Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 34(6): 969-987, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787763

RESUMO

SIGNIFICANCE STATEMENT: Ischemia-reperfusion AKI (IR-AKI) is common and causes significant morbidity. Effective treatments are lacking. However, preclinical studies suggest that inhibition of angiopoietin-Tie2 vascular signaling promotes injury, whereas activation of Tie2 is protective. We show that kidney ischemia leads to increased levels of the endothelial-specific phosphatase vascular endothelial protein tyrosine phosphatase (VE-PTP; PTPRB), which inactivates Tie2. Activation of Tie2 through VE-PTP deletion, or delivery of a novel angiopoietin mimetic (Hepta-ANG1), abrogated IR-AKI in mice. Single-cell RNAseq analysis showed Tie2 activation promotes increased Entpd1 expression, downregulation of FOXO1 target genes in the kidney vasculature, and emergence of a new subpopulation of glomerular endothelial cells. Our data provide a molecular basis and identify a candidate therapeutic to improve endothelial integrity and kidney function after IR-AKI. BACKGROUND: Ischemia-reperfusion AKI (IR-AKI) is estimated to affect 2%-7% of all hospitalized patients. The significant morbidity and mortality associated with AKI indicates urgent need for effective treatments. Previous studies have shown activation of the vascular angiopoietin-Tie2 tyrosine kinase signaling pathway abrogates ischemia-reperfusion injury (IRI). We extended previous studies to (1) determine the molecular mechanism(s) underlying kidney injury and protection related to decreased or increased activation of Tie2, respectively, and (2) to test the hypothesis that deletion of the Tie2 inhibitory phosphatase vascular endothelial protein tyrosine phosphatase (VE-PTP) or injection of a new angiopoietin mimetic protects the kidney from IRI by common molecular mechanism(s). METHODS: Bilateral IR-AKI was performed in VE-PTP wild-type or knockout mice and in C57BL/6J mice treated with Hepta-ANG1 or vehicle. Histologic, immunostaining, and single-cell RNA sequencing analyses were performed. RESULTS: The phosphatase VE-PTP, which negatively regulates the angiopoietin-Tie2 pathway, was upregulated in kidney endothelial cells after IRI, and genetic deletion of VE-PTP in mice protected the kidney from IR-AKI. Injection of Hepta-ANG1 potently activated Tie2 and protected the mouse kidney from IRI. Single-cell RNAseq analysis of kidneys from Hepta-ANG1-treated and vehicle-treated mice identified endothelial-specific gene signatures and emergence of a new glomerular endothelial subpopulation associated with improved kidney function. Overlap was found between endothelial-specific genes upregulated by Hepta-ANG1 treatment and those downregulated in HUVECs with constitutive FOXO1 activation, including Entpd1 / ENTPD1 that modulates purinergic receptor signaling. CONCLUSIONS: Our data support a key role of the endothelium in the development of IR-AKI, introduce Hepta-ANG1 as a putative new therapeutic biologic, and report a model to explain how IRI reduces Tie2 signaling and how Tie2 activation protects the kidney. PODCAST: This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2023_05_23_JSN_Ang_EP23_052323.mp3.


Assuntos
Injúria Renal Aguda , Células Endoteliais , Camundongos , Animais , Células Endoteliais/metabolismo , Angiopoietinas/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Camundongos Endogâmicos C57BL , Endotélio/metabolismo , Rim/metabolismo , Transdução de Sinais , Receptor TIE-2/genética , Angiopoietina-1/uso terapêutico , Camundongos Knockout , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Isquemia/complicações , Isquemia/metabolismo
2.
Nephrol Dial Transplant ; 37(10): 1844-1856, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-35451482

RESUMO

BACKGROUND: Renal artery stenosis (RAS) is an important cause of chronic kidney disease and secondary hypertension. In animal models, renal ischemia leads to downregulation of growth factor expression and loss of intrarenal microcirculation. However, little is known about the sequelae of large-vessel occlusive disease on the microcirculation within human kidneys. METHOD: This study included five patients who underwent nephrectomy due to renovascular occlusion and seven nonstenotic discarded donor kidneys (four deceased donors). Micro-computed tomography was performed to assess microvascular spatial densities and tortuosity, an index of microvascular immaturity. Renal protein expression, gene expression and histology were studied in vitro using immunoblotting, polymerase chain reaction and staining. RESULTS: RAS demonstrated a loss of medium-sized vessels (0.2-0.3 mm) compared with donor kidneys (P = 0.037) and increased microvascular tortuosity. RAS kidneys had greater protein expression of angiopoietin-1, hypoxia-inducible factor-1α and thrombospondin-1 but lower protein expression of vascular endothelial growth factor (VEGF) than donor kidneys. Renal fibrosis, loss of peritubular capillaries (PTCs) and pericyte detachment were greater in RAS, yet they had more newly formed PTCs than donor kidneys. Therefore, our study quantified significant microvascular remodeling in the poststenotic human kidney. RAS induced renal microvascular loss, vascular remodeling and fibrosis. Despite downregulated VEGF, stenotic kidneys upregulated compensatory angiogenic pathways related to angiopoietin-1. CONCLUSIONS: These observations underscore the nature of human RAS as a microvascular disease distal to main vessel stenosis and support therapeutic strategies directly targeting the poststenotic kidney microcirculation in patients with RAS.


Assuntos
Obstrução da Artéria Renal , Angiopoietina-1/metabolismo , Angiopoietina-1/uso terapêutico , Animais , Fibrose , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/patologia , Obstrução da Artéria Renal/complicações , Circulação Renal/fisiologia , Trombospondinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Microtomografia por Raio-X
3.
Int J Hyperthermia ; 39(1): 888-896, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35848416

RESUMO

OBJECTIVES: Angiogenesis occurs during tumor progression of hepatocellular carcinoma (HCC) after insufficient radiofrequency ablation (RFA). Arsenic trioxide (ATO) shows promising therapeutic potential in advanced HCC. Whether ATO regulates angiogenesis and can be used to prevent tumor progression in HCC after insufficient RFA is still unknown. METHODS: Insufficient RFA was simulated using a water bath. MTT assay and tube formation assay were used to evaluate the effects of ATO on viability and proangiogenic abilities of SMMC7721 and HepG2 cells after insufficient RFA in vitro. The molecular changes with the treatment of ATO were evaluated through Western blot. An ectopic nude mice model was used to evaluate the effect of ATO on the tumor of SMMC7721 cells in vivo after insufficient RFA. RESULTS: In this study, HepG2 and SMMC7721 cells after insufficient RFA (named HepG2-H and SMMC7721-H, respectively) showed higher proliferation than the untreated cells and promoted tube formation of endothelial cells in a paracrine manner. ATO eliminated the difference in proliferation between untreated and RFA-treated cells and suppressed angiogenesis induced by HCC cells after insufficient RFA through the Ang-1 (angiopoietin-1)/Ang-2 (angiopoietin-2)/Tie2 pathway. Hif-1α overexpression abolished the inhibitory effect of ATO on angiogenesis in HCC after insufficient RFA. ATO inhibited tumor growth and angiogenesis in HCC after insufficient RFA. CONCLUSIONS: Our results demonstrate that ATO blocks the paracrine signaling of Ang-1 and Ang-2 by inhibiting p-Akt/Hif-1α and further suppresses the angiogenesis of HCC after insufficient RFA.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ablação por Radiofrequência , Angiopoietina-1/uso terapêutico , Angiopoietina-2/uso terapêutico , Animais , Trióxido de Arsênio/farmacologia , Trióxido de Arsênio/uso terapêutico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Ablação por Radiofrequência/métodos
4.
Neurochem Res ; 44(12): 2746-2754, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31630316

RESUMO

Spinal cord ischemia and reperfusion (SCIR) injury can induce autophagy, which is involved in the survival of neurons. However, whether autophagy plays a neuroprotective or a detrimental role in SCIR injury remains controversial. Angiopoietin-1 (Ang-1), an endothelial growth factor, has been shown to have neuroprotective effects. The present study aimed to explore the neuroprotective mechanisms of Ang-1 in neuronal cells in a rat model of SCIR injury in vivo. Ang-1 protein and rapamycin were injected intrathecally. Basso Beattie Bresnahan (BBB) scoring and hematoxylin and eosin staining were used to assess the degree of SCIR injury. Proteins that reflected the level of autophagy expression, such as Beclin-1 and LC3, were evaluated by western blotting. The results indicated that SCIR injury resulted in loss in lower limb motor function. Ang-1 protein inhibited the expression of Beclin-1 and LC3, which improved the BBB score and alleviated spinal cord injury. In contrast, rapamycin, an autophagy activator, caused the opposite effect. This study provides evidence that Ang-1 plays a neuroprotective role by inhibiting of autophagy expression in SCIR injury. Overall, findings could be useful for the treatment of SCIR injury.


Assuntos
Angiopoietina-1/uso terapêutico , Autofagia/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismos da Medula Espinal/tratamento farmacológico , Isquemia do Cordão Espinal/tratamento farmacológico , Animais , Masculino , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/fisiopatologia , Sirolimo/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Isquemia do Cordão Espinal/fisiopatologia
5.
Am J Respir Crit Care Med ; 198(2): 220-231, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29447449

RESUMO

RATIONALE: During pneumonia, pathogen-host interaction evokes inflammation and lung barrier dysfunction. Tie2 activation by angiopoietin-1 reduces, whereas Tie2 blockade by angiopoietin-2 increases, inflammation and permeability during sepsis. The role of angiopoietin-1/-2 in pneumonia remains unidentified. OBJECTIVES: To investigate the prognostic and pathogenic impact of angiopoietins in regulating pulmonary vascular barrier function and inflammation in bacterial pneumonia. METHODS: Serum angiopoietin levels were quantified in pneumonia patients of two independent cohorts (n = 148, n = 395). Human postmortem lung tissue, pneumolysin- or angiopoietin-2-stimulated endothelial cells, isolated perfused and ventilated mouse lungs, and mice with pneumococcal pneumonia were investigated. MEASUREMENTS AND MAIN RESULTS: In patients with pneumonia, decreased serum angiopoietin-1 and increased angiopoietin-2 levels were observed as compared with healthy subjects. Higher angiopoietin-2 serum levels were found in patients with community-acquired pneumonia who died within 28 days of diagnosis compared with survivors. Receiver operating characteristic analysis revealed improved prognostic accuracy of CURB-65 for 28-day survival, intensive care treatment, and length of hospital stay if combined with angiopoietin-2 serum levels. In vitro, pneumolysin enhanced endothelial angiopoietin-2 release, angiopoietin-2 increased endothelial permeability, and angiopoietin-1 reduced pneumolysin-evoked endothelial permeability. Ventilated and perfused lungs of mice with angiopoietin-2 knockdown showed reduced permeability on pneumolysin stimulation. Increased pulmonary angiopoietin-2 and reduced angiopoietin-1 mRNA expression were observed in Streptococcus pneumoniae-infected mice. Finally, angiopoietin-1 therapy reduced inflammation and permeability in murine pneumonia. CONCLUSIONS: These data suggest a central role of angiopoietin-1/-2 in pneumonia-evoked inflammation and permeability. Increased angiopoietin-2 serum levels predicted mortality and length of hospital stay, and angiopoietin-1 may provide a therapeutic target for severe pneumonia.


Assuntos
Angiopoietina-1/uso terapêutico , Angiopoietina-2/uso terapêutico , Células Endoteliais/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Inflamação/fisiopatologia , Pulmão/efeitos dos fármacos , Pneumonia Pneumocócica/tratamento farmacológico , Pneumonia Pneumocócica/fisiopatologia , Angiopoietina-1/sangue , Angiopoietina-2/sangue , Humanos , Prognóstico
6.
J Cell Physiol ; 233(11): 8567-8577, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29377123

RESUMO

Optic nerve injury triggered retinal ganglion cell (RGC) death and optic nerve atrophy lead to visual loss. Bone marrow mesenchymal stem cells (BMSCs) are stromal cells, capable of proliferating and differentiating into different types of tissues. This aims of this study is to investigate the role of BMSCs transfected with angiopoietin-1 (Ang-1) in optic nerve injury induced by hyperoxia in a neonatal mice model. Ang-1 overexpression vector was constructed and used to transfect BMSCs. Reverse transcription-quantitative polymerase chain reaction was performed to detect Ang-1 expression in BMSCs. The hyperoxia-induced optic nerve injury model was established. The optic nerves at 6-7 mm posterior to the eyeball were extracted, and were treated with luxol fast blue staining, immunohistochemistry, immunofluorescence, and transmission electron microscopy to examine the effects of Ang-1-modified BMSCs on optic nerve injury induced by hyperoxia. The mice in the Ang-1 + BMSCs and BMSCs groups showed remarkably improved myelin sheaths of nerve fibers compared to the hyperoxia saline group. The positive expression and integrated optic density of Ang-1 in the Ang-1 + BMSCs group were significantly higher compared to the air control, hyperoxia saline and BMSCs groups. The number and diameter of myelinated nerve fibers, the diameter of axons and the thickness of myelin sheath in the air control and Ang-1 + BMSCs groups were higher compared to the hyperoxia saline group. Our study provides evidence supporting that Ang-1-modified BMSCs may have preventive and therapeutic effects on hyperoxia-induced optic nerve injury in neonatal mice.


Assuntos
Angiopoietina-1/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Traumatismos do Nervo Óptico/terapia , Angiopoietina-1/uso terapêutico , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Axônios/metabolismo , Modelos Animais de Doenças , Humanos , Hiperóxia/complicações , Camundongos , Traumatismos do Nervo Óptico/etiologia , Traumatismos do Nervo Óptico/genética , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Transfecção
7.
Br J Anaesth ; 121(5): 1041-1051, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30336848

RESUMO

BACKGROUND: Cardiopulmonary bypass (CPB) during cardiac surgery impairs microcirculatory perfusion and is paralleled by vascular leakage. The endothelial angiopoietin/Tie2 system controls microvascular leakage. This study investigated whether targeting Tie2 with the angiopoietin-1 mimetic vasculotide reduces vascular leakage and preserves microcirculatory perfusion in a rat CPB model. METHODS: Rats were subjected to 75 min of CPB after treatment with vasculotide or phosphate buffered solution as control or underwent a sham procedure. Microcirculatory perfusion and leakage were assessed with intravital microscopy (n=10 per group) and Evans blue dye extravasation (n=13 per group), respectively. Angiopoietin-1, -2, and Tie2 protein and gene expression were determined in plasma, kidney, and lung. RESULTS: CPB immediately impaired microcirculatory perfusion [5 (4-8) vs 10 (7-12) vessels per recording, P=0.002] in untreated CPB rats compared with sham, which persisted after weaning from CPB. CPB increased circulating angiopoeietin-1, -2, and soluble Tie2 concentrations and reduced Tie2 messenger ribonucleic acid (mRNA) expression in kidney and lung. Moreover, CPB increased Evans blue dye leakage in kidney [12 (8-25) vs 7 (1-12) µg g-1, P=0.04] and lung [and 23 (13-60) vs 6 (4-16) µg g-1, P=0.001] compared with sham. Vasculotide treatment preserved microcirculatory perfusion during and after CPB. Moreover, vasculotide treatment reduced Evans blue dye extravasation in lung compared with CPB control [18 (6-28) µg g-1vs 23 (13-60) µg g-1, P=0.04], but not in kidney [10 (3-23) vs 12 (8-25) µg g-1, P=0.38]. Vasculotide did not affect circulating or mRNA expression of angiopoietin-1, -2, and Tie2 concentrations compared with untreated CPB controls. CONCLUSIONS: Treatment with the angiopoietin-1 mimetic vasculotide reduced pulmonary vascular leakage and preserved microcirculatory perfusion during CPB in a rat model.


Assuntos
Angiopoietina-1/uso terapêutico , Ponte Cardiopulmonar/efeitos adversos , Fragmentos de Peptídeos/uso terapêutico , Circulação Pulmonar/efeitos dos fármacos , Angiopoietina-1/biossíntese , Angiopoietina-1/genética , Angiopoietina-2/biossíntese , Angiopoietina-2/genética , Animais , Capilares/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Masculino , Microcirculação/efeitos dos fármacos , Ratos , Ratos Wistar , Receptor TIE-2/biossíntese , Receptor TIE-2/genética , Receptor TIE-2/metabolismo
8.
Mediators Inflamm ; 2018: 4187347, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670463

RESUMO

Neuromyelitis optica (NMO) is an autoimmune inflammatory demyelinating disease that mainly affects the spinal cord and optic nerve, causing blindness and paralysis in some individuals. Moreover, NMO may cause secondary complement-dependent cytotoxicity (CDC), leading to oligodendrocyte and neuronal damage. In this study, a rodent NMO model, showing typical NMO pathogenesis, was induced with NMO-IgG from patient serum and human complement. We then tested whether the combination of C16, an αvß3 integrin-binding peptide, and angiopoietin-1 (Ang1), a member of the endothelial growth factor family, could alleviate NMO in the model. Our results demonstrated that this combination therapy significantly decreased disease severity, inflammatory cell infiltration, secondary demyelination, and axonal loss, thus reducing neural death. In conclusion, our study suggests a possible treatment that can relieve progressive blindness and paralysis in an animal model of NMO through improvement of the inflammatory milieu.


Assuntos
Angiopoietina-1/uso terapêutico , Neuromielite Óptica/tratamento farmacológico , Peptídeos/uso terapêutico , Animais , Axônios/metabolismo , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Feminino , Imunoglobulina G/metabolismo , Neurofisiologia/métodos , Oligodendroglia/metabolismo , Ratos
9.
J Sex Med ; 10(7): 1707-19, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23651347

RESUMO

INTRODUCTION: Erectile dysfunction (ED) is a major health problem. We have shown that adrenomedullin (AM) restores erectile function in diabetic rats. AIM: The aim of this study is to explore a better treatment for ED, we examined whether combination of AM and angiopoietin-1 (Ang-1) was more effective to treat ED than treatment with AM alone or Ang-1 alone. We also compared the effect of the combination therapy with that of treatment with vascular endothelial growth factor-A (VEGF-A). METHODS: Male Wistar rats were injected with streptozotocin (STZ) to induce diabetes. Adenoviruses expressing AM (AdAM), Ang-1 (AdAng-1), and VEGF-A (AdVEGF-A) were injected into the penis 6 weeks after STZ administration. Erectile function, penile histology, and protein expression were analyzed 4 weeks after the injection of the adenoviruses. MAIN OUTCOME MEASURES: Intracavernous pressure and mean arterial pressure were measured to evaluate erectile function. The morphology of the penis was analyzed by Elastica van Gieson stain and immunohistochemistry. The expression of α-smooth muscle actin (SMA), VE-cadherin and type I collagen was assessed by Western blot analysis. RESULTS: Infection with AdAM plus AdAng-1 more effectively restored erectile function than infection with AdAM alone or AdAng-1 alone. This combination therapy restored erectile function to a level similar to that observed in the age-matched Wistar rats. Expression of SMA and VE-cadherin increased more significantly in the AdAM plus AdAng-1-treated group than in the AdAM- or AdAng-1-treated group. Although AdVEGF-A infection restored erectile function significantly, it also caused enlargement of the trabeculae of the cavernous body, aberrant angiogenesis, and overproduction of type I collagen. CONCLUSIONS: These results suggested that combination therapy with AM and Ang-1 potently restored erectile function and normal morphology of the cavernous body compared with VEGF-A administration. This combination therapy will be useful to treat ED patients with a severely damaged cavernous body.


Assuntos
Adrenomedulina/uso terapêutico , Angiopoietina-1/uso terapêutico , Diabetes Mellitus Experimental/complicações , Disfunção Erétil/tratamento farmacológico , Ereção Peniana/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Quimioterapia Combinada , Disfunção Erétil/etiologia , Humanos , Imuno-Histoquímica , Masculino , Ereção Peniana/fisiologia , Pênis/efeitos dos fármacos , Pênis/fisiologia , Ratos , Ratos Wistar
10.
J Sex Med ; 10(12): 2912-27, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23937122

RESUMO

INTRODUCTION: Erectile dysfunction (ED) is a highly prevalent complication of diabetes, and the severity of endothelial dysfunction is one of the most important factors in reduced responsiveness to oral phosphodiesterase type 5 inhibitors. AIM: To study the effects of human angiopoietin-4 (Ang-4) protein on erectile function in diabetic mice. METHODS: Diabetes was induced by intraperitoneal injection of streptozotocin into 8-week-old C57BL/6J male mice. At 8 weeks after the induction of diabetes, the animals were divided into four groups: control nondiabetic mice and diabetic mice receiving two successive intracavernous injections of phosphate buffered saline (days -3 and 0), a single intracavernous injection of Ang-4 protein (day 0), or two successive intracavernous injections of Ang-4 protein (days -3 and 0). MAIN OUTCOME MEASURES: One week after treatment, we measured erectile function by electrical stimulation of the cavernous nerve. The penis was harvested and stained with hydroethidine or antibodies to Ang-4, platelet/endothelial cell adhesion molecule-1, and phosphorylated endothelial nitric oxide synthase (eNOS). We also determined the differential expression of Ang-4 in cavernous tissue in the control and diabetic mice. The effect of Ang-4 protein on the phosphorylation of Tie-2, Akt, and eNOS was determined in human umbilical vein endothelial cells (HUVECs) by Western blot. RESULTS: The cavernous expression of Ang-4 was downregulated in diabetic mice; Ang-4 was mainly expressed in endothelial cells. Local delivery of Ang-4 protein significantly increased cavernous endothelial content, induced eNOS phosphorylation, and decreased the generation of superoxide anion and apoptosis in diabetic mice. Ang-4 protein strongly increased the phosphorylation of Tie-2, Akt, and eNOS in HUVECs. Repeated intracavernous injections of Ang-4 induced significant restoration of erectile function in diabetic mice (87% of control values), whereas a single intracavernous injection of Ang-4 protein elicited modest improvement. CONCLUSIONS: Cavernous endothelial regeneration by use of Ang-4 protein may have potential for the treatment of vascular disease-induced ED, such as diabetic ED.


Assuntos
Angiopoietinas/administração & dosagem , Diabetes Mellitus Experimental/complicações , Disfunção Erétil/tratamento farmacológico , Ereção Peniana/efeitos dos fármacos , Pênis/efeitos dos fármacos , Angiopoietina-1/metabolismo , Angiopoietina-1/farmacologia , Angiopoietina-1/uso terapêutico , Angiopoietinas/metabolismo , Animais , Diabetes Mellitus Experimental/fisiopatologia , Disfunção Erétil/etiologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo III/fisiologia , Ereção Peniana/fisiologia , Pênis/irrigação sanguínea , Fosforilação , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração/efeitos dos fármacos
11.
BMC Nephrol ; 14: 227, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24144241

RESUMO

BACKGROUND: Acute kidney injury (AKI) severely worsens prognosis of hospitalized patients. Early Endothelial Outgrowth Cells act protective in murine acute ischemic renal failure and renoprotective actions of eEOCs have been documented to increase after cell pretreatment with 8-O-cAMP and Melatonin. Angiopoietin-1 is critically involved in maintaining vascular integrity and regeneration. Aim of the study was to analyze the consequences of eEOC treatment with Ang-1 in murine AKI. METHODS: After 40 minutes of unilateral renal artery clamping with contralateral nephrectomy, male C57/Bl6N mice were injected with either untreated or pretreated (Ang-1) syngeneic murine eEOCs. Two days later serum creatinine levels and morphology were evaluated. Cultured, Ang-1 treated murine eEOCs were analyzed for production/release of proangiogenic and proinflammatory mediators, migratory activity, and cell survival, respectively. RESULTS: Angiopoietin-1 pretreatment of eEOCs significantly reduced serum creatinine in cell-injected mice. In vitro analysis showed increased migration of Ang-1 treated eEOCs and supernatant from Ang-1 treated eEOCs stimulated migration of cultured mature endothelial cells. In addition, Ang-1 reduced percentages of Annexin V+/PI+ eEOCs. Intrarenal numbers of eEOCs remained unaffected by Ang-1 and eEOCs did not produce more or less proangiogenic/proinflammatory mediators after being stimulated with Ang-1. CONCLUSIONS: Angiopoietin-1 pretreatment of eEOCs increases the cells' renoprotective competence in ischemic AKI. Thus, the armentarium of eEOC agonists in AKI is increasingly being expanded and the treatment of AKI with eEOCs becomes a promising future option.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Angiopoietina-1/uso terapêutico , Células Endoteliais/metabolismo , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Rim/irrigação sanguínea , Injúria Renal Aguda/patologia , Animais , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Isquemia/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Resultado do Tratamento
12.
Drug Deliv ; 30(1): 2241664, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37545034

RESUMO

Gradual loss of neuronal structure and function due to impaired blood-brain barrier (BBB) and neuroinflammation are important factors in multiple sclerosis (MS) progression. Our previous studies demonstrated that the C16 peptide and angiopoietin 1 (Ang-1) compound (C + A) could modulate inflammation and vascular protection in many models of MS. In this study, nanotechnology and a novel nanovector of the leukocyte chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) were used to examine the effects of C + A on MS. The acute experimental autoimmune encephalomyelitis (EAE) model of MS was established in Lewis rats. The C + A compounds were conjugated to control nano-carriers and fMLP-nano-carriers and administered to animals by intravenous injection. The neuropathological changes in the brain cortex and spinal cord were examined using multiple approaches. The stimulation of vascular injection sites was examined using rabbits. The results showed that all C + A compounds (C + A alone, nano-carrier C + A, and fMLP-nano-carrier C + A) reduced neuronal inflammation, axonal demyelination, gliosis, neuronal apoptosis, vascular leakage, and BBB impairment induced by EAE. In addition, the C + A compounds had minimal side effects on liver and kidney functions. Furthermore, the fMLP-nano-carrier C + A compound had better effects compared to C + A alone and the nano-carrier C + A. This study indicated that the fMLP-nano-carrier C + A could attenuate inflammation-related pathological changes in EAE and may be a potential therapeutic strategy for the treatment of MS and EAE.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Ratos , Animais , Coelhos , N-Formilmetionina Leucil-Fenilalanina/química , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Esclerose Múltipla/tratamento farmacológico , Lipossomos , Angiopoietina-1/uso terapêutico , Ratos Endogâmicos Lew , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Inflamação/tratamento farmacológico
13.
PLoS One ; 17(6): e0268946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657784

RESUMO

Vitamin D plays an important role in proliferation and differentiation of cells and deficiency of vitamin D disturbs angiogenic balance. Previous studies in animal models have reported an association between serum levels of vitamin D and balance between pro- and anti-angiogenic factors. There is insufficient evidence about the effect of vitamin D on mediators of angiogenesis in patients with CKD. We investigated the effect of cholecalciferol supplementation on serum levels of angiogenic markers in non-diabetic patients with CKD stage 3-4. In this secondary analysis on stored samples of our previously published randomized, double-blind, placebo-controlled trial, stable patients of either sex, aged 18-70 years, with non-diabetic CKD stage 3-4 and vitamin D deficiency (serum 25-hydroxyvitamin D ≤20 ng/ml) were randomized to receive either two directly observed oral doses of cholecalciferol (300,000 IU) or matching placebo at baseline and 8 weeks. The primary outcome was change in brachial artery flow-mediated dilatation at 16 weeks. Changes in levels of serum angiogenesis markers (angiopoietin-1, angiopoietin-2, VEGF-A, VEGEF-R, and Tie-2) between groups over 16 weeks were compared. A total 120 patients were enrolled. Supplementation with cholecalciferol led to significant improvement in FMD. Serum 25(OH)D levels were similar in both groups at baseline (13.21±4.78 ng/ml and 13.40±4.42 ng/ml; p = 0.888). At 16 weeks, the serum 25(OH)D levels increased in the cholecalciferol group but not in the placebo group (between-group difference in mean change:23.40 ng/ml; 95% CI, 19.76 to 27.06; p<0.001). Serum levels of angiogenic markers were similar at baseline. At 16 weeks, angiopoietin-2 level decreased in cholecalciferol group (mean difference:-0.73 ng/ml, 95%CI, -1.25 to -0.20, p = 0.002) but not in placebo group (mean difference -0.46 ng/ml, 95%CI, -1.09 to 0.17, p = 0.154), however there was no between-group difference at 16 weeks (between-group difference in mean change: -0.27 ng/ml, 95%CI, -1.09 to 0.55, p = 0.624). Serum angiopoietin-1 level increased [mean change: 5.63 (0.51 to 10.75), p = 0.018] and VEGF-R level decreased [mean change: -87.16 (-131.89 to -42.44), p<0.001] in placebo group but did not show any change in cholecalciferol group. Our data shows the changes in Ang-1, Ang-2 and Ang-1/Ang-2 ratio after high dose oral cholecalciferol supplementation in patients with non-diabetic G3-4 CKD. The data suggests changes in circulating levels of angiogenic markers which needs to be confirmed through an adequately powered study.


Assuntos
Insuficiência Renal Crônica , Deficiência de Vitamina D , Angiopoietina-1/uso terapêutico , Angiopoietina-2 , Biomarcadores , Colecalciferol , Suplementos Nutricionais/efeitos adversos , Método Duplo-Cego , Humanos , Insuficiência Renal Crônica/complicações , Vitamina D , Vitaminas
14.
Biochem Biophys Res Commun ; 413(4): 630-6, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21939637

RESUMO

Molecular mechanisms of acute lung injury (ALI) are poorly defined. Our previous study demonstrated that recombinant angiopoietin-1 (Ang1) can protect against oleic acid (OA) induced ALI at an early stage. The purpose of this study was to elucidate whether vascular endothelial growth factor (VEGF), Bcl-2, and Bad, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) play any role in the protective mechanism of recombinant Ang1 in OA-induced ALI. All BALB/C mice were administered a single dose of OA to induce lung injury. Lungs, bronchoalveolar lavage fluid (BALF), and serum were harvested at certain time points. The expression of VEGF, Bcl-2, Bad, PI3K/Akt, and the histological changes in the lung, and the levels of VEGF, IL-6, and IL-10 in serum and BALF were examined. A second cohort of mice was followed for survival for 7 days. We observed increased expression of VEGF in BALF and serum and reduced expression of VEGF in lung tissue. Recombinant Ang1 treatment, however, up-regulated VEGF expression and p-Akt/Akt in lung tissue but down-regulated VEGF expression in BALF and serum. OA led to a decrease of anti-apoptotic marker Bcl-2 and a marked increase of pro-apoptotic marker Bad. Compared with the ALI group, in the recombinant Ang1 treated group, Bcl-2 expression was restored, and Bad expression was clearly attenuated. In addition, recombinant Ang1 attenuated the lung pathological changes and improved the survival of mice. These findings suggest that recombinant Ang1 may be a promising potential treatment for ALI. It seems that VEGF is mediated by PI3K/Akt pathway which is required for Ang1-mediated protection of lung injury. Activation of Akt stimulates expression of Bcl-2 and inhibits the expression of Bad, thus inhibiting the execution of apoptosis.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Angiopoietina-1/uso terapêutico , Proteínas Proto-Oncogênicas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Apoptose , Ativação Enzimática , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Ácido Oleico/toxicidade , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Recombinantes/uso terapêutico , Regulação para Cima
15.
Cytokine ; 55(2): 251-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21531574

RESUMO

INTRODUCTION: Endothelial activation leading to vascular barrier breakdown plays an essential role in the pathophysiology of multiple-organ dysfunction syndrome (MODS) in sepsis. Increasing evidence suggests that the function of the vessel-protective factor Angiopoietin-1 (Ang-1), a ligand of the endothelial-specific Tie2 receptor, is inhibited by its antagonist Angiopoietin-2 (Ang-2) during sepsis. In order to reverse the effects of the sepsis-induced suppression of Ang-1 and elevation of Ang-2 we aimed to investigate whether an intravenous injection of recombinant human (rh) Ang-1 protects against MODS in murine sepsis. METHODS: Polymicrobiological abdominal sepsis was induced by cecal ligation and puncture (CLP). Mice were treated with either 1 µg of intravenous rhAng-1 or control buffer immediately after CLP induction and every 8h thereafter. Sham-operated animals served as time-matched controls. RESULTS: Compared to buffer-treated controls, rhAng-1 treated septic mice showed significant improvements in several hematologic and biochemical indicators of MODS. Moreover, rhAng-1 stabilized endothelial barrier function, as evidenced by inhibition of protein leakage from lung capillaries into the alveolar compartment. Histological analysis revealed that rhAng-1 treatment attenuated leukocyte infiltration in lungs and kidneys of septic mice, probably due to reduced endothelial adhesion molecule expression in rhAng-1 treated mice. Finally, the protective effects of rhAng-1 treatment were reflected by an improved survival time in a lethal CLP model. CONCLUSIONS: In a clinically relevant murine sepsis model, intravenous rhAng-1 treatment alone is sufficient to significantly improve a variety of sepsis-associated organ dysfunctions and survival time, most likely by preserving endothelial barrier function. Further studies are needed to pave the road for clinical application of this therapy concept.


Assuntos
Angiopoietina-1/uso terapêutico , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Insuficiência de Múltiplos Órgãos/etiologia , Proteínas Recombinantes/uso terapêutico , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/mortalidade , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Angiopoietina-2/metabolismo , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Camundongos , Insuficiência de Múltiplos Órgãos/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptor TIE-2 , Proteínas Recombinantes/genética , Sepse/patologia , Taxa de Sobrevida
16.
Vascul Pharmacol ; 141: 106919, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34583025

RESUMO

The Angiopoietin-1/2 system is an opportune target for therapeutic intervention in a wide range of vascular pathologies, particularly through its association with endothelium. The complex multi-domain structure of native human Angiopoietin-1 has hindered its widespread applicability as a therapeutic agent, prompting the search for alternative approaches to mimicking the Ang1:Tie2 signalling axis; a system with highly complex patterns of regulation involving multiple structurally similar molecules. An engineered variant, Cartilage Oligomeric Matrix Protein - Angiopoietin-1 (COMP-Ang1), has been demonstrated to overcome the limitations of the native molecule and activate the Tie2 pathway with several fold greater potency than Ang1, both in vitro and in vivo. The therapeutic efficacy of COMP-Ang1, at both the vascular and systemic levels, is evident from multiple studies. Beneficial impacts on skeletal muscle regeneration, wound healing and angiogenesis have been reported alongside renoprotective, anti-hypertensive and anti-inflammatory effects. COMP-Ang1 has also demonstrated synergy with other compounds to heighten bone repair, has been leveraged for potential use as a co-therapeutic for enhanced targeted cancer treatment, and has received considerable attention as an anti-leakage agent for microvascular diseases like diabetic retinopathy. This review examines the vascular Angiopoietin:Tie2 signalling mechanism, evaluates the potential therapeutic merits of engineered COMP-Ang1 in both vascular and systemic contexts, and addresses the inherent translational challenges in moving this potential therapeutic from bench-to-bedside.


Assuntos
Angiopoietina-1 , Proteína de Matriz Oligomérica de Cartilagem , Transdução de Sinais , Angiopoietina-1/genética , Angiopoietina-1/uso terapêutico , Proteína de Matriz Oligomérica de Cartilagem/genética , Humanos , Engenharia de Proteínas , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Cicatrização
17.
Aging (Albany NY) ; 13(14): 19048-19063, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326273

RESUMO

Dystonia is a disorder associated with abnormalities in many brain regions including the basal ganglia and cerebellum. The toxin 3-Nitropropionic acid (3-NP) can induce neuropathologies in the mice striatum and nigra substance, including excitotoxicity, neuroinflammation, and extensive neuronal atrophy, characterized by progressive motor dysfunction, dystonia, and memory loss, mimicking those observed in humans. We established a mouse model of dystonia by administering 3-NP. Given the reported neuroprotective effects of the endothelial growth factor angiopoietin-1 (Ang-1) and the anti-inflammatory integrin αvß3 binding peptide C16, we performed this study to evaluate their combined effects on 3-NP striatal toxicity and their therapeutic potential with multiple methods using an in vivo mouse model. Sixty mice were equally and randomly divided into three groups: control, 3-NP treatment, and 3-NP+C16+Ang-1 treatment. Behavioral and electrophysiological tests were conducted and the effect of the combined C16+Ang-1 treatment on neural function recovery was determined. We found that C16+Ang-1 treatment alleviated 3-NP-induced behavioral, biochemical, and cellular alterations in the central nervous system and promoted function recovery by restoring vascular permeability and reducing inflammation in the micro-environment. In conclusion, our results confirmed the neuroprotective effect of combined C16+Ang-1 treatment and suggest their potential as a complementary therapeutic against 3-NP-induced dystonia.


Assuntos
Angiopoietina-1/uso terapêutico , Encéfalo/efeitos dos fármacos , Distonia/tratamento farmacológico , Inflamação/tratamento farmacológico , Neuroproteção , Peptídeos/uso terapêutico , Angiopoietina-1/farmacologia , Animais , Anti-Inflamatórios , Encéfalo/patologia , Encéfalo/fisiopatologia , Permeabilidade Capilar , Sistema Nervoso Central , Corpo Estriado , Modelos Animais de Doenças , Quimioterapia Combinada , Distonia/induzido quimicamente , Distonia/patologia , Distonia/fisiopatologia , Fatores de Crescimento Endotelial , Masculino , Camundongos Endogâmicos C57BL , Neurônios , Nitrocompostos , Peptídeos/farmacologia , Propionatos , Distribuição Aleatória
18.
CNS Neurosci Ther ; 27(1): 48-59, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33346402

RESUMO

AIM: Vasculotide (VT), an angiopoietin-1 mimetic peptide, exerts neuroprotective effects in type one diabetic (T1DM) rats subjected to ischemic stroke. In this study, we investigated whether delayed VT treatment improves long-term neurological outcome after stroke in T1DM rats. METHODS: Male Wistar rats were induced with T1DM, subjected to middle cerebral artery occlusion (MCAo) model of stroke, and treated with PBS (control), 2 µg/kg VT, 3 µg/kg VT, or 5.5 µg/kg VT. VT treatment was initiated at 24 h after stroke and administered daily (i.p) for 14 days. We evaluated neurological function, lesion volume, vascular and white matter remodeling, and inflammation in the ischemic brain. In vitro, we evaluated the effects of VT on endothelial cell capillary tube formation and inflammatory responses of primary cortical neurons (PCN) and macrophages. RESULTS: Treatment of T1DM-stroke with 3 µg/kg VT but not 2 µg/kg or 5.5 µg/kg significantly improves neurological function and decreases infarct volume and cell death compared to control T1DM-stroke rats. Thus, 3 µg/kg VT dose was employed in all subsequent in vivo analysis. VT treatment significantly increases axon and myelin density, decreases demyelination, decreases white matter injury, increases number of oligodendrocytes, and increases vascular density in the ischemic border zone of T1DM stroke rats. VT treatment significantly decreases MMP9 expression and decreases the number of M1 macrophages in the ischemic brain of T1DM-stroke rats. In vitro, VT treatment significantly decreases endothelial cell death and decreases MCP-1, endothelin-1, and VEGF expression under high glucose (HG) and ischemic conditions and significantly increases capillary tube formation under HG conditions when compared to non-treated control group. VT treatment significantly decreases inflammatory factor expression such as MMP9 and MCP-1 in macrophages subjected to LPS activation and significantly decreases IL-1ß and MMP9 expression in PCN subjected to ischemia under HG conditions. CONCLUSION: Delayed VT treatment (24 h after stroke) significantly improves neurological function, promotes vascular and white matter remodeling, and decreases inflammation in the ischemic brain after stroke in T1DM rats.


Assuntos
Angiopoietina-1/uso terapêutico , Materiais Biomiméticos/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Fragmentos de Peptídeos/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Angiopoietina-1/farmacologia , Animais , Materiais Biomiméticos/farmacologia , Células Cultivadas , Diabetes Mellitus Experimental/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/farmacologia , Gravidez , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/patologia , Resultado do Tratamento
19.
Angiogenesis ; 13(3): 203-10, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20458615

RESUMO

Sendai viral vector (SeV) is emerging as a promising vector for gene therapy. However, little information is available regarding the combination of SeV-mediated gene and mesenchymal stem cell (MSC) therapy in dealing with ischemic diseases. In this study, we infected SeV to the MSCs in vitro; and injected MSCs modified with SeV harboring human angiopoietin-1 gene (SeVhAng-1) into the ischemic limb of rats in vivo. We found SeV had high transductive efficiency to the MSCs. Both MSCs and SeVhAng-1-modified MSCs improved the blood flow recovery and increased the capillary density of the ischemic limb, compared with the control. However, in contrast to MSCs, SeVhAng-1-modified MSCs had a better improvement of blood flow recovery in the ischemic limb. We further found the ischemic limb injected with SeVhAng-1-modified MSCs had strong expression of p-Akt, which improved survival of MSCs injected into the ischemic limb. This indicated SeVhAng-1 modification enhanced angiogenetic effect of MSCs by both angiogenesis and cell protection. We conclude that SeVhAng-1-modified MSCs may serve as a more effective tool in dealing with ischemic limb disease.


Assuntos
Angiopoietina-1/genética , Angiopoietina-1/uso terapêutico , Extremidades/irrigação sanguínea , Isquemia/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Vírus Sendai/genética , Animais , Capilares/metabolismo , Capilares/patologia , Extremidades/patologia , Terapia Genética , Vetores Genéticos/genética , Humanos , Injeções , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos Lew , Fluxo Sanguíneo Regional , Análise de Sobrevida , Transdução Genética
20.
J Sex Med ; 7(11): 3635-46, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20584113

RESUMO

INTRODUCTION: Patients with erectile dysfunction (ED) associated with type II diabetes often have impaired endothelial function and tend to respond poorly to oral phosphodiesterase type 5 inhibitors. Therefore, neovascularization is a promising strategy for curing diabetic ED. AIM: To determine the effectiveness of a soluble, stable, and potent angiopoietin-1 (Ang1) variant, cartilage oligomeric matrix protein (COMP)-Ang1, in promoting cavernous angiogenesis and erectile function in a mouse model of type II diabetic ED. Methods. Sixteen-week-old male db/db mice (in which obesity and type II diabetes are caused by a mutation in the leptin receptor) and control C57BL/6J mice were used and divided into four groups (N=14 per group): age-matched controls; db/db mice receiving two successive intracavernous injections of phosphate-buffered saline (PBS) (days -3 and 0; 20 µL); db/db mice receiving a single intracavernous injection of COMP-Ang1 protein (day 0; 5.8 µg/20 µL); and db/db mice receiving two successive intracavernous injections of COMP-Ang1 protein (days -3 and 0; 5.8 µg/20 µL). MAIN OUTCOME MEASURES: Two weeks later, erectile function was measured by electrical stimulation of the cavernous nerve. The penis was then harvested and stained with antibodies to platelet/endothelial cell adhesion molecule-1 (PECAM-1) (endothelial cell marker), phosphohistone H3 (PH3, a nuclear protein indicative of cell proliferation), phospho-endothelial nitric oxide synthase (eNOS), and eNOS. Penis specimens from a separate group of animals were used for cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) quantification. RESULTS: Local delivery of COMP-Ang1 protein significantly increased eNOS phosphorylation and cGMP and cAMP expression compared with that in the group treated with PBS. Repeated intracavernous injections of COMP-Ang1 protein completely restored erectile function and cavernous endothelial content through enhanced cavernous neoangiogenesis as evaluated by PECAM-1 and PH3 immunohistochemistry and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay, whereas a single injection of COMP-Ang1 protein elicited partial improvement. CONCLUSION: Cavernous neovascularization using recombinant Ang1 protein is a novel therapeutic strategy for the treatment of ED resulting from type II diabetes.


Assuntos
Angiopoietina-1/uso terapêutico , Diabetes Mellitus Tipo 2/patologia , Endotélio Vascular/efeitos dos fármacos , Disfunção Erétil/tratamento farmacológico , Ereção Peniana/efeitos dos fármacos , Pênis/efeitos dos fármacos , Angiopoietina-1/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , AMP Cíclico , GMP Cíclico , Disfunção Erétil/etiologia , Masculino , Camundongos , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/uso terapêutico , Molécula-1 de Adesão Celular Endotelial a Plaquetas/efeitos dos fármacos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA