RESUMO
BACKGROUND: Protein phosphatase class 2 C (PP2C) is the largest protein phosphatase family in plants. Members of the PP2C gene family are involved in a variety of physiological pathways in plants, including the abscisic acid signalling pathway, the regulation of plant growth and development, etc., and are capable of responding to a wide range of biotic and abiotic stresses, and play an important role in plant growth, development, and response to stress. Apocynum is a perennial persistent herb, divided into Apocynum venetum and Apocynum hendersonii. It mainly grows in saline soil, deserts and other harsh environments, and is widely used in saline soil improvement, ecological restoration, textiles and medicine. A. hendersonii was found to be more tolerant to adverse conditions. The main purpose of this study was to investigate the PP2C gene family and its expression pattern under salt stress and to identify important candidate genes related to salt tolerance. RESULTS: In this study, 68 AvPP2C genes and 68 AhPP2C genes were identified from the genomes of A. venetum and A. hendersonii, respectively. They were classified into 13 subgroups based on their phylogenetic relationships and were further analyzed for their subcellular locations, gene structures, conserved structural domains, and cis-acting elements. The results of qRT-PCR analyses of seven AvPP2C genes and seven AhPP2C genes proved that they differed significantly in gene expression under salt stress. It has been observed that the PP2C genes in A. venetum and A. hendersonii exhibit different expression patterns. Specifically, AvPP2C2, 6, 24, 27, 41 and AhPP2C2, 6, 24, 27, 42 have shown significant differences in expression under salt stress. This indicates that these genes may play a crucial role in the salt tolerance mechanism of A. venetum and A. hendersonii. CONCLUSIONS: In this study, we conducted a genome-wide analysis of the AvPP2C and AhPP2C gene families in Apocynum, which provided a reference for further understanding the functional characteristics of these genes.
Assuntos
Apocynum , Filogenia , Apocynum/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Tolerância ao Sal/genética , Genes de Plantas , Perfilação da Expressão GênicaRESUMO
Cadmium (Cd) contamination poses a substantial threat the environment, necessitating effective remediation strategies. Phytoremediation emerges as a cost-efficient and eco-friendly approach for reducing Cd levels in the soil. In this study, the suitability of A. venetum for ameliorating Cd-contaminated soils was evaluated. Mild Cd stress promoted seedling and root growth, with the root being identified as the primary tissue for Cd accumulation. The Cd content of roots ranged from 0.35 to 0.55 mg/g under treatment with 10-50 µM CdCl2·2.5 H2O, and the bioaccumulation factor ranged from 28.78 to 84.43. Transcriptome sequencing revealed 20,292 unigenes, and 7507 nonredundant differentially expressed genes (DEGs) were identified across five comparison groups. DEGs belonging to the "MAPK signaling pathway-plant," "monoterpenoid biosynthesis," and "flavonoid biosynthesis pathway" exhibited higher expression levels in roots compared to stems and leaves. In addition, cytokinin-related DEGs, ROS scavenger genes, such as P450, glutathione-S-transferase (GST), and superoxide dismutase (SOD), and the cell wall biosynthesis-related genes, CSLG and D-GRL, were also upregulated in the root tissue, suggesting that Cd promotes root development. Conversely, certain ABC transporter genes, (e.g, NRAMP5), and some vacuolar iron transporters, predominantly expressed in the roots, displayed a strong correlation with Cd content, revealing the mechanism underlying the compartmentalized storage of Cd in the roots. KEGG enrichment analysis of DEGs showed that the pathways associated with the biosynthesis of flavonoids, lignin, and some terpenoids were significantly enriched in the roots under Cd stress, underscoring the pivotal role of these pathways in Cd detoxification. Our study suggests A. venetum as a potential Cd-contaminated phytoremediation plant and provides insights into the molecular-level mechanisms of root development promotion and accumulation mechanism in response to Cd stress.
Assuntos
Apocynum , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Apocynum/genética , Apocynum/metabolismo , Transcriptoma , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Perfilação da Expressão Gênica , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismoRESUMO
MYB transcription factors are crucial in regulating stress tolerance and expression of major genes involved in flavonoid biosynthesis. The functions of MYBs is well explored in a number of plants, yet no study is reported in Apocynum venetum. We identified a total of 163 MYB candidates, that comprised of 101 (61.96%) R2R3, 6 3R, 1 4R and 55 1R. Syntenic analysis of A. venetum R2R3 (AvMYBs) showed highest orthologous pairs with Vitis vinifera MYBs followed by Arabidopsis thaliana among the four species evaluated. Thirty segmental duplications and 6 tandem duplications were obtained among AvMYB gene pairs signifying their role in the MYB gene family expansion. Nucleotide substitution analysis (Ka/Ks) showed the AvMYBs to be under the influence of strong purifying selection. Expression analysis of selected AvMYBs under low temperature and cadmium stresses resulted in the identification of AvMYB48, AvMYB97, AvMYB8, AvMYB4 as potential stress responsive genes and AvMYB10 and AvMYB11 in addition, proanthocyanidin biosynthesis regulatory genes which is consistent with their annotated homologues in Arabidopsis. Tissue specific expression profile analysis of the AvMYBs further supported the qPCR analysis result. MYBs with higher transcript levels in root, stem and leaf like AvMYB4 for example, was downregulated under the stresses and such with low transcript level such as AvMYB48 which had low transcript in the leaf was upregulated under both stresses. Transcriptome and phylogenetic analyses suggested AvMYB42 as a potential regulator of anthocyanin biosynthesis. Thus, this study provided valuable information on AvR2R3-MYB gene family with respect to stress tolerance and flavonoid biosynthesis.
Assuntos
Apocynum , Arabidopsis , Apocynum/genética , Apocynum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/genética , Regulação da Expressão Gênica de Plantas , Genes myb , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Apocynum venetum is a semi-shrubby perennial herb that not only prevents saline-alkaline land degradation but also produces leaves for medicinal uses. Although physiological changes during the seed germination of A. venetum in response to salt stress have been studied, the adaptive mechanism to salt conditions is still limited. Here, the physiological and transcriptional changes during seed germination under different NaCl treatments (0-300 mmol/L) were examined. The results showed that the seed germination rate was promoted at low NaCl concentrations (0-50 mmol/L) and inhibited with increased concentrations (100-300 mmol/L); the activity of antioxidant enzymes exhibited a significant increase from 0 (CK) to 150 mmol/L NaCl and a significant decrease from 150 to 300 mmol/L; and the content of osmolytes exhibited a significant increase with increased concentrations, while the protein content peaked at 100 mmol/L NaCl and then significantly decreased. A total of 1967 differentially expressed genes (DEGs) were generated during seed germination at 300 mmol/L NaCl versus (vs.) CK, with 1487 characterized genes (1293 up-regulated, UR; 194 down-regulated, DR) classified into 11 categories, including salt stress (29), stress response (146), primary metabolism (287), cell morphogenesis (156), transcription factor (TFs, 62), bio-signaling (173), transport (144), photosynthesis and energy (125), secondary metabolism (58), polynucleotide metabolism (21), and translation (286). The relative expression levels (RELs) of selected genes directly involved in salt stress and seed germination were observed to be consistent with the changes in antioxidant enzyme activities and osmolyte contents. These findings will provide useful references to improve seed germination and reveal the adaptive mechanism of A. venetum to saline-alkaline soils.
Assuntos
Apocynum , Germinação , Antioxidantes , Apocynum/fisiologia , Cloreto de Sódio , Sementes/fisiologia , Estresse Salino , Estresse FisiológicoRESUMO
NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are one of the most prominent plant-specific TF families and play essential roles in plant growth, development and adaptation to abiotic stress. Although the NAC gene family has been extensively characterized in many species, systematic analysis is still relatively lacking in Apocynum venetum (A. venetum). In this study, 74 AvNAC proteins were identified from the A. venetum genome and were classified into 16 subgroups. This classification was consistently supported by their gene structures, conserved motifs and subcellular localizations. Nucleotide substitution analysis (Ka/Ks) showed the AvNACs to be under the influence of strong purifying selection, and segmental duplication events were found to play the dominant roles in the AvNAC TF family expansion. Cis-elements analysis demonstrated that the light-, stress-, and phytohormone-responsive elements being dominant in the AvNAC promoters, and potential TFs including Dof, BBR-BPC, ERF and MIKC_MADS were visualized in the TF regulatory network. Among these AvNACs, AvNAC58 and AvNAC69 exhibited significant differential expression in response to drought and salt stresses. The protein interaction prediction further confirmed their potential roles in the trehalose metabolism pathway with respect to drought and salt resistance. This study provides a reference for further understanding the functional characteristics of NAC genes in the stress-response mechanism and development of A. venetum.
Assuntos
Apocynum , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Trealose , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Filogenia , Família MultigênicaRESUMO
In the current study, the total content from two Apocynum species leaves (Apocynum venetum and Apocynum hendersonii) collected from the Ili River Valley Region were extracted, and their bioactivities were investigated. The results showed a significant variation in the total flavonoid contents in the leaf samples collected at different periods (June, July, August, and September), with the highest content in August (60.11 ± 0.38 mg RE/g DW for A. venetum and 56.56 ± 0.24 mg RE/g DW for A. hendersonii), and the lowest in June (22.36 ± 0.05 mg RE/g DW for A. venetum and 20.79 ± 0.02 mg RE/g DW for A. hendersonii). The total flavonoid content was comparably higher in A. venetum than in A. hendersonii. Leaves extracts from the two species demonstrated strong bioactivity, which positively correlated with the total flavonoid contents. The anti-oxidative activity of A. venetum was higher than that of A. hendersonii in tandem with its higher flavonoid contents; the antibacterial activity, however, was conversely opposite. Furthermore, a total of 83 flavonoid metabolites were identified in the two species based on UPLC-ESI-MS/MS, out of which 24 metabolites were differentially accumulated. The variability in these metabolites might be the reason for the different bioactivities displayed by the two species. The present study provides insight into the optimal harvest time for Apocynum species planted in the major distribution area of the Ili River Valley and the specific utilization of A. venetum and A. hendersonii.
Assuntos
Apocynum , Flavonoides/farmacologia , Flavonoides/análise , Espectrometria de Massas em Tandem , Rios , Folhas de Planta/químicaRESUMO
This study established high-performance liquid chromatography(HPLC) fingerprints of Chinese medicines derived from Apocynum venetum and Poacynum pictum in Xinjiang and explored their composition differences with the combination of content determination, similarity analysis, cluster analysis and principal component analysis. The HPLC conditions included Phenomenex Kinetex C_(18) column(4.6 mm ×100 mm, 2.6 µm), acetonitrile-0.01% trifluoroacetic acid aqueous solution as mobile phase, gradient elution, flow rate of 0.6 mL·min~(-1), detection wavelength of 281 nm and column temperature of 25 â. The content of chlorogenic acid, quercetin-3-O-sophoroside, rutin, hyperin, isoquercitrin, trifolin and astragalin was determined in 31 batches of medicinal materials, and fingerprint research and chemometric analysis were performed with Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine(Version 2004 A) and SPSS 21.0. In the Chinese Pharmacopoeia 2020, the quality of Apocyni Veneti Folium is controlled by character identification, microscopic identification, thin layer chromatography identification and quantitative determination of hyperin. There were 21 common peaks of A. venetum and P. pictum in the HPLC fingerprints, 5 of which were identified as chlorogenic acid, hyperin, isoquercitrin, trifolin and astragalin, with their content also determined. Except for 3 batches of medicinal materials, the similarity of other 28 batches was higher than 0.83, indicating good similarity. Two categories were formed in the cluster analysis based on content determination, which showed that some differences existed in similarities between different regions of Xinjiang. The medicinal materials were ranked by quality with principal component analysis, and the results indicated that the top 15 all came from northern Xinjiang. The quality difference of A. venetum and P. pictum had a correlation with the place of origin. This study provides a reference for the analysis and evaluation of A. venetum and P. pictum from different habitats and the selection of introduction and cultivation areas.
Assuntos
Apocynum , Medicamentos de Ervas Chinesas , China , Cromatografia Líquida de Alta Pressão , Medicina Tradicional ChinesaRESUMO
BACKGROUND: Apocynum venetum L. is an important medicinal plant that is mainly distributed in the coastal areas and northwest of China. In addition to its high medical and economic value, its adaptation to saline-alkali and coastal saline lands makes A. venetum an ideal candidate for use in vegetation restoration. To date, the study of A. venetum has been limited in the northwest region of China, little attention has been paid to the genetic diversity and population structure of A. venetum populations in the coastal region. Here, we performed transcriptome sequencing of total RNA from A. venetum leaves and developed efficient expressed sequence tag-simple sequence repeat (EST-SSR) markers for analyzing the genetic diversity and population structure of A. venetum in the coastal region. RESULTS: A total of 86,890 unigenes were generated after de novo assembly, and 68,751 of which were successfully annotated by searching against seven protein databases. Furthermore, 14,072 EST-SSR loci were detected and 10,243 primer pairs were successfully designed from these loci. One hundred primer pairs were randomly selected and synthesized, twelve primer pairs were identified as highly polymorphic and further used for population genetic analysis. Population genetic analyses showed that A. venetum exhibited low level of genetic diversity (mean alleles per locus, NA = 3.3; mean expected heterozygosity, HE = 0.342) and moderate level of genetic differentiation among the populations (genetic differentiation index, FST = 0.032-0.220) in the coastal region. Although the contemporary (mean mc = 0.056) and historical (mean mh = 0.106) migration rates among the six A. venetum populations were moderate, a decreasing trend over the last few generations was detected. Bayesian structure analysis clustered six populations into two major groups, and genetic bottlenecks were found to have occurred in two populations (QG, BH). CONCLUSIONS: Using novel EST-SSR markers, we evaluated the genetic variation of A. venetum in the coastal region and determined conservation priorities based on these findings. The large dataset of unigenes and SSRs identified in our study, combining samples from a broader range, will support further research on the conservation and evolution of this important coastal plant and its related species.
Assuntos
Apocynum/genética , Etiquetas de Sequências Expressas , Variação Genética , Repetições de Microssatélites , Transcriptoma , Teorema de Bayes , China , Perfilação da Expressão Gênica , Marcadores Genéticos , Genética PopulacionalRESUMO
A novel actinomycete, designated strain TRM 66233T, was isolated from Apocynum venetum L. collected from the Xinjiang Uygur Autonomous Region of China and characterized using a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain TRM 66233T with the genus Streptomyces. Strain TRM 66233T showed a high similarity value to Streptomyces bikiniensis NRRL B-1049T (98.07â%) based on the 16S rRNA gene phylogenetic tree. The whole-cell sugar pattern of TRM 66233T consisted of glucose, galactose, mannose and ribose. The predominant menaquinones were MK-9(H2), MK-9(H6), MK-9(H8) and MK-9(H10). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and four unidentified lipids. The major fatty acids were iso-C15â:â0, anteiso-C15â:â0, iso-C16â:â0, C16â:â0 and iso-C17â:â0. The G+C content of the DNA was 70.35 mol%. The DNA-DNA relatedness and average nucleotide identity values as well as evolutionary distances based on multilocus (atpD, gyrB, recA, rpoB and trpB) sequences between strain TRM 66233T and closely related type strains were significantly lower than the recommended threshold values. The whole-genome average nucleotide identity and digital DNA-DNA hybridization values between strain TRM 66233T and S. bikiniensis NRRL B-1049T were 78.86 and 23.2â%, respectively. On the basis of evidence from this polyphasic study, strain TRM 66233T should represent a novel species of the genus Streptomyces, for which the name Streptomyces apocyni sp. nov. is proposed. The type strain is TRM 66233T (=CCTCC AA 2019056T=LMG 31559T).
Assuntos
Apocynum/microbiologia , Filogenia , Streptomyces/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
Aim: Apocynum venetum polyphenol (AVP) was used in in vitro glioma cells culture to prove the growth inhibitory effect of AVP on human U87 glioma cells via NF-κB pathway. Materials & methods: The MTT assay, DAPI morphology, quantitative PCR and western blot experiments were used for determination in vitro. Results & conclusion: AVP can also induce U87 cancer cells apoptosis illustrated by DAPI morphology. AVP could enhance the mRNA and protein expression of IκB-α, TNF-α, TRAIL, caspase-3 and caspase-9 in U87 cancer cells and reduce those of NF-κBp65, cIAP-1, cIAP-2, TGF-ß2, CyclinD1, VEGF and IL-8. After ammonium pyrrolidine dithiocarbamate (PDTC) treatment, the NF-κBp65 expression was reduced in U87 cells, and AVP could raise these effects. The results of HPLC indicate that AVP mainly contains six constituents. The growth inhibitory effects of AVP on U87 glioma cells are predominantly from these natural active constituents.
Assuntos
Antineoplásicos/farmacologia , Apocynum/química , Apoptose/efeitos dos fármacos , Glioma/patologia , Polifenóis/farmacologia , Fator de Transcrição RelA/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/metabolismo , Humanos , Polifenóis/química , Polifenóis/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/genéticaRESUMO
Rust (Melampsora apocyni) on Apocynum venetum is the major constraint to the commercial development of this medicinal herb. To determine the factors influencing rust intensity (maximum disease index [DImax]), rust was investigated from 2011 to 2015 in both cultivated and wild A. venetum plants. Partial least squares path modeling (PLS-PM) was used to analyze the paths and extent of the factors related to pathogen, environment, and host that affect rust intensity. DImax exhibited considerable variations across years and study sites, with variations linked to various factors fostering disease development. PLS-PM explained 80.0 and 70.1% of variations in DImax in cultivated and wild plants, respectively. Precipitation was the key factor determining DImax in both cultivated and wild plants (path coefficient [PC] = 0.313 and 0.544, respectively). In addition, the topsoil water content in cultivated plants and the total vegetation coverage in wild plants were also critical determinants of DImax via their effects on the microclimatic factor (contribution coefficients [CC] = 0.681 and 0.989, respectively; PC = 0.831 and 0.231, respectively). In both cultivated and wild plants, host factors were mainly dominated by A. venetum density (CC = 0.989 and 0.894, respectively), and their effect on DImax via the microclimatic factor (PC = 0.841 and 0.862, respectively) exceeded that via the inoculum factor (PC = 0.705 and 0.130, respectively). However, the indirect effects led to DImax variation, while the dilution effect on host (CC = 0.154) from weed in wild plants led to the indirect effect size in wild plants of 0.200, which was lower than -0.699 in cultivated plants.
Assuntos
Apocynum , Basidiomycota , Chuva , Apocynum/crescimento & desenvolvimento , Basidiomycota/patogenicidade , China , Doenças das Plantas , Chuva/microbiologiaRESUMO
Four new meroterpenoids 1â»4 and four new isocoumarinoids 5â»8, along with five known isocoumarinoids (9â»13), were isolated from the fungus Myrothecium sp. OUCMDZ-2784 associated with the salt-resistant medicinal plant, Apocynum venetum (Apocynaceae). Their structures were elucidated by means of spectroscopic analysis, X-ray crystallography, ECD spectra and quantum chemical calculations. Compounds 1â»5, 7, 9 and 10 showed weak α-glucosidase inhibition with the IC50 values of 0.50, 0.66, 0.058, 0.20, 0.32, 0.036, 0.026 and 0.37 mM, respectively.
Assuntos
Apocynum/química , Fungos/química , Terpenos/química , Cristalografia por Raios X/métodos , Inibidores de Glicosídeo Hidrolases/químicaRESUMO
As one of the major abiotic stresses, salinity stress may affect the physiology and biochemical components of Apocynum venetum L. To systematically evaluate the quality of Apocyni Veneti Folium (AVF) from the perspective of physiological and the wide variety of bioactive components response to various concentrations of salt stress, this experiment was arranged on the basis of ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-QTRAP-MS/MS) technology and multivariate statistical analysis. Physiological characteristics of photosynthetic pigments, osmotic homeostasis, lipid peroxidation product, and antioxidative enzymes were introduced to investigate the salt tolerance mechanism of AVF under salinity treatments of four concentrations (0, 100, 200, and 300 mM NaCl, respectively). Furthermore, a total of 43 bioactive constituents, including 14 amino acids, nine nucleosides, six organic acids, and 14 flavonoids were quantified in AVF under salt stress. In addition, multivariate statistical analysis, including hierarchical clustering analysis, principal component analysis (PCA), and gray relational analysis (GRA) was employed to systematically cluster, distinguish, and evaluate the samples, respectively. Compared with the control, the results demonstrated that 200 mM and 100 mM salt stress contributed to maintain high quality of photosynthesis, osmotic balance, antioxidant enzyme activity, and the accumulation of metabolites, except for total organic acids, and the quality of AVF obtained by these two groups was better than others; however, under severe stress, the accumulation of the oxidative damage and the reduction of metabolite caused by inefficiently scavenging reactive oxygen species (ROS) lead to lower quality. In summary, the proposed method may provide integrated information for the quality evaluation of AVF and other salt-tolerant Chinese medicines.
Assuntos
Apocynum/fisiologia , Osmose/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Flavonoides/metabolismo , Medicina Tradicional Chinesa , Análise Multivariada , Nucleosídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/farmacologiaRESUMO
Apocyni Veneti Folium (AVF) is a kind of staple traditional Chinese medicine with vast clinical consumption because of its positive effects. However, due to the habitats and adulterants, its quality is uneven. To control the quality of this medicinal herb, in this study, the quality of AVF was evaluated based on simultaneous determination of multiple bioactive constituents combined with multivariate statistical analysis. A reliable method based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-QTRAP-MS/MS) was developed for the simultaneous determination of a total of 43 constituents, including 15 flavonoids, 6 organic acids, 13 amino acids, and 9 nucleosides in 41 Luobumaye samples from different habitats and commercial herbs. Furthermore, according to the contents of these 43 constituents, principal component analysis (PCA) was employed to classify and distinguish between AVF and its adulterants, leaves of Poacynum hendersonii (PHF), and gray relational analysis (GRA) was performed to evaluate the quality of the samples. The proposed method was successfully applied to the comprehensive quality evaluation of AVF, and all results demonstrated that the quality of AVF was higher than the PHF. This study will provide comprehensive information necessary for the quality control of AVF.
Assuntos
Aminoácidos/isolamento & purificação , Apocynum/química , Ácidos Carboxílicos/isolamento & purificação , Flavonoides/isolamento & purificação , Nucleosídeos/isolamento & purificação , Folhas de Planta/química , Aminoácidos/química , Ácidos Carboxílicos/química , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas , Flavonoides/química , Humanos , Medicina Tradicional Chinesa , Análise Multivariada , Nucleosídeos/química , Extratos Vegetais/química , Análise de Componente Principal , Controle de Qualidade , Espectrometria de Massas em TandemRESUMO
Apocynum leaf extract is an extract of the dried leaves of Apocynum venetum (a member of the Apocynaceae family) that has many effects on the cardiovascular system. The aim of the present study was to evaluate the protective effects of apocynum leaf extract on the atherosclerosis in rats induced by high-fat diet combined with vitamin D3 intraperitoneal injection. The atherosclerosis in rats were induced with a high-fat diet and an intraperitoneal injection of VD3 once daily for three contiguous days at a total injection dose of 70 U/kg. At the end of the 18th week, serum total cholesterol (TC) and triglyceride (TG) contents were measured. Hydroxyproline content in the aorta were measured by the alkali hydrolysis method. The hematoxylin-eosin (HE) and immunohistochemical staining were applied to evaluate the morphological changes and the collagen I and α-smooth muscle actin expression. The protein expression and the mRNA level of AMPK and mTOR were detected by western blot analysis and reverse transcript PCR. After treatment with apocynum leaf extract, the serum total cholesterol and triglyceride concentration of the atherosclerotic rats were significantly decreased, both the Collagen I expression and the hydroxyproline content in the aorta were significantly reduced, and the α-SMA, a smooth muscle-specific marker, expression were also lower than the untreated atherosclerotic rats. Western blot analyses showed that the apocynum can marked increase the p-AMPK but decrease the mTOR protein expression. The apocynum leaf extract also exhibited higher AMPK and lower mTOR mRNA expression of the aorta in the atherosclerotic rats. We believe that the apocynum leaf extract can effectively reduce blood lipid levels in rats with atherosclerosis, delay atherosclerotic progression by inhibiting excessive collagen synthesis and inhibiting smooth muscle cell over-proliferation. The underlying mechanism may be related to the AMPK/mTOR signaling pathway activity. Our results contribute towards validation of the traditional use of apocynum leaf extract in the treatment of atherosclerosis.
Assuntos
Apocynum/química , Aterosclerose/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Actinas/biossíntese , Animais , Aterosclerose/induzido quimicamente , Colecalciferol , Colágeno/biossíntese , Dieta Hiperlipídica , Progressão da Doença , Lipídeos/sangue , Masculino , Ratos , Ratos WistarRESUMO
Apocynum venetum belongs to apocynaceae and is a perennial medicinal plant, its stem is an important textile raw materials. The projection of potential geographic distribution of A. venetum has an important significance for the protection and sustainable utilization of the plant. This study was conducted to determine the potential geographic distribution of A. venetum and to project how climate change would affect its geographic distribution. The projection geographic distribution of A. venetum under current bioclimatic conditions in northern China was simulated using MaxEnt software based on species presence data at 44 locations and 19 bioclimatic parameters. The future distributions of A. venetum were also projected in 2050 and 2070 under the climate change scenarios of RCP2.6 and RCP8.5 described in 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). The result showed that min air temperature of the coldest month, annual mean air temperature, precipitation of the coldest quarter and mean air temperature of the wettest quarter dominated the geographic distribution of A. venetum. Under current climate, the suitable habitats of A. venetum is 11.94% in China, the suitable habitats are mainly located in the middle of Xinjiang, in the northern part of Gansu, in the southern part of Neimeng, in the northern part of Ningxia, in the middle and northern part of Shaanxi, in the southern part of Shanxi, in the middle and northern part of Henan, in the middle and southern part of Hebei, Shandong, Tianjin, in the southern part of Liaoning and part of Beijing. From 2050 to 2070, the model outputs indicated that the suitable habitats of A. venetum would decrease under the climate change scenarios of RCP2.6 and RCP8.5.
Assuntos
Apocynum/crescimento & desenvolvimento , Mudança Climática , Ecossistema , China , Previsões , ômega-Conotoxina GVIARESUMO
BACKGROUND: Ionic liquids (ILs) are considered as green solvents, and widely applied for the extraction of various compounds. METHODS: The present research focuses on the extraction of flavonoids from Apocynum venetum L. leaves by ultrasound-assisted extraction (UAE). Several major influencing factors were optimized. Then, an aqueous biphasic system (ABS) was applied for further isolation of flavonoids. RESULTS: The flavonoids were mainly distributed in the top phase, while impurities were extracted to the bottom phase. The parameters influencing the extraction, namely type and concentration of salt, temperature, and pH, were studied in detail. Under optimized conditions (72.43% IL extract, 28.57% (NH4)2SO4, 25 °C temperature, pH 4.5), the preconcentration factor and extraction efficiency were found to be 3.78% and 93.35%, respectively. CONCLUSIONS: This simple and efficient methodology is expected to see great use in the extraction and isolation of pharmaceutically active components from medicinal plant resources.
Assuntos
Apocynum/química , Flavonoides/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Líquidos Iônicos , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Plantas Medicinais/química , Solventes , Ultrassom , ÁguaRESUMO
HPLC with diode array detection and ESI-TOF-MS was used for the study of the constituents in Apocynum venetum L. extracts and the metabolites in rat urine after oral administration of A. venetum L. extracts. A formula database of the known constituents in A. venetum L. was established, and 21 constituents were rapidly identified by accurately matching their molecular masses with the formulae of the compounds in the database. Furthermore, 34 metabolites were detected and elucidated in the rat urine. The scientific and plausible biotransformation pathways of the flavonoid components in A. venetum L. were also proposed together with the presentation of clues for potential mechanisms of bioactivity. This specific and sensitive HPLC-ESI-TOF-MS method can be used to identify the chemical components in the extracts of A. venetum L. and their metabolites in rat urine. This method can also be used to reveal the possible metabolic mechanisms of action of the extract components in vivo.
Assuntos
Apocynum/química , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Urina/química , Animais , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
To investigate the resources of medicinal plant, such as wild Apocynum, supervised classification based on Principal Component Analysis (PCA) and texture feature were used to monitor wild medicinal plants from image captured by ZY-3 and World-view-2 and compare which satellite Image are more appropriate to monitor the wild medicinal plants. The research results shows that: for more complex growth conditions wild medicinal plants Apocynum, high-resolution images Worldview-2 is more suitable for its remote identification, the low-resolution satellite ZY-3 can only recognizes the wild medicinal plants which distributed intensively. If the study target distribution is more intensive and larger scale, and cultivated type medicinal plants, the use of satellite ZY-3 in low resolution remote sensing data to identify the target can be a good choice, it is not necessary to buy high-resolution data, in order to avoid waste of expenditure, for the scattered distribution, the high-resolution satellite imagery data may be indispensable to identify targets.
Assuntos
Apocynum/crescimento & desenvolvimento , Plantas Medicinais/crescimento & desenvolvimento , Tecnologia de Sensoriamento Remoto/métodos , Apocynum/química , China , Conservação dos Recursos Naturais , Sistemas de Informação Geográfica , Dispersão Vegetal , Plantas Medicinais/químicaRESUMO
OBJECTIVE: To establish an ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometric (UPLC-Q-TOF-MS) method for analyzing the flavonoids constituents in Apocynum venetom leaves. METHODS: The analysis was performed on an Alltima C18 analytical column with a gradient solvent system of acetonitrile-1.0% acetic acid at the flow rate of 0.8 mL/min. The detection wavelength was at 254 nm and the column temperature was at 30 degrees C. Identification and detection were collected under the negative electrospray ion mode using Q-TOF-MS. RESULTS: 11 flavonoids constituents being separated and identified, six of them were detected simultaneously. The results showed that the six detected flavonoids constituents had good linearity between concentrations and peak area (r > 0.9996), and the average recoveries of the method were between 94.3% - 103.3%. CONCLUSION: The method is accurate, reproducible, and can be used for the quality control of Apocynum venetom leaves.