Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.715
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Pathog ; 20(6): e1012235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843111

RESUMO

Amikacin and piperacillin/tazobactam are frequent antibiotic choices to treat bloodstream infection, which is commonly fatal and most often caused by bacteria from the family Enterobacterales. Here we show that two gene cassettes located side-by-side in and ancestral integron similar to In37 have been "harvested" by insertion sequence IS26 as a transposon that is widely disseminated among the Enterobacterales. This transposon encodes the enzymes AAC(6')-Ib-cr and OXA-1, reported, respectively, as amikacin and piperacillin/tazobactam resistance mechanisms. However, by studying bloodstream infection isolates from 769 patients from three hospitals serving a population of 1.2 million people in South West England, we show that increased enzyme production due to mutation in an IS26/In37-derived hybrid promoter or, more commonly, increased transposon copy number is required to simultaneously remove these two key therapeutic options; in many cases leaving only the last-resort antibiotic, meropenem. These findings may help improve the accuracy of predicting piperacillin/tazobactam treatment failure, allowing stratification of patients to receive meropenem or piperacillin/tazobactam, which may improve outcome and slow the emergence of meropenem resistance.


Assuntos
Antibacterianos , Elementos de DNA Transponíveis , Humanos , Antibacterianos/farmacologia , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana Múltipla/genética , Piperacilina/farmacologia , Amicacina/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/genética , Enterobacteriaceae/genética , Enterobacteriaceae/efeitos dos fármacos , Integrons/genética , Bacteriemia/microbiologia , Bacteriemia/tratamento farmacológico , Bacteriemia/genética
2.
Antimicrob Agents Chemother ; 68(4): e0153923, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470195

RESUMO

Murepavadin is a peptidomimetic that specifically targets the lipopolysaccharide transport protein LptD of Pseudomonas aeruginosa. Here, we found that murepavadin enhances the bactericidal efficacies of tobramycin and amikacin. We further demonstrated that murepavadin enhances bacterial respiration activity and subsequent membrane potential, which promotes intracellular uptake of aminoglycoside antibiotics. In addition, the murepavadin-amikacin combination displayed a synergistic bactericidal effect in a murine pneumonia model.


Assuntos
Amicacina , Peptídeos Cíclicos , Infecções por Pseudomonas , Animais , Camundongos , Amicacina/farmacologia , Pseudomonas aeruginosa , Potenciais da Membrana , Antibacterianos/farmacologia , Aminoglicosídeos/farmacologia , Tobramicina/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana
3.
Antimicrob Agents Chemother ; 68(8): e0152023, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38990014

RESUMO

Mycobacterium abscessus pulmonary infections are increasingly problematic, especially for immunocompromised individuals and those with underlying lung conditions. Currently, there is no reliable standardized treatment, underscoring the need for improved preclinical drug testing. We present a simplified immunosuppressed mouse model using only four injections of cyclophosphamide, which allows for sustained M. abscessus lung burden for up to 16 days. This model proved effective for antibiotic efficacy evaluation, as demonstrated with imipenem or amikacin.


Assuntos
Amicacina , Antibacterianos , Ciclofosfamida , Modelos Animais de Doenças , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Animais , Ciclofosfamida/farmacologia , Mycobacterium abscessus/efeitos dos fármacos , Camundongos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Amicacina/farmacologia , Amicacina/uso terapêutico , Imipenem/farmacologia , Imipenem/uso terapêutico , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Hospedeiro Imunocomprometido , Feminino
4.
Antimicrob Agents Chemother ; 68(5): e0166923, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564665

RESUMO

Japan is a country with an approximate 10% prevalence rate of carbapenem-resistant Pseudomonas aeruginosa (CRPA). Currently, a comprehensive overview of the genotype and phenotype patterns of CRPA in Japan is lacking. Herein, we conducted genome sequencing and quantitative antimicrobial susceptibility testing for 382 meropenem-resistant CRPA isolates that were collected from 78 hospitals across Japan from 2019 to 2020. CRPA exhibited susceptibility rates of 52.9%, 26.4%, and 88.0% against piperacillin-tazobactam, ciprofloxacin, and amikacin, respectively, whereas 27.7% of CRPA isolates was classified as difficult-to-treat resistance P. aeruginosa. Of the 148 sequence types detected, ST274 (9.7%) was predominant, followed by ST235 (7.6%). The proportion of urine isolates in ST235 was higher than that in other STs (P = 0.0056, χ2 test). Only 4.1% of CRPA isolates carried the carbapenemase genes: blaGES (2) and blaIMP (13). One ST235 isolate carried the novel blaIMP variant blaIMP-98 in the chromosome. Regarding chromosomal mutations, 87.1% of CRPA isolates possessed inactivating or other resistance mutations in oprD, and 28.8% showed mutations in the regulatory genes (mexR, nalC, and nalD) for the MexAB-OprM efflux pump. Additionally, 4.7% of CRPA isolates carried a resistance mutation in the PBP3-encoding gene ftsI. The findings from this study and other surveillance studies collectively demonstrate that CRPA exhibits marked genetic diversity and that its multidrug resistance in Japan is less prevailed than in other regions. This study contributes a valuable data set that addresses a gap in genotype/phenotype information regarding CRPA in the Asia-Pacific region, where the epidemiological background markedly differs between regions.


Assuntos
Antibacterianos , Proteínas de Bactérias , Carbapenêmicos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Japão/epidemiologia , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Humanos , Proteínas de Bactérias/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/tratamento farmacológico , beta-Lactamases/genética , Genoma Bacteriano/genética , Combinação Piperacilina e Tazobactam/uso terapêutico , Combinação Piperacilina e Tazobactam/farmacologia , Sequenciamento Completo do Genoma , Meropeném/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Amicacina/farmacologia
5.
J Antimicrob Chemother ; 79(7): 1569-1576, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38742708

RESUMO

BACKGROUND: The aac(6')-Im (aacA16) amikacin, netilmicin and tobramycin resistance gene cassette had been circulating globally undetected for many years in a sublineage of Acinetobacter baumannii global clone 2. OBJECTIVES: To identify sources for the aac(6')-Im fragment found in A. baumannii. METHODS: MinION long-read sequencing and Unicycler hybrid assemblies were used to determine the genetic context of the aac(6')-Im gene. Quantitative reverse transcriptase PCR was used to measure expression. RESULTS: Among >60 000 non-Acinetobacter draft genomes in the MRSN collection, the aac(6')-Im gene was detected in Pseudomonas putida and Enterobacter hormaechei isolates recovered from patients in Thailand between 2016 and 2019. Genomes of multiply resistant P. putida MRSN365855 and E. hormaechei MRSN791417 were completed. The class 1 integron containing the aac(6')-Im cassette was in the chromosome in MRSN365855, and in an HI2 plasmid in MRSN791417. However, MRSN791417 was amikacin susceptible and the gene was not expressed due to loss of the Pc promoter of the integron. Further examples of aac(6')-Im in plasmids from or the chromosome of various Gram-negative species were found in the GenBank nucleotide database. The aac(6')-Im context in integrons in pMRSN791417-8 and a Klebsiella plasmid pAMR200031 shared similarities with the aac(6')-Im region of AbGRI2-Im islands in A. baumannii. In other cases, the cassette array including the aac(6')-Im cassette was different. CONCLUSIONS: The aac(6')-Im gene is widespread, being found so far in several different species and in several different gene cassette arrays. The lack of amikacin resistance in E. hormaechei highlights the importance of correlating resistance gene content and antibiotic resistance phenotype.


Assuntos
Acinetobacter baumannii , Aminoglicosídeos , Antibacterianos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Humanos , Aminoglicosídeos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Tailândia , Integrons/genética , Plasmídeos/genética , Amicacina/farmacologia , Enterobacter/genética , Enterobacter/efeitos dos fármacos , Proteínas de Bactérias/genética , Tobramicina/farmacologia , Acetiltransferases/genética , Genoma Bacteriano
6.
J Antimicrob Chemother ; 79(6): 1329-1336, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38629139

RESUMO

OBJECTIVES: To characterize and elucidate the spread of amikacin-resistant Enterobacteriaceae isolates from environmental samples on a pig farm in the UK, following the previous identification of index Salmonella isolates harbouring the rmtB gene, a 16S rRNA methylase. METHODS: Environmental samples were collected during two visits to a pig farm in the UK. Isolates were recovered using selective media (amikacin 128 mg/L) followed by real-time PCR and WGS to analyse rmtB-carrying Salmonella and Escherichia coli isolates. RESULTS: Salmonella and E. coli isolates harbouring the rmtB gene were detected at both farm visits. All Salmonella isolates were found to be monophasic S. enterica serovar Typhimurium variant Copenhagen of ST34. rmtB-harbouring E. coli isolates were found to be one of three STs: ST4089, ST1684 and ST34. Long-read sequencing identified the rmtB gene to be chromosomally located in Salmonella isolates and on IncFII-type plasmids in E. coli isolates. The results showed the rmtB gene to be flanked by IS26 elements and several resistance genes. CONCLUSIONS: We report on the occurrence of rmtB-harbouring Enterobacteriaceae on a pig farm in the UK. rmtB confers resistance to multiple aminoglycosides and this work highlights the need for surveillance to assess dissemination and risk.


Assuntos
Antibacterianos , Escherichia coli , Fazendas , Metiltransferases , Salmonella , Animais , Suínos/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Antibacterianos/farmacologia , Reino Unido , Salmonella/genética , Salmonella/efeitos dos fármacos , Salmonella/isolamento & purificação , Salmonella/classificação , Metiltransferases/genética , Testes de Sensibilidade Microbiana , Amicacina/farmacologia , Sequenciamento Completo do Genoma , Plasmídeos/genética , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Doenças dos Suínos/microbiologia , Proteínas de Escherichia coli/genética
7.
Microb Pathog ; 193: 106782, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969186

RESUMO

The natural antimicrobial properties of essential oils (EOs) have contributed to the battle against multidrug-resistant microorganisms by providing new ways to develop more effective antibiotic agents. In this study, we investigated the chemical composition of Ocotea diospyrifolia essential oil (OdOE) and its antimicrobial properties combined with amikacin (AMK). Through gas chromatography-mass spectrometry (GCMS) analysis, the primary constituents of OdOE were identified as α-bisabolol (45.8 %), ß-bisabolene (9.4 %), γ-elemene (7.6 %), (Z)- ß-farnesene (5.2 %), spathulenol (3.5 %), (Z)-caryophyllene (3.3 %), and (E)-caryophyllene (3.1 %). In vitro assessments showed that the combined administration of OdOE and AMK exerted a synergistic antibacterial effect on the multidrug-resistant K. pneumoniae strain. This synergistic effect demonstrated bacteriostatic action. OdEO combined with amikacin showed protein extravasation within 2 h of treatment, leading to bacterial death, which was determined by a reduction in viable cell count. The effective concentrations showed hemocompatibility. In vivo assessments using Caenorhabditis elegans as a model showed the survival of 85 % of infected nematodes. Therefore, the combination OdEO combined with amikacin exhibited antimicrobial activity against a multidrug-resistant K. pneumoniae strain. Thus, OdOE is a promising agent that may be considered for development of antimicrobial treatment.


Assuntos
Amicacina , Antibacterianos , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Óleos Voláteis , Amicacina/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Animais , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Antibacterianos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Caenorhabditis elegans/efeitos dos fármacos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Sesquiterpenos Monocíclicos/farmacologia , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos Policíclicos/química , Sesquiterpenos/farmacologia
8.
Arch Microbiol ; 206(4): 148, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462558

RESUMO

Pseudomonas aeruginosa is an opportunistic gram-negative pathogenic microorganism that poses a significant challenge in clinical treatment. Antibiotics exhibit limited efficacy against mature biofilm, culminating in an increase in the number of antibiotic-resistant strains. Therefore, novel strategies are essential to enhance the effectiveness of antibiotics against Pseudomonas aeruginosa biofilms. D-histidine has been previously identified as a prospective anti-biofilm agent. However, limited attention has been directed towards its impact on Pseudomonas aeruginosa. Therefore, this study was undertaken to explore the effect of D-histidine on Pseudomonas aeruginosa in vitro. Our results demonstrated that D-histidine downregulated the mRNA expression of virulence and quorum sensing (QS)-associated genes in Pseudomonas aeruginosa PAO1 without affecting bacterial growth. Swarming and swimming motility tests revealed that D-histidine significantly reduced the motility and pathogenicity of PAO1. Moreover, crystal violet staining and confocal laser scanning microscopy demonstrated that D-histidine inhibited biofilm formation and triggered the disassembly of mature biofilms. Notably, D-histidine increased the susceptibility of PAO1 to amikacin compared to that in the amikacin-alone group. These findings underscore the efficacy of D-histidine in combating Pseudomonas aeruginosa by reducing biofilm formation and increasing biofilm disassembly. Moreover, the combination of amikacin and D-histidine induced a synergistic effect against Pseudomonas aeruginosa biofilms, suggesting the potential utility of D-histidine as a preventive strategy against biofilm-associated infections caused by Pseudomonas aeruginosa.


Assuntos
Amicacina , Infecções por Pseudomonas , Humanos , Amicacina/farmacologia , Amicacina/metabolismo , Amicacina/uso terapêutico , Pseudomonas aeruginosa , Histidina/farmacologia , Histidina/metabolismo , Histidina/uso terapêutico , Biofilmes , Percepção de Quorum , Antibacterianos/química , Infecções por Pseudomonas/microbiologia , Fatores de Virulência/metabolismo
9.
BMC Infect Dis ; 24(1): 680, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982386

RESUMO

BACKGROUND: Aminoglycosides have been a cornerstone of the treatment of nosocomial infections caused by Pseudomonas aeruginosa for over 80 years. However, escalating emergence of resistance poses a significant challenge. Therefore, this study aimed to investigate the prevailing patterns of aminoglycoside resistance among clinical isolates of P. aeruginosa in Iran; as well as the underlying resistance mechanisms observed in patients referred to Ardabil hospitals. METHODS: A total of 200 isolates from five hospitals were evaluated. The resistance profiles of P. aeruginosa isolates to tobramycin, amikacin, and netilmicin were determined using the disk diffusion method. The capacity of aminoglycoside-resistant isolates to form biofilms was assessed through a phenotypic assay, and the results were confirmed using the gene amplification technique. The presence of genes associated with aminoglycoside resistance was detected using polymerase chain reaction (PCR). Quantitative reverse transcription PCR (qRT-PCR) was performed to measure the expression levels of genes encoding the MexXY-OprM efflux pump and PhoPQ two-component system (TCS). RESULTS: The prevalence of aminoglycoside-resistant P. aeruginosa isolates was 48%, with 94.7% demonstrating multidrug resistance (MDR). All aminoglycoside-resistant P. aeruginosa strains exhibited biofilm-forming capabilities and harbored all the genes associated with biofilm production. Among the nine genes encoding 16S rRNA methylase and aminoglycoside-modifying enzymes, three genes were detected in these isolates: aac(6')-Ib (85.4%), ant(2'')-Ia (18.7%), and aph(3')-VI (3.1%). Additionally, all aminoglycoside-resistant P. aeruginosa isolates carried mexY and phoP genes, although the expression levels of mexY and phoP were 75% and 87.5%, respectively. CONCLUSION: Given the considerably high prevalence of aminoglycoside-resistant P. aeruginosa strains, urgent measures are warranted to transition towards the use of novel aminoglycosides and to uphold vigilant surveillance of resistance patterns.


Assuntos
Aminoglicosídeos , Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Irã (Geográfico)/epidemiologia , Humanos , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/epidemiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Prevalência , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Amicacina/farmacologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Tobramicina/farmacologia
10.
J Infect Chemother ; 30(3): 208-212, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38012984

RESUMO

INTRODUCTION: As an infectious disease, tuberculosis (TB) poses a serious threat to public health. Although amikacin (AMK) is an important antibiotic for the treatment of drug-resistant TB, its resistance mechanisms are not fully understood. METHODS: To investigate the role of Rv3737 gene on AMK drug susceptibility, a Mycobacterium tuberculosis (M.tb) Rv3737 knockout strain (H37Rv△Rv3737) and a Mycobacterium smegmatis (M.sm) Rv3737 overexpressing strain (Msm/pMV261-Rv3737) were used to detect their minimal inhibitory concentrations (MICs) in this study. RESULTS: The AMK MICs of Rv3737 knockout and overexpressing strains were 4-fold lower and 2-fold higher than those of the wild-type and empty plasmid strains, respectively. The results of clinical isolates showed that no Rv3737 gene mutation was found to be associated with AMK susceptibility, while the rrs A1401G mutation remained the main mechanism of high level of AMK resistance (MIC>32 µg/ml). There was a positive correlation between Rv3737 mRNA expression level and AMK MIC. In the isolates with low-level AMK resistance (MIC = 4 µg/ml) without rrs A1401G mutation, the expression level of Rv3737 gene was significantly higher than those of susceptible isolates. CONCLUSIONS: In this study, the Rv3737 gene was reported for the first time for its effect on AMK susceptibility in M.tb. Although the rrs A1401G mutation remains the main reason of high-level AMK resistance, high expression of the Rv3737 gene was associated with low-level AMK resistance in clinical isolates.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Amicacina/farmacologia , Amicacina/uso terapêutico , Canamicina/farmacologia , Capreomicina/farmacologia , Capreomicina/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Mutação , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Testes de Sensibilidade Microbiana
11.
J Infect Chemother ; 30(2): 159-163, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37717608

RESUMO

Mycobacterium avium complex (MAC) is considered a paramount microbe, especially in East Asia, including Japan. The commonly used commercial Minimum Inhibitory Concentrations (MIC) assay using Middlebrook 7H9 (7H9) medium deviates from the latest Clinical and Laboratory Standards Institute (CLSI) guidelines. Alternatively, measurement with cation-adjusted Mueller-Hinton broth (CAMHB) that conforms to CLSI standards is not yet widely available. Following the approval and commercialization of amikacin liposome inhalation suspension (ALIS) in 2021, a more precise evaluation of amikacin (AMK) susceptibility in MAC is necessary for treatment decisions. In the present study, 33 sputum samples were extracted from 27 patients, and MICs of AMK were compared between the frequently used 7H9 and the recommended CAMHB of the isolated MAC strains. The history of exposure to aminoglycosides for each sample was also added as clinical information. The findings indicated that there was only an 18% concordance rate in MIC between the two media, with 19 samples (58%) indicating lower MICs in 7H9 relative to CAMHB. The 17 samples had a history of exposure to aminoglycosides for periods ranging from 1.5 to 28 months. Specifically, 10 samples were exposed to amikacin by inhalation and intravenous injection, and the remaining seven samples had a history of ALIS inhalation. Samples with a prior utilization of aminoglycosides were significantly predisposed to developing resistance to ALIS compared to those without such a history (P = 0.046). Physicians are encouraged to scrutinize the findings of susceptibility testing utilizing CLSI-endorsed MIC assay using CAMHB medium to ascertain the optimal therapeutic approach.


Assuntos
Pneumopatias , Infecção por Mycobacterium avium-intracellulare , Humanos , Amicacina/farmacologia , Amicacina/uso terapêutico , Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pneumopatias/microbiologia , Meios de Cultura , Testes de Sensibilidade Microbiana
12.
Inflammopharmacology ; 32(4): 2629-2645, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38662181

RESUMO

The development of nanoparticles (NPs) with active components with upgraded stability, and prolonged release helps in enhanced tissue regeneration. In addition, NPs are feasible strategy to boost antibiotic effectiveness and reduce drug side effects. Our study focuses on the use of amikacin (AMK) and gamma amino butyric acid (GABA) unloaded combinations or loaded on chitosan nanoparticles (CSNPs) for kidney protection. The AMK-GABA-CSNPs were prepared with the ionic gelation method, the morphology was studied using transmission electron microscopy (TEM), zetasizer and the Fourier transform-infrared spectroscopy (FT-IR) spectrum of the synthesized NPs was observed. The average size of AMK-GABA-CSNPs was 77.5 ± 16.5 nm. Zeta potential was + 38.94 ± 2.65 mV. AMK-GABA-CSNPs revealed significant in vitro antioxidant, anti-coagulation, non-hemolytic properties and good cell compatibility. To compare the effects of the unloaded AMK-GABA combination and AMK-GABA-CSNPs on the renal tissue, 42 healthy Sprague-Dawley rats were divided into seven groups. G1: normal control (NC), normal saline; G2: low-dose nephrotoxic group (LDN), AMK (20 mg/kg/day; i.p.); G3: unloaded AMK (20 mg/kg/day; i.p.) and GABA (50 mg/kg/day; i.p.); G4: AMK-GABA-CSNPs (20 mg/kg/day; i.p.); G5: high-dose nephrotoxic group (HDN), AMK (30 mg/kg/day; i.p.); G6: unloaded AMK (30 mg/kg/day; i.p.) and GABA (50 mg/kg/day; i.p.) and G7: AMK-GABA-CSNPs (30 mg/kg/day; i.p.). The results showed that AMK-GABA-CSNPs formulation is superior to unloaded AMK-GABA combination as it ameliorated kidney functions, oxidative stress and displayed a significant homeostatic role via suppression of inflammatory cytokines of Th1, Th2 and Th17 types. Hence, AMK-GABA-CSNPs could afford a potential nano-based therapeutic formula for the management of AMK-nephrotoxicity.


Assuntos
Amicacina , Quitosana , Rim , Nanopartículas , Ratos Sprague-Dawley , Ácido gama-Aminobutírico , Animais , Quitosana/química , Quitosana/farmacologia , Nanopartículas/administração & dosagem , Nanopartículas/química , Ratos , Amicacina/farmacologia , Amicacina/administração & dosagem , Masculino , Rim/efeitos dos fármacos , Rim/metabolismo , Ácido gama-Aminobutírico/farmacologia , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Portadores de Fármacos/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula
13.
Antimicrob Agents Chemother ; 67(4): e0135022, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36988462

RESUMO

Mycobacterium abscessus (Mabs) is an emerging nontuberculosis mycobacterial (NTM) pathogen responsible for a wide variety of respiratory and cutaneous infections that are difficult to treat with standard antibacterial therapy. Mabs has a high degree of both innate and acquired antibiotic resistance to most clinically relevant drugs, including standard anti-mycobacterial agents. Ethionamide (ETH), an inhibitor of mycolic acid biosynthesis, is currently utilized as a second-line agent for treating multidrug-resistant tuberculosis infections. Here, we show that ETH displays activity against clinical strains of Mabs in vitro at concentrations that are >100× lower than other mycolic acid targeting drugs. Using transposon mutagenesis followed by transposon sequencing (Tn-Seq) and whole-genome sequencing of spontaneous ETH-resistant mutants, we identified MAB_2648c as a genetic determinant of ETH sensitivity in Mabs. MAB_2648c encodes a MarR family transcriptional regulator of the TetR class of regulators. We show that MAB_2648c represses expression of MAB_2649 (mmpS5) and MAB_2650 (mmpL5). Further, we show that derepression of these genes in MAB_2648c mutants confers resistance to ETH, but not other antibiotics. To identify determinants of resistance that may be shared across antibiotics with distinct mechanisms of action, we also performed Tn-Seq during treatment with amikacin and clarithromycin, drugs currently used clinically to treat Mabs. We found very little overlap in genes that modulate the sensitivity of Mabs to all three antibiotics, suggesting a high degree of specificity for resistance mechanisms in this emerging pathogen.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Etionamida/farmacologia , Mycobacterium abscessus/genética , Ácidos Micólicos , Antibacterianos/farmacologia , Amicacina/farmacologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Testes de Sensibilidade Microbiana
14.
Antimicrob Agents Chemother ; 67(7): e0009023, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37278639

RESUMO

Mycobacterium abscessus infections are difficult to treat and are often considered untreatable without tissue resection. Due to the intrinsic drug-resistant nature of the bacteria, combination therapy of three or more antibiotics is recommended. A major challenge in treating M. abscessus infections is the absence of a universal combination therapy with satisfying clinical success rates, leaving clinicians to treat infections using antibiotics lacking efficacy data. We systematically measured drug combinations in M. abscessus to establish a resource of drug interaction data and identify patterns of synergy to help design optimized combination therapies. We measured 191 pairwise drug combination effects among 22 antibacterials and identified 71 synergistic pairs, 54 antagonistic pairs, and 66 potentiator-antibiotic pairs. We found that commonly used drug combinations in the clinic, such as azithromycin and amikacin, are antagonistic in the lab reference strain ATCC 19977, whereas novel combinations, such as azithromycin and rifampicin, are synergistic. Another challenge in developing universally effective multidrug therapies for M. abscessus is the significant variation in drug response between isolates. We measured drug interactions in a focused set of 36 drug pairs across a small panel of clinical isolates with rough and smooth morphotypes. We observed strain-dependent drug interactions that cannot be predicted from single-drug susceptibility profiles or known drug mechanisms of action. Our study demonstrates the immense potential to identify synergistic drug combinations in the vast drug combination space and emphasizes the importance of strain-specific combination measurements for designing improved therapeutic interventions.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Amicacina/farmacologia , Amicacina/uso terapêutico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Interações Medicamentosas , Testes de Sensibilidade Microbiana
15.
Antimicrob Agents Chemother ; 67(6): e0157922, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154742

RESUMO

The clinical importance of Mycobacterium abscessus species (MABS) infections has been increasing. However, the standard treatment regimens recommended in the current guidelines often result in unfavorable outcomes. Therefore, we investigated the in vitro activity of omadacycline (OMC), a novel tetracycline, against MABS to explore its potential as a novel therapeutic option. The drug susceptibilities of 40 Mycobacterium abscessus subsp. abscessus (Mab) clinical strains obtained from the sputum of 40 patients from January 2005 to May 2014 were investigated. The MIC results for OMC, amikacin (AMK), clarithromycin (CLR), clofazimine (CLO), imipenem (IPM), rifabutin (RFB), and tedizolid (TZD) alone and their combined effects (with OMC) were examined using the checkerboard method. Additionally, we studied the differences in the effectiveness of the antibiotic combinations based on the colony morphotype of Mab. The MIC50 and MIC90 of OMC alone were 2 and 4 µg/mL, respectively. The combinations of OMC with AMK, CLR, CLO, IPM, RFB, and TZD showed synergy against 17.5%, 75.8%, 25.0%, 21.1%, 76.9%, and 34.4% of the strains, respectively. Additionally, OMC combined with CLO (47.1% versus 9.5%, P = 0.023) or TZD (60.0% versus 12.5%, P = 0.009) showed significantly higher synergy against strains with rough morphotypes than those with smooth morphotypes. In conclusion, the checkerboard analyses revealed that the synergistic effects of OMC were observed most frequently with RFB, followed by CLR, TZD, CLO, IPM, and AMK. Furthermore, OMC tended to be more effective against rough-morphotype Mab strains.


Assuntos
Anti-Infecciosos , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium , Humanos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Amicacina/farmacologia , Amicacina/uso terapêutico , Anti-Infecciosos/farmacologia , Rifabutina/farmacologia , Tetraciclinas/farmacologia , Tetraciclinas/uso terapêutico , Testes de Sensibilidade Microbiana
16.
J Clin Microbiol ; 61(3): e0147822, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36757183

RESUMO

While the goal of universal drug susceptibility testing has been a key component of the WHO End TB Strategy, in practice, this remains inaccessible to many. Rapid molecular tests for tuberculosis (TB) and antituberculosis drug resistance could significantly improve access to testing. In this study, we evaluated the accuracy of the Akonni Biosystems XDR-TB (extensively drug-resistant TB) TruArray and lateral-flow-cell (XDR-LFC) assay (Akonni Biosystems, Inc., Frederick, MD, USA), a novel assay that detects mutations in seven genes associated with resistance to antituberculosis drugs: katG, the inhA promoter, and the ahpC promoter for isoniazid; rpoB for rifampin; gyrA for fluoroquinolones; rrs and the eis promoter for kanamycin; and rrs for capreomycin and amikacin. We evaluated assay performance using direct sputum samples from 566 participants recruited in a prospective cohort in Moldova over 2 years. The sensitivity and specificity against the phenotypic reference were both 100% for isoniazid, 99.2% and 97.9% for rifampin, 84.8% and 99.1% for fluoroquinolones, 87.0% and 84.1% for kanamycin, 54.3% and 100% for capreomycin, and 79.2% and 100% for amikacin, respectively. Whole-genome sequencing data for a subsample of 272 isolates showed 95 to 99% concordance with the XDR-LFC-reported suspected mutations. The XDR-LFC assay demonstrated a high level of accuracy for multiple drugs and met the WHO's minimum target product profile criteria for isoniazid and rifampin, while the sensitivity for fluoroquinolones and amikacin fell below target thresholds, likely due to the absence of a gyrB target in the assay. With optimization, the XDR-LFC shows promise as a novel near-patient technology to rapidly diagnose drug-resistant tuberculosis.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Canamicina , Isoniazida/farmacologia , Capreomicina , Amicacina/farmacologia , Rifampina/farmacologia , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico
17.
J Antimicrob Chemother ; 78(8): 1882-1890, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37283195

RESUMO

BACKGROUND: Infection with ESBL-producing Enterobacteriaceae infection is ubiquitous in some neonatal ICUs and increasing levels of antibiotic resistance are a cause for urgent concern. Delineation of bacterial and viral sepsis can be challenging, often leading to patients receiving empirical antibiotics without or whilst waiting for a definitive causal diagnosis. Empirical therapy is often dependent on broad-spectrum 'Watch' antibiotics, contributing to further resistance. METHODS: ESBL-producing Enterobacteriaceae clinical isolates found to have caused neonatal sepsis and meningitis underwent a detailed in vitro screening including susceptibility testing, chequerboard combination analysis and hollow-fibre infection model dynamic analyses using combinations of cefotaxime, ampicillin and gentamicin in combination with ß-lactamase inhibitors. RESULTS: Additivity or synergy was found for all antibiotic combinations against seven Escherichia coli and three Klebsiella pneumoniae clinical isolates. Cefotaxime or ampicillin plus sulbactam combined with gentamicin was able to consistently inhibit the growth of ESBL-producing isolates at typical neonatal doses, and the combination cleared the hollow-fibre infection model system of organisms resistant to each agent alone. The combination of cefotaxime/sulbactam and gentamicin was consistently bactericidal at clinically achievable concentrations (Cmax of 180, 60 and 20 mg/L for cefotaxime, sulbactam and gentamicin, respectively). CONCLUSIONS: The addition of sulbactam to cefotaxime or ampicillin to the typical first-line empirical therapy could obviate the need for carbapenems and amikacin in settings with high ESBL-infection prevalence.


Assuntos
Amicacina , Sepse Neonatal , Recém-Nascido , Humanos , Amicacina/farmacologia , Amicacina/uso terapêutico , Carbapenêmicos/farmacologia , Sulbactam/farmacologia , Gentamicinas/farmacologia , Gentamicinas/uso terapêutico , Sepse Neonatal/tratamento farmacológico , Sepse Neonatal/epidemiologia , Prevalência , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefotaxima/farmacologia , Cefotaxima/uso terapêutico , Ampicilina/farmacologia , Ampicilina/uso terapêutico , Escherichia coli , beta-Lactamases , Testes de Sensibilidade Microbiana
18.
BMC Microbiol ; 23(1): 195, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481513

RESUMO

BACKGROUND: Infection with extensive-drug-resistant (XDR) carbapenem-resistant (CR) Gram-negative bacteria (GNB) are viewed as a serious threat to human health because of the limited therapeutic options. This imposes the urgent need to find agents that could be used as adjuvants or combined with carbapenems to enhance or restore the susceptibility of XDR CR- GNB. Therefore, this study aimed to examine the effect of propranolol (PR) in combination with Meropenem (MEM) on the susceptibility profile of XDR CR-GNB recovered from severely infected patients as well as to evaluate combining MEM with either tigecycline (TGC) or amikacin (AK). METHODS: A total of 59 non-duplicate CR- GNB were investigated for carbapenemase production by the major phenotypic methods. Molecular identification of five major carbapenemase-coding genes was carried out using polymerase chain reactions (PCR). Antimicrobial susceptibility tests were carried out using standard methods. Phenotypic and genotypic relatedness was carried out using the heatmap and ERIC PCR analysis. PR, 0.5 -1 mg/mL against the resulting non-clonal XDR CR-GNB pathogens were evaluated by calculating the MIC decrease factor (MDF). A combination of MEM with either AK or TGC was performed using the checkerboard assay. RESULTS: A total of 21 (35.6%) and 38 (64.4%) CR-GNB isolates were identified as enterobacterial isolates (including 16 (27.1%) Klebsiella Pneumoniae and 5 (8.5%) Escherichia coli) and non-fermentative bacilli (including, 23 (39%), Acinetobacter baumannii, and 15 (25.4%) Pseudomonas aeruginosa). The heatmap and ERIC PCR analysis resulted in non-clonal 28 XDR CR isolates. PR, at a concentration of 0.5 mg /ml, decreased MICs values of the tested XDR CR isolates (28; 100%) and restored susceptibility of only 4 (14.3%) isolates. However, PR (1 mg/mL) when combined with MEM has completely (28; 100%) restored the susceptibility of the tested XDR CR- GNB to MEM. The MEM + AK and MEM + TGC combination showed mostly additive effects (92.8% and 71.4%, respectively). CONCLUSION: PR at a concentration of 1 mg/mL restored the susceptibility of XDR CR- GNB to MEM which is considered a promising result that should be clinically investigated to reveal its suitability for clinical use in patients suffering from these life-threatening pathogens.


Assuntos
Amicacina , Propranolol , Humanos , Meropeném/farmacologia , Propranolol/farmacologia , Amicacina/farmacologia , Tigeciclina/farmacologia , Carbapenêmicos , Escherichia coli
19.
BMC Microbiol ; 23(1): 298, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864176

RESUMO

BACKGROUND: Hospital infections such as ventilator-associated pneumonia (VAP) due to multidrug-resistant Klebsiella pneumoniae (MDR-KP) strains have increased worldwide. In addition, biofilm production by these resistant isolates has confronted clinicians with higher treatment failure and infection recurrence. Given the paucity of new agents and limited data on combination therapy for MDR-KPs, the present study sought to evaluate the in vitro activity of several antibiotic combinations against planktonic and biofilm MDR-KPs isolated from patients with VAP. RESULTS: All 10 carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates demonstrated multidrug resistance against the tested antibiotics. At planktonic mode, combinations of colistin-meropenem and amoxicillin/clavulanate in combination with meropenem, colistin, or amikacin showed synergism against 60-70% isolates. On the other hand, in the biofilm state, colistin-based combinations exhibited synergism against 50-70% isolates and the most effective combination was colistin-amikacin with 70% synergy. CONCLUSIONS: The results revealed that combinations of amoxicillin/clavulanate with colistin, meropenem, or amikacin in the planktonic mode and colistin with amoxicillin/clavulanate, meropenem, or amikacin in the biofilm mode could effectively inhibit CRKP isolates, and thus could be further explored for the treatment of CRKPs.


Assuntos
Infecções por Klebsiella , Pneumonia Associada à Ventilação Mecânica , Humanos , Meropeném/farmacologia , Colistina/farmacologia , Amicacina/farmacologia , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Klebsiella pneumoniae , Sinergismo Farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Klebsiella/tratamento farmacológico , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Testes de Sensibilidade Microbiana
20.
Microb Pathog ; 185: 106447, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972742

RESUMO

Listeria monocytogenes, a foodborne pathogen that causes listeriosis with high fatality rate, exhibits multidrug resistance (MDR) known to be progressively increasing. Alternative antibacterial strategies are in high demand for treating this well-known pathogen. Anti-biofilm and anti-virulence strategies are being explored as novel approaches to treat bacterial infections. In this study, one rare antibacterial named setomimycin was isolated from Streptomyces cyaneochromogenes, which showed potent antibacterial activity against L. monocytogenes. Next, the inhibition of biofilm formation and listeriolysin O (LLO) production against L. monocytogenes were investigated at sub-minimal inhibitory concentrations (sub-MICs) of setomimycin alone or combined with kanamycin and amikacin. Crystal violet staining confirmed that setomimycin combining with kanamycin or amikacin could dramatically reduce biofilm formation against L. monocytogenes at sub-MICs, which was further evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). In the meantime, sub-MICs of setomimycin could significantly suppress the secretion of LLO. Furthermore, the transcription of genes associated with biofilms and main virulence factors, such as LLO, flagellum, and metalloprotease, were suppressed by setomimycin at sub-MICs. Hence, the study provided a deep insight into setomimycin as an alternative antibacterial agent against L. monocytogenes.


Assuntos
Listeria monocytogenes , Listeriose , Humanos , Amicacina/farmacologia , Canamicina/farmacologia , Listeriose/microbiologia , Biofilmes , Antibacterianos/farmacologia , Proteínas Hemolisinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA