellanii involves the formation of highly resistant cysts during adverse conditions. This study delves into the cellular processes underpinning encystment, focusing on gene expression changes related to reactive oxygen species (ROS) balance, with a particular emphasis on mitochondrial processes. Our findings reveal a dynamic response within the mitochondria during encystment, with the downregulation of key enzymes involved in oxidative phosphorylation (COX, AOX, and NADHalt) during the initial 48 h, followed by their overexpression at 72 h. This orchestrated response likely creates a pro-oxidative environment, facilitating encystment. Analysis of other ROS processing enzymes across the cell reveals differential expression patterns. Notably, antioxidant enzymes, such as catalases, glutaredoxins, glutathione S-transferases, peroxiredoxins, and thioredoxins, mirror the mitochondrial trend of downregulation followed by upregulation. Additionally, glycolysis and gluconeogenesis are downregulated during the early stages in order to potentially balance the metabolic requirement of the cyst. Our study underscores the importance of ROS regulation in Acanthamoeba encystment. Understanding these mechanisms offers insights into infection control and identifies potential therapeutic targets. This work contributes to unraveling the complex biology of A. castellanii and may aid in combatting Acanthamoeba-related infections. Further research into ROS and oxidase enzymes is warranted, given the organism's remarkable respiratory versatility.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebíase , Cistos , Humanos , Acanthamoeba castellanii/genética , Espécies Reativas de Oxigênio , Catalase
16.
Parasitol Res ; 123(2): 117, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294565

RESUMO

The free living Acanthamoeba spp. are ubiquitous amoebae associated with potentially blinding disease known as Acanthamoeba keratitis (AK) and a fatal central nervous system infection granulomatous amoebic encephalitis (GAE). With the inherent ability of cellular differentiation, it can phenotypically transform to a dormant cyst form from an active trophozoite form. Acanthamoeba cysts are highly resistant to therapeutic agents as well as contact lens cleaning solutions. One way to tackle drug resistance against Acanthamoeba is by inhibiting the formation of cysts from trophozoites. The biochemical analysis showed that the major component of Acanthamoeba cyst wall is composed of carbohydrate moieties such as galactose and glucose. The disaccharide of galactose and glucose is lactose. In this study, we analyzed the potential of lactase enzyme to target carbohydrate moieties of cyst walls. Amoebicidal assessment showed that lactase was ineffective against trophozoite of A. castellanii but enhanced amoebicidal effects of chlorhexidine. The lactase enzyme did not show any toxicity against normal human keratinocyte cells (HaCaT) at the tested range. Hence, lactase can be used for further assessment for development of potential therapeutic agents in the management of Acanthamoeba infection as well as formulation of effective contact lens disinfectants.


Assuntos
Acanthamoeba castellanii , Amebíase , Amebicidas , Cistos , Humanos , Lactase , Galactose , Soluções para Lentes de Contato , Genótipo , Glucose , Diferenciação Celular
17.
Parasitol Res ; 123(9): 323, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254717

RESUMO

Vermamoeba vermiformis (V. vermiformis) is one of the most common free-living amoeba (FLA) and is frequently found in environments such as natural freshwater areas, surface waters, soil, and biofilms. V. vermiformis has been reported as a pathogen with pathogenic potential for humans and animals. The aim is to report a case of non-Acanthamoeba keratitis in which V. vermiformis was the etiological agent, identified by culture and molecular techniques. Our case was a 48-year-old male patient with a history of trauma to his eye 10 days ago. The patient complained of eye redness and purulent discharge. A slit-lamp examination of the eye revealed a central corneal ulcer with peripheral infiltration extending into the deep stroma. The corneal scraping sample taken from the patient was cultured on a non-nutritious agar plate (NNA). Amoebae were evaluated according to morphological evaluation criteria. It was investigated by PCR method and confirmed by DNA sequence analysis. Although no bacterial or fungal growth was detected in the routine microbiological evaluation of the corneal scraping sample that was cultured, amoeba growth was detected positively in the NNA culture. Meanwhile, Acanthamoeba was detected negative by real-time PCR. However, V. vermiformis was detected positive with the specific PCR assay. It was confirmed by DNA sequence analysis to be considered an etiological pathogenic agent. Thus, topical administration of chlorhexidine gluconate %0.02 (8 × 1) was initiated. Clinical regression was observed 72 h after chlorhexidine initiation, and complete resolution of keratitis with residual scarring was noticed in 5 weeks. In conclusion, corneal infections due to free-living amoebae can occur, especially in poor hygiene. Although Acanthamoeba is the most common keratitis due to amoeba, V. vermiformis is also assumed to associate keratitis in humans. Clinicians should also be aware of other amoebic agents, such as V. vermiformis, in keratitis patients.


Assuntos
Amebíase , Pessoa de Meia-Idade , Humanos , Masculino , Amebíase/parasitologia , Amebíase/diagnóstico , Amebíase/tratamento farmacológico , Ceratite/parasitologia , Ceratite/microbiologia , Ceratite/tratamento farmacológico , Ceratite/diagnóstico , Ceratite por Acanthamoeba/parasitologia , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/diagnóstico , Córnea/parasitologia , Córnea/patologia , Córnea/microbiologia , Reação em Cadeia da Polimerase
18.
Emerg Infect Dis ; 29(1): 197-201, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573629

RESUMO

A patient in California, USA, with rare and usually fatal Balamuthia mandrillaris granulomatous amebic encephalitis survived after receiving treatment with a regimen that included the repurposed drug nitroxoline. Nitroxoline, which is a quinolone typically used to treat urinary tract infections, was identified in a screen for drugs with amebicidal activity against Balamuthia.


Assuntos
Amebíase , Balamuthia mandrillaris , Encefalite Infecciosa , Humanos , Amebíase/tratamento farmacológico , Granuloma , Encéfalo
19.
Antimicrob Agents Chemother ; 67(11): e0056023, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37874291

RESUMO

Amebiasis is an important cause of morbidity and mortality worldwide, and caused by infection with the protozoan parasite Entamoeba histolytica. Metronidazole is currently the first-line drug despite adverse effects and concerns on the emergence of drug resistance. Fumagillin, a fungal metabolite from Aspergillus fumigatus, and its structurally related natural and synthetic compounds have been previously explored as potential anti-angiogenesis inhibitors for cancers, anti-microbial, and anti-obese compounds. Although fumagillin was used for human amebiasis in clinical trials in 1950s, the mode of action of fumagillin remains elusive until now. In this report, we showed that fumagillin covalently binds to methionine aminopeptidase 2 (MetAP2) and non-covalently but abundantly binds to patatin family phospholipase A (PLA). Susceptibility against fumagillin of the amebic strains in which expression of E. histolytica MetAP2 (EhMetAP2) gene was silenced increased compared to control strain. Conversely, overexpression of EhMetAP2 mutants that harbors amino acid substitutions responsible for resistance to ovalicin, a fumagillin analog, in human MetAP2, also resulted in decrease in fumagillin susceptibility. In contrast, neither gene silencing nor overexpression of E. histolytica PLA (EhPLA) affected fumagillin susceptibility. These data suggest that EhPLA is not essential and not the target of fumagillin for its amebicidal activity. Taken together, our data have demonstrated that EhMetAP2 is the primary target for amebicidal activity of fumagillin, and EhMetAP2 represents a rational explorable target for the development of alternative therapeutic agents against amebiasis.


Assuntos
Amebíase , Entamoeba histolytica , Parasitos , Animais , Humanos , Entamoeba histolytica/genética , Amebíase/tratamento farmacológico , Poliésteres
20.
Antimicrob Agents Chemother ; 67(2): e0150622, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36688657

RESUMO

Primary amoebic meningoencephalitis is a rare but fatal central nervous system (CNS) disease caused by the "brain-eating amoeba" Naegleria fowleri. A major obstacle is the requirement for drugs with the ability to cross the blood-brain barrier, which are used in extremely high doses, cause severe side effects, and are usually ineffective. We discovered that the 4-aminomethylphenoxy-benzoxaborole AN3057 exhibits nanomolar potency against N. fowleri, and experimental treatment of infected mice significantly prolonged survival and demonstrated a 28% relapse-free cure rate.


Assuntos
Amebíase , Infecções Protozoárias do Sistema Nervoso Central , Meningoencefalite , Naegleria fowleri , Animais , Camundongos , Amebíase/tratamento farmacológico , Infecções Protozoárias do Sistema Nervoso Central/tratamento farmacológico , Barreira Hematoencefálica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA