Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(1): 117-129.e14, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29570992

RESUMO

Angiogenesis, the formation of new blood vessels by endothelial cells (ECs), is an adaptive response to oxygen/nutrient deprivation orchestrated by vascular endothelial growth factor (VEGF) upon ischemia or exercise. Hypoxia is the best-understood trigger of VEGF expression via the transcription factor HIF1α. Nutrient deprivation is inseparable from hypoxia during ischemia, yet its role in angiogenesis is poorly characterized. Here, we identified sulfur amino acid restriction as a proangiogenic trigger, promoting increased VEGF expression, migration and sprouting in ECs in vitro, and increased capillary density in mouse skeletal muscle in vivo via the GCN2/ATF4 amino acid starvation response pathway independent of hypoxia or HIF1α. We also identified a requirement for cystathionine-γ-lyase in VEGF-dependent angiogenesis via increased hydrogen sulfide (H2S) production. H2S mediated its proangiogenic effects in part by inhibiting mitochondrial electron transport and oxidative phosphorylation, resulting in increased glucose uptake and glycolytic ATP production.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos Sulfúricos/deficiência , Sulfeto de Hidrogênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator 4 Ativador da Transcrição/antagonistas & inibidores , Fator 4 Ativador da Transcrição/genética , Aminoácidos Sulfúricos/metabolismo , Animais , Cistationina gama-Liase/metabolismo , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/metabolismo , Isquemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Condicionamento Físico Animal , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
2.
Cell ; 154(2): 416-29, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23870129

RESUMO

Protein translation is an energetically demanding process that must be regulated in response to changes in nutrient availability. Herein, we report that intracellular methionine and cysteine availability directly controls the thiolation status of wobble-uridine (U34) nucleotides present on lysine, glutamine, or glutamate tRNAs to regulate cellular translational capacity and metabolic homeostasis. tRNA thiolation is important for growth under nutritionally challenging environments and required for efficient translation of genes enriched in lysine, glutamine, and glutamate codons, which are enriched in proteins important for translation and growth-specific processes. tRNA thiolation is downregulated during sulfur starvation in order to decrease sulfur consumption and growth, and its absence leads to a compensatory increase in enzymes involved in methionine, cysteine, and lysine biosynthesis. Thus, tRNA thiolation enables cells to modulate translational capacity according to the availability of sulfur amino acids, establishing a functional significance for this conserved tRNA nucleotide modification in cell growth control.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Uridina/metabolismo , Regulação para Baixo , RNA de Transferência/química , Saccharomyces cerevisiae/crescimento & desenvolvimento
3.
Amino Acids ; 56(1): 47, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060524

RESUMO

sulfur-containing amino acids have been reported to patriciate in gene regulation, DNA methylation, protein synthesis and other physiological or pathological processes. In recent years, metabolism-related molecules of sulfur-containing amino acids affecting the occurrence, development and treatment of tumors have been implicated in various disorders, especially in leukemia. Here, we summarize current knowledge on the sulfur-containing amino acid metabolism pathway in leukemia and examine ongoing efforts to target this pathway, including treatment strategies targeting (a) sulfur-containing amino acids, (b) metabolites of sulfur-containing amino acids, and (c) enzymes and cofactors related to sulfur-containing amino acid metabolism in leukemia. Future leukemia therapy will likely involve innovative strategies targeting the sulfur-containing amino acid metabolism pathway.


Assuntos
Leucemia , Humanos , Leucemia/metabolismo , Leucemia/tratamento farmacológico , Leucemia/genética , Enxofre/metabolismo , Animais , Aminoácidos/metabolismo , Aminoácidos Sulfúricos/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
4.
FASEB J ; 36(7): e22396, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35690926

RESUMO

Dietary removal of an essential amino acid (EAA) triggers the integrated stress response (ISR) in liver. Herein, we explored the mechanisms that activate the ISR and execute changes in transcription and translation according to the missing EAA. Wild-type mice and mice lacking general control nonderepressible 2 (Gcn2) were fed an amino acid complete diet or a diet devoid of either leucine or sulfur amino acids (methionine and cysteine). Serum and liver leucine concentrations were significantly reduced within the first 6 h of feeding a diet lacking leucine, corresponding with modest, GCN2-dependent increases in Atf4 mRNA translation and induction of selected ISR target genes (Fgf21, Slc7a5, Slc7a11). In contrast, dietary removal of the sulfur amino acids lowered serum methionine, but not intracellular methionine, and yet hepatic mRNA abundance of Atf4, Fgf21, Slc7a5, Slc7a11 substantially increased regardless of GCN2 status. Liver tRNA charging levels did not correlate with intracellular EAA concentrations or GCN2 status and remained similar to mice fed a complete diet. Furthermore, loss of Gcn2 increased the occurrence of ribosome collisions in liver and derepressed mechanistic target of rapamycin complex 1 signal transduction, but these changes did not influence execution of the ISR. We conclude that ISR activation is directed by intracellular EAA concentrations, but ISR execution is not. Furthermore, a diet devoid of sulfur amino acids does not require GCN2 for the ISR to execute changes to the transcriptome.


Assuntos
Aminoácidos Sulfúricos , Aminoácidos , Aminoácidos/metabolismo , Aminoácidos Sulfúricos/metabolismo , Animais , Dieta , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Leucina , Fígado/metabolismo , Metionina/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/genética
5.
Amino Acids ; 55(8): 1039-1048, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37326859

RESUMO

Dietary supplementation with methionine and threonine spares body protein in rats fed a low protein diet, but the effect is not observed for other essential amino acids. Although the requirement for sulfur amino acids is relatively high in rodents, the precise mechanisms underlying protein retention are not fully understood. The aim of this study was to explore whether the activation of mammalian target of rapamycin complex 1 (mTORC1) downstream factors in skeletal muscle by supplementation with threonine and/or methionine contributes to protein retention under sufficient cystine requirement. Male Sprague-Dawley rats were freely fed a 0% protein diet for 2 weeks. These experimental rats were then fed a restricted diet (14.5 g/day) containing 12% soy protein supplemented with both cystine and, methionine and threonine (MT), methionine (M), threonine (T), or neither (NA) (n = 8) for an additional 12 days. Two additional groups were freely fed a diet containing 0% protein or 20% casein as controls (n = 6). Body weight and gastrocnemius muscle weight were higher, and blood urea nitrogen and urinary nitrogen excretion were lower, in the M and MT groups than in the T and NA groups, respectively. p70 S6 kinase 1 abundance was higher, and eukaryotic translation initiation factor 4E-binding protein 1 abundance and mRNA levels were lower, in the skeletal muscles of the M and MT groups. These results suggest that methionine regulates mTORC1 downstream factors in skeletal muscle, leading to spare body protein in rats fed a low protein diet meeting cystine requirements.


Assuntos
Aminoácidos Sulfúricos , Metionina , Ratos , Masculino , Animais , Metionina/metabolismo , Aminoácidos Sulfúricos/análise , Aminoácidos Sulfúricos/metabolismo , Proteínas de Soja/farmacologia , Projetos Piloto , Cistina , Ratos Sprague-Dawley , Fígado/metabolismo , Dieta , Racemetionina/metabolismo , Suplementos Nutricionais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Treonina/metabolismo , Mamíferos/metabolismo
6.
Eur J Nutr ; 62(2): 891-904, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36322288

RESUMO

PURPOSE: Sulfur amino acids (SAAs) have been associated with obesity and obesity-related metabolic diseases. We investigated whether plasma SAAs (methionine, total cysteine (tCys), total homocysteine, cystathionine and total glutathione) are related to specific fat depots. METHODS: We examined cross-sectional subsets from the CODAM cohort (n = 470, 61.3% men, median [IQR]: 67 [61, 71] years) and The Maastricht Study (DMS; n = 371, 53.4% men, 63 [55, 68] years), enriched with (pre)diabetic individuals. SAAs were measured in fasting EDTA plasma with LC-MS/MS. Outcomes comprised BMI, skinfolds, waist circumference (WC), dual-energy X-ray absorptiometry (DXA, DMS), body composition, abdominal subcutaneous and visceral adipose tissues (CODAM: ultrasound, DMS: MRI) and liver fat (estimated, in CODAM, or MRI-derived, in DMS, liver fat percentage and fatty liver disease). Associations were examined with linear or logistic regressions adjusted for relevant confounders with z-standardized primary exposures and outcomes. RESULTS: Methionine was associated with all measures of liver fat, e.g., fatty liver disease [CODAM: OR = 1.49 (95% CI 1.19, 1.88); DMS: OR = 1.51 (1.09, 2.14)], but not with other fat depots. tCys was associated with overall obesity, e.g., BMI [CODAM: ß = 0.19 (0.09, 0.28); DMS: ß = 0.24 (0.14, 0.34)]; peripheral adiposity, e.g., biceps and triceps skinfolds [CODAM: ß = 0.15 (0.08, 0.23); DMS: ß = 0.20 (0.12, 0.29)]; and central adiposity, e.g., WC [CODAM: ß = 0.16 (0.08, 0.25); DMS: ß = 0.17 (0.08, 0.27)]. Associations of tCys with VAT and liver fat were inconsistent. Other SAAs were not associated with body fat. CONCLUSION: Plasma concentrations of methionine and tCys showed distinct associations with different fat depots, with similar strengths in the two cohorts.


Assuntos
Aminoácidos Sulfúricos , Hepatopatias , Masculino , Humanos , Feminino , Aminoácidos Sulfúricos/metabolismo , Estudos Transversais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Tecido Adiposo/metabolismo , Obesidade , Cisteína , Metionina , Hepatopatias/metabolismo , Índice de Massa Corporal , Adiposidade , Gordura Intra-Abdominal/metabolismo
7.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902018

RESUMO

Sulfur-containing amino acids methionine (Met), cysteine (Cys) and taurine (Tau) are common dietary constituents with important cellular roles. Met restriction is already known to exert in vivo anticancer activity. However, since Met is a precursor of Cys and Cys produces Tau, the role of Cys and Tau in the anticancer activity of Met-restricted diets is poorly understood. In this work, we screened the in vivo anticancer activity of several Met-deficient artificial diets supplemented with Cys, Tau or both. Diet B1 (6% casein, 2.5% leucine, 0.2% Cys and 1% lipids) and diet B2B (6% casein, 5% glutamine, 2.5% leucine, 0.2% Tau and 1% lipids) showed the highest activity and were selected for further studies. Both diets induced marked anticancer activity in two animal models of metastatic colon cancer, which were established by injecting CT26.WT murine colon cancer cells in the tail vein or peritoneum of immunocompetent BALB/cAnNRj mice. Diets B1 and B2B also increased survival of mice with disseminated ovarian cancer (intraperitoneal ID8 Tp53-/- cells in C57BL/6JRj mice) and renal cell carcinoma (intraperitoneal Renca cells in BALB/cAnNRj mice). The high activity of diet B1 in mice with metastatic colon cancer may be useful in colon cancer therapy.


Assuntos
Aminoácidos Sulfúricos , Carcinoma de Células Renais , Neoplasias do Colo , Neoplasias Renais , Neoplasias Ovarianas , Camundongos , Animais , Feminino , Humanos , Aminoácidos Sulfúricos/metabolismo , Caseínas , Leucina , Camundongos Endogâmicos C57BL , Metionina/metabolismo , Cisteína/metabolismo , Dieta , Taurina/metabolismo , Racemetionina , Lipídeos
8.
J Nutr ; 152(6): 1467-1475, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35218191

RESUMO

BACKGROUND: Lentil is considered a high protein source. However, it is low in sulphur amino acids (SAA) and their metabolic availability (MA) is further affected by antinutritional factors in lentils. The combination of lentils with grains such as rice can enhance the protein quality of a lentil-based meal but the MA of SAA in lentils must first be known. OBJECTIVES: The objectives of the current study were to assess the MA of methionine in lentils and to test the effects of consumption of complementing lentils with rice in young adults. METHODS: Five healthy young men [age <30 y, BMI <25 (in kg/m2)] were each studied at 8 or 10 intake amounts of methionine in random order; 4 daily intake amounts of l-methionine: 0.5, 1, 2, and 3 mg.kg-1.d-1 (reference diet), 3 daily intake amounts of methionine from lentils, and 3 daily intake amounts of the mixed meal of lentils + rice (test diets). The MA of methionine and the effects of complementation were assessed by comparing the indicator amino acid oxidation (IAAO) response to varying intakes of methionine in cooked Canadian lentils, and in rice + lentils combined, compared with the IAAO response to l-methionine intakes in the reference protein (crystalline AA mixture patterned after egg protein) using the slope ratio method. l-[1-13C] phenylalanine was used as the indicator. Data were analyzed using the procedure "MIXED" with subject as a random variable, and oxidation day as repeated measure. RESULTS: The MA of methionine from lentils was 69%. Complementation of cooked lentils with rice decreased the oxidation of l-[1-13C] phenylalanine by up to 16% (P < 0.05). CONCLUSIONS: The content and MA of methionine are low in lentils. However, combination of lentils with rice in a 1:1 ratio can improve the protein quality of lentil-based diets, resulting in increased protein synthesis in young healthy adults. This trial was registered at www.clinical trials.gov as NCT03110913.


Assuntos
Aminoácidos Sulfúricos , Lens (Planta) , Oryza , Aminoácidos/metabolismo , Aminoácidos Sulfúricos/metabolismo , Canadá , Dieta , Humanos , Lens (Planta)/metabolismo , Masculino , Metionina/metabolismo , Necessidades Nutricionais , Oxirredução , Fenilalanina/metabolismo , Adulto Jovem
9.
Appl Environ Microbiol ; 87(12): e0010421, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33811024

RESUMO

Selenium (Se) deficiency affects many millions of people worldwide, and the volatilization of methylated Se species to the atmosphere may prevent Se from entering the food chain. Despite the extent of Se deficiency, little is known about fluxes in volatile Se species and their temporal and spatial variation in the environment, giving rise to uncertainty in atmospheric transport models. To systematically determine fluxes, one can rely on laboratory microcosm experiments to quantify Se volatilization in different conditions. Here, it is demonstrated that the sulfur (S) status of bacteria crucially determines the amount of Se volatilized. Solid-phase microextraction gas chromatography mass spectrometry showed that Pseudomonas tolaasii efficiently and rapidly (92% in 18 h) volatilized Se to dimethyl diselenide and dimethyl selenyl sulfide through promiscuous enzymatic reactions with the S metabolism. However, when the cells were supplemented with cystine (but not methionine), a major proportion of the Se (∼48%) was channeled to thus-far-unknown, nonvolatile Se compounds at the expense of the previously formed dimethyl diselenide and dimethyl selenyl sulfide (accounting for <4% of total Se). Ion chromatography and solid-phase extraction were used to isolate unknowns, and electrospray ionization ion trap mass spectrometry, electrospray ionization quadrupole time-of-flight mass spectrometry, and microprobe nuclear magnetic resonance spectrometry were used to identify the major unknown as a novel Se metabolite, 2-hydroxy-3-(methylselanyl)propanoic acid. Environmental S concentrations often exceed Se concentrations by orders of magnitude. This suggests that in fact S status may be a major control of selenium fluxes to the atmosphere. IMPORTANCE Volatilization from soil to the atmosphere is a major driver for Se deficiency. "Bottom-up" models for atmospheric Se transport are based on laboratory experiments quantifying volatile Se compounds. The high Se and low S concentrations in such studies poorly represent the environment. Here, we show that S amino acid status has in fact a decisive effect on the production of volatile Se species in Pseudomonas tolaasii. When the strain was supplemented with S amino acids, a major proportion of the Se was channeled to thus-far-unknown, nonvolatile Se compounds at the expense of volatile compounds. This hierarchical control of the microbial S amino acid status on Se cycling has been thus far neglected. Understanding these interactions-if they occur in the environment-will help to improve atmospheric Se models and thus predict drivers of Se deficiency.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Pseudomonas/metabolismo , Selênio/metabolismo , Metilação , Propionatos/metabolismo , Ácido Selenioso/metabolismo , Microbiologia do Solo , Volatilização
10.
J Nutr ; 151(4): 785-799, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33512502

RESUMO

BACKGROUND: Dietary sulfur amino acid restriction (SAAR) improves body composition and metabolic health across several model organisms in part through induction of the integrated stress response (ISR). OBJECTIVE: We investigate the hypothesis that activating transcription factor 4 (ATF4) acts as a converging point in the ISR during SAAR. METHODS: Using liver-specific or global gene ablation strategies, in both female and male mice, we address the role of ATF4 during dietary SAAR. RESULTS: We show that ATF4 is dispensable in the chronic induction of the hepatokine fibroblast growth factor 21 while being essential for the sustained production of endogenous hydrogen sulfide. We also affirm that biological sex, independent of ATF4 status, is a determinant of the response to dietary SAAR. CONCLUSIONS: Our results suggest that auxiliary components of the ISR, which are independent of ATF4, are critical for SAAR-mediated improvements in metabolic health in mice.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos Sulfúricos/deficiência , Fator 4 Ativador da Transcrição/deficiência , Fator 4 Ativador da Transcrição/genética , Aminoácidos Sulfúricos/sangue , Aminoácidos Sulfúricos/metabolismo , Animais , Antioxidantes/metabolismo , Composição Corporal , DNA/biossíntese , Dietoterapia , Feminino , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Sulfeto de Hidrogênio/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Biossíntese de Proteínas , Fatores Sexuais , Estresse Fisiológico
11.
Int J Mol Sci ; 22(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34884668

RESUMO

Reductive radical stress represents the other side of the redox spectrum, less studied but equally important compared to oxidative stress. The reactivity of hydrogen atoms (H•) and hydrated electrons (e-aq) connected with peptides/proteins is summarized, focusing on the chemical transformations of methionine (Met) and cystine (CysS-SCys) residues into α-aminobutyric acid and alanine, respectively. Chemical and mechanistic aspects of desulfurization processes with formation of diffusible sulfur-centered radicals, such as methanethiyl (CH3S•) and sulfhydryl (HS•) radicals, are discussed. These findings are further applied to biomimetic radical chemistry, modeling the occurrence of tandem protein-lipid damages in proteo-liposomes and demonstrating that generation of sulfur-centered radicals from a variety of proteins is coupled with the cis-trans isomerization of unsaturated lipids in membranes. Recent applications to pharmaceutical and pharmacological contexts are described, evidencing novel perspectives in the stability of formulations and mode of action of drugs, respectively.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Proteínas/metabolismo , Estresse Fisiológico , Animais , Radicais Livres/metabolismo , Raios gama , Humanos , Oxirredução
12.
J Nutr ; 150(Suppl 1): 2532S-2537S, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000156

RESUMO

Homocysteine (Hcy) is methylated by methionine synthase to form methionine with methyl-cobalamin as a cofactor. The reaction demethylates 5-methyltetrahydrofolate to tetrahydrofolate, which is required for DNA and RNA synthesis. Deficiency of either of the cobalamin (Cbl) and/or folate cofactors results in elevated Hcy and megaloblastic anemia. Elevated Hcy is a sensitive biomarker of Cbl and/or folate status and more specific than serum vitamin assays. Elevated Hcy normalizes when the correct vitamin is given. Elevated Hcy is associated with alcohol use disorder and drugs that target folate or Cbl metabolism, and is a risk factor for thrombotic vascular disease. Elevated methionine and cystathionine are associated with liver disease. Elevated Hcy, cystathionine, and cysteine, but not methionine, are common in patients with chronic renal failure. Higher cysteine predicts obesity and future weight gain. Serum S-adenosylhomocysteine (AdoHcy) is elevated in Cbl deficiency and chronic renal failure. Drugs that require methylation for catabolism may deplete liver S-adenosylmethionine and raise AdoHcy and Hcy. Deficiency of Cbl or folate or perturbations of their metabolism cause major changes in sulfur amino acids.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Deficiência de Ácido Fólico/complicações , Ácido Fólico/sangue , Hiper-Homocisteinemia/sangue , Estado Nutricional , Deficiência de Vitamina B 12/complicações , Vitamina B 12/sangue , Alcoolismo/sangue , Aminoácidos Sulfúricos/sangue , Anemia Megaloblástica/sangue , Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Deficiência de Ácido Fólico/sangue , Humanos , Hiper-Homocisteinemia/complicações , Falência Renal Crônica/sangue , Hepatopatias/sangue , Obesidade/sangue , S-Adenosil-Homocisteína/sangue , Deficiência de Vitamina B 12/sangue
13.
J Nutr ; 150(Suppl 1): 2506S-2517S, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000152

RESUMO

The metabolism of sulfur-containing amino acids (SAAs) requires an orchestrated interplay among several dozen enzymes and transporters, and an adequate dietary intake of methionine (Met), cysteine (Cys), and B vitamins. Known human genetic disorders are due to defects in Met demethylation, homocysteine (Hcy) remethylation, or cobalamin and folate metabolism, in Hcy transsulfuration, and Cys and hydrogen sulfide (H2S) catabolism. These disorders may manifest between the newborn period and late adulthood by a combination of neuropsychiatric abnormalities, thromboembolism, megaloblastic anemia, hepatopathy, myopathy, and bone and connective tissue abnormalities. Biochemical features include metabolite deficiencies (e.g. Met, S-adenosylmethionine (AdoMet), intermediates in 1-carbon metabolism, Cys, or glutathione) and/or their accumulation (e.g. S-adenosylhomocysteine, Hcy, H2S, or sulfite). Treatment should be started as early as possible and may include a low-protein/low-Met diet with Cys-enriched amino acid supplements, pharmacological doses of B vitamins, betaine to stimulate Hcy remethylation, the provision of N-acetylcysteine or AdoMet, or experimental approaches such as liver transplantation or enzyme replacement therapy. In several disorders, patients are exposed to long-term markedly elevated Met concentrations. Although these conditions may inform on Met toxicity, interpretation is difficult due to the presence of additional metabolic changes. Two disorders seem to exhibit Met-associated toxicity in the brain. An increased risk of demyelination in patients with Met adenosyltransferase I/III (MATI/III) deficiency due to biallelic mutations in the MATIA gene has been attributed to very high blood Met concentrations (typically >800 µmol/L) and possibly also to decreased liver AdoMet synthesis. An excessively high Met concentration in some patients with cystathionine ß-synthase deficiency has been associated with encephalopathy and brain edema, and direct toxicity of Met has been postulated. In summary, studies in patients with various disorders of SAA metabolism showed complex metabolic changes with distant cellular consequences, most of which are not attributable to direct Met toxicity.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Cisteína/metabolismo , Homocisteína/metabolismo , Doenças Metabólicas/genética , Metionina/metabolismo , Compostos de Enxofre/metabolismo , Enxofre/metabolismo , Animais , Encefalopatias/etiologia , Encefalopatias/metabolismo , Glutationa/metabolismo , Homocistinúria/etiologia , Homocistinúria/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Fígado/metabolismo , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Doenças Metabólicas/terapia , Erros Inatos do Metabolismo/patologia , Erros Inatos do Metabolismo/terapia , Metionina Adenosiltransferase/metabolismo , Metilação , S-Adenosilmetionina/metabolismo , Sulfitos/metabolismo
14.
J Nutr ; 150(Suppl 1): 2524S-2531S, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000164

RESUMO

The metabolism of methionine and cysteine in the body tissues determines the concentrations of several metabolites with various biologic activities, including homocysteine, hydrogen sulfide (H2S), taurine, and glutathione. Hyperhomocysteinemia, which is correlated with lower HDL cholesterol in blood in volunteers and animal models, has been associated with an increased risk for cardiovascular diseases. In humans, the relation between methionine intake and hyperhomocysteinemia is dependent on vitamin status (vitamins B-6 and B-12 and folic acid) and on the supply of other amino acids. However, lowering homocysteinemia by itself is not sufficient for decreasing the risk of cardiovascular disease progression. Other compounds related to methionine metabolism have recently been identified as being involved in the risk of atherosclerosis and steatohepatitis. Indeed, the metabolism of sulfur amino acids has an impact on phosphatidylcholine (PC) metabolism, and anomalies in PC synthesis due to global hypomethylation have been associated with disturbances of lipid metabolism. In addition, impairment of H2S synthesis from cysteine favors atherosclerosis and steatosis in animal models. The effects of taurine on lipid metabolism appear heterogeneous depending on the populations of volunteers studied. A decrease in the concentration of intracellular glutathione, a tripeptide involved in redox homeostasis, is implicated in the etiology of cardiovascular diseases and steatosis. Last, supplementation with betaine, a compound that allows remethylation of homocysteine to methionine, decreases basal and methionine-stimulated homocysteinemia; however, it adversely increases plasma total and LDL cholesterol. The study of these metabolites may help determine the range of optimal and safe intakes of methionine and cysteine in dietary proteins and supplements. The amino acid requirement for protein synthesis in different situations and for optimal production of intracellular compounds involved in the regulation of lipid metabolism also needs to be considered for dietary attenuation of atherosclerosis and steatosis risk.


Assuntos
Aterosclerose/etiologia , Cisteína/metabolismo , Fígado Gorduroso/etiologia , Metabolismo dos Lipídeos , Metionina/metabolismo , Estado Nutricional , Enxofre/metabolismo , Aminoácidos Sulfúricos/metabolismo , Animais , Aterosclerose/metabolismo , Betaína/metabolismo , Betaína/farmacologia , Colesterol/sangue , Proteínas Alimentares/química , Suplementos Nutricionais , Fígado Gorduroso/metabolismo , Glutationa/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Hiper-Homocisteinemia/etiologia , Hiper-Homocisteinemia/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Necessidades Nutricionais , Fosfatidilcolinas/metabolismo , Compostos de Enxofre/metabolismo , Taurina/metabolismo , Taurina/farmacologia
15.
J Chem Inf Model ; 59(11): 4921-4928, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31661621

RESUMO

While certain residues have clear involvement in determining the 3D structure of a macromolecule because they affect the folding topology or the overall protein stability, the role of different residues in ligand accommodation and binding has attracted less attention. On the basis of the assumption that drug-binding sites on target molecules have specific amino acid compositions, the incidence of each standard amino acid at the binding sites of small molecules and their correlations are calculated for an unprecedented large set of high-quality X-ray structures. Results show, for the first time, strong and highly correlated enrichments of aromatic and sulfur-containing residues, which play an important role in ligand binding and shape the nature of the chemical interactions.


Assuntos
Aminoácidos Aromáticos/metabolismo , Aminoácidos Sulfúricos/metabolismo , Proteínas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Aminoácidos Aromáticos/química , Aminoácidos Sulfúricos/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Bases de Dados de Proteínas , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Proteínas/química , Bibliotecas de Moléculas Pequenas/química
16.
Mol Biol Rep ; 46(4): 4017-4025, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31079315

RESUMO

Homocysteine (hcy) is an amino acid that contains sulfur species. In healthy individuals, plasma hcy levels are low. The aim of this study was to investigate the potential neurotoxic effects of hcy and sulfite (sft) molecules alone and in their combination, and also to identify the relationship of these substances on oxidative stress. SH-SY5Y cells were used as an invitro neurodegenerative disease model. The SH-SY5Y cells were treated with various concentrations of hcy alone, sft alone (final concentrations in the well were 10-250 µM and 0.1-5 mM, respectively) and a combination of both (hcy + sft). Their cytotoxicity and genotoxic effects were investigated using the XTT test and Comet assay and, their impact on oxidative stress was examined using total antioxidant-oxidant status (TAS-TOS) kits. The highest toxic doses of hcy and sft were found to be 250 µM and 5 mM, respectively, but the maximum toxic effect was observed for hcy + sft (p < 0.001). In addition, an increase in DNA damage was evident in all groups, but maximal damage was inflicted using in hcy + sft (p < 0.001). The oxidative stress index was significantly increased in hcy + sft (p < 0.05). Determining the increase in sft and hcy levels may contribute to delaying the occurrence of diseases before symptoms of neurodegenerative disease appear.


Assuntos
Homocisteína/toxicidade , Doenças Neurodegenerativas/metabolismo , Sulfitos/toxicidade , Aminoácidos Sulfúricos/metabolismo , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Homocisteína/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sulfito Oxidase/metabolismo , Sulfitos/metabolismo
17.
Mol Ther ; 26(3): 834-844, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29398487

RESUMO

Classical homocystinuria (HCU) is the most common inherited disorder of sulfur amino acid metabolism caused by deficiency in cystathionine beta-synthase (CBS) activity and characterized by severe elevation of homocysteine in blood and tissues. Treatment with dietary methionine restriction is not optimal, and poor compliance leads to serious complications. We developed an enzyme replacement therapy (ERT) and studied its efficacy in a severe form of HCU in mouse (the I278T model). Treatment was initiated before or after the onset of clinical symptoms in an effort to prevent or reverse the phenotype. ERT substantially reduced and sustained plasma homocysteine concentration at around 100 µM and normalized plasma cysteine for up to 9 months of treatment. Biochemical balance was also restored in the liver, kidney, and brain. Furthermore, ERT corrected liver glucose and lipid metabolism. The treatment prevented or reversed facial alopecia, fragile and lean phenotype, and low bone mass. In addition, structurally defective ciliary zonules in the eyes of I278T mice contained low density and/or broken fibers, while administration of ERT from birth partially rescued the ocular phenotype. In conclusion, ERT maintained an improved metabolic pattern and ameliorated many of the clinical complications in the I278T mouse model of HCU.


Assuntos
Cistationina beta-Sintase/administração & dosagem , Terapia de Reposição de Enzimas , Homocistinúria/diagnóstico , Homocistinúria/terapia , Fenótipo , Aminoácidos Sulfúricos/sangue , Aminoácidos Sulfúricos/metabolismo , Animais , Cistationina beta-Sintase/química , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Glucose/metabolismo , Homocistinúria/metabolismo , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Estresse Oxidativo , Polietilenoglicóis/química
18.
Antonie Van Leeuwenhoek ; 112(10): 1425-1445, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31111331

RESUMO

This study set out to isolate and identify epiphytic yeasts producing pulcherrimin, and to evaluate their potential as biological control agents (BCAs). We isolated Metschnikowia sp. strains from flowers and fruits collected in Poland. The plant material had been collected between April to September 2017 from two small orchards where traditional organic management is employed. We identified the essential phenotypic features of the yeast, including assimilation and enzymatic profiles, stress resistance, adhesion properties, and antimicrobial activity against various fungi involved in crop and/or food spoilage. Yeast screening was performed using YPD agar supplemented with chloramphenicol and Fe(III) ions. Taxonomic classification was determined by sequence analysis of the D1/D2 domains of the large subunit rRNA gene. The isolates were identified as Metschnikowia andauensis and Metschnikowia sinensis. The yeast isolates were further characterized based on their enzymatic and assimilation profiles, as well as their growth under various stress conditions. In addition, the hydrophobicity and adhesive abilities of the Metschnikowia isolates were determined using a MATH test and luminometry. Their antagonistic action against molds representing typical crop spoiling microflora was also evaluated. The assimilation profiles of the wild isolates were similar to those displayed by collection strains of M. pulcherrima. However, some of the isolates displayed more beneficial phenotypic properties, especially good growth under stress conditions. Several of the epiphytes grew well over a wider range of temperatures (8-30 °C) and pH levels (3-9), and additionally showed elevated tolerance to ethanol (8%), glucose (30%), and peroxides (50 mM). The hydrophobicity and adhesion of the yeast cells were strain- and surface-dependent. The tested yeasts showed potential for use as BCAs, with some exhibiting strong antagonism against molds belonging to the genera Alternaria, Botrytis, Fusarium, Rhizopus, and Verticillium, as well as against yeasts isolated as food spoilage microbiota.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Fungos/efeitos dos fármacos , Metschnikowia/classificação , Metschnikowia/isolamento & purificação , Controle Biológico de Vetores , Piperidinas/metabolismo , Antibiose , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Flores/microbiologia , Frutas/microbiologia , Fungos/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Metschnikowia/genética , Metschnikowia/fisiologia , Técnicas de Tipagem Micológica , Filogenia , Polônia , RNA Ribossômico/genética , Análise de Sequência de DNA , Temperatura
19.
Int J Mol Sci ; 20(9)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071929

RESUMO

(1) The beneficial effects of hydrogen sulfide (H2S) on the cardiovascular and nervous system have recently been re-evaluated. It has been shown that lanthionine, a side product of H2S biosynthesis, previously used as a marker for H2S production, is dramatically increased in circulation in uremia, while H2S release is impaired. Thus, lanthionine could be classified as a novel uremic toxin. Our research was aimed at defining the mechanism(s) for lanthionine toxicity. (2) The effect of lanthionine on H2S release was tested by a novel lead acetate strip test (LAST) in EA.hy926 cell cultures. Effects of glutathione, as a redox agent, were assayed. Levels of sulfane sulfur were evaluated using the SSP4 probe and flow cytometry. Protein content and glutathionylation were analyzed by Western Blotting and immunoprecipitation, respectively. Gene expression and miRNA levels were assessed by qPCR. (3) We demonstrated that, in endothelial cells, lanthionine hampers H2S release; reduces protein content and glutathionylation of transsulfuration enzyme cystathionine-ß-synthase; modifies the expression of miR-200c and miR-423; lowers expression of vascular endothelial growth factor VEGF; increases Ca2+ levels. (4) Lanthionine-induced alterations in cell cultures, which involve both sulfur amino acid metabolism and calcium homeostasis, are consistent with uremic dysfunctional characteristics and further support the uremic toxin role of this amino acid.


Assuntos
Alanina/análogos & derivados , Cálcio/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Sulfetos/farmacologia , Uremia/tratamento farmacológico , Alanina/química , Alanina/farmacologia , Aminoácidos Sulfúricos/efeitos dos fármacos , Aminoácidos Sulfúricos/metabolismo , Linhagem Celular , Cistationina beta-Sintase/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , MicroRNAs/genética , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Oxirredução , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Sulfetos/química , Uremia/genética , Uremia/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
20.
J Sci Food Agric ; 99(6): 3086-3096, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30515848

RESUMO

BACKGROUND: The present study evaluated the potential of increasing dietary levels of the most limiting amino acids such as total sulfur amino acids (TSAA) with respect to mitigating the adverse effects of the inclusion of guar meal (GM) in the diet of WL layers on egg production, feed efficiency and egg weight. In total, 4928 WL (Lohmann L) hens (32 week of age) were randomly allotted to eight treatments with seven replicates of 88 birds. The dietary treatments were a set of four maize-soybean meal based diets containing four graded concentrations of TSAA (5.85, 6.18, 6.51 and 6.84 g kg-1 ) and another set of four diets containing 100 g kg-1 guar meal (GM) with similar concentrations of TSAA. RESULTS: The inclusion of 100 g kg-1 GM in the diet caused a 20%, 23%, 35.5% and 6.7% reduction in egg production, daily egg mass, feed efficiency and egg weight, respectively, when the diet contained 5.85 g kg-1 TSAA. Increasing TSAA levels in GM groups reduced the adverse effects on egg production and feed efficiency 50%, with no effect on egg weight. The TSAA requirement of WL birds fed 10% GM was estimated as 6.28-7.39 g kg-1 diet at different ages. CONCLUSION: Increasing dietary TSAA to 7.39, 6.28, 6.53 and 6.37 g kg-1 or dTSAA (digestible TSAA) to 6.53, 5.32, 5.80 and 5.63 g kg-1 during 33-36, 37-40, 41-44 and 45-48 weeks of age, respectively, may be an effective and practical strategy for reducing the adverse effects of inclusion of 100 g kg-1 GM in the diet of WL layers. © 2018 Society of Chemical Industry.


Assuntos
Aminoácidos Sulfúricos/metabolismo , Ração Animal/análise , Galinhas/fisiologia , Cyamopsis/metabolismo , Aminoácidos Sulfúricos/análise , Animais , Cyamopsis/química , Ovos/análise , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA