Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.033
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 629(8013): 945-950, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720069

RESUMO

Lipoprotein(a) (Lp(a)), an independent, causal cardiovascular risk factor, is a lipoprotein particle that is formed by the interaction of a low-density lipoprotein (LDL) particle and apolipoprotein(a) (apo(a))1,2. Apo(a) first binds to lysine residues of apolipoprotein B-100 (apoB-100) on LDL through the Kringle IV (KIV) 7 and 8 domains, before a disulfide bond forms between apo(a) and apoB-100 to create Lp(a) (refs. 3-7). Here we show that the first step of Lp(a) formation can be inhibited through small-molecule interactions with apo(a) KIV7-8. We identify compounds that bind to apo(a) KIV7-8, and, through chemical optimization and further application of multivalency, we create compounds with subnanomolar potency that inhibit the formation of Lp(a). Oral doses of prototype compounds and a potent, multivalent disruptor, LY3473329 (muvalaplin), reduced the levels of Lp(a) in transgenic mice and in cynomolgus monkeys. Although multivalent molecules bind to the Kringle domains of rat plasminogen and reduce plasmin activity, species-selective differences in plasminogen sequences suggest that inhibitor molecules will reduce the levels of Lp(a), but not those of plasminogen, in humans. These data support the clinical development of LY3473329-which is already in phase 2 studies-as a potent and specific orally administered agent for reducing the levels of Lp(a).


Assuntos
Descoberta de Drogas , Lipoproteína(a) , Macaca fascicularis , Animais , Feminino , Humanos , Masculino , Camundongos , Administração Oral , Kringles , Lipoproteína(a)/antagonistas & inibidores , Lipoproteína(a)/sangue , Lipoproteína(a)/química , Lipoproteína(a)/metabolismo , Camundongos Transgênicos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Plasminogênio/química , Plasminogênio/metabolismo , Especificidade da Espécie , Ensaios Clínicos Fase II como Assunto , Apolipoproteínas A/química , Apolipoproteínas A/metabolismo
2.
Kidney Int ; 105(4): 799-811, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38096951

RESUMO

Sporadic cases of apolipoprotein A-IV medullary amyloidosis have been reported. Here we describe five families found to have autosomal dominant medullary amyloidosis due to two different pathogenic APOA4 variants. A large family with autosomal dominant chronic kidney disease (CKD) and bland urinary sediment underwent whole genome sequencing with identification of a chr11:116692578 G>C (hg19) variant encoding the missense mutation p.L66V of the ApoA4 protein. We identified two other distantly related families from our registry with the same variant and two other distantly related families with a chr11:116693454 C>T (hg19) variant encoding the missense mutation p.D33N. Both mutations are unique to affected families, evolutionarily conserved and predicted to expand the amyloidogenic hotspot in the ApoA4 structure. Clinically affected individuals suffered from CKD with a bland urinary sediment and a mean age for kidney failure of 64.5 years. Genotyping identified 48 genetically affected individuals; 44 individuals had an estimated glomerular filtration rate (eGFR) under 60 ml/min/1.73 m2, including all 25 individuals with kidney failure. Significantly, 11 of 14 genetically unaffected individuals had an eGFR over 60 ml/min/1.73 m2. Fifteen genetically affected individuals presented with higher plasma ApoA4 concentrations. Kidney pathologic specimens from four individuals revealed amyloid deposits limited to the medulla, with the mutated ApoA4 identified by mass-spectrometry as the predominant amyloid constituent in all three available biopsies. Thus, ApoA4 mutations can cause autosomal dominant medullary amyloidosis, with marked amyloid deposition limited to the kidney medulla and presenting with autosomal dominant CKD with a bland urinary sediment. Diagnosis relies on a careful family history, APOA4 sequencing and pathologic studies.


Assuntos
Amiloidose , Apolipoproteínas A , Nefrite Intersticial , Insuficiência Renal Crônica , Humanos , Pessoa de Meia-Idade , Nefrite Intersticial/diagnóstico , Nefrite Intersticial/genética , Nefrite Intersticial/complicações , Mutação , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/complicações
3.
Biochem Biophys Res Commun ; 712-713: 149946, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38643717

RESUMO

Platelets are small anucleate cells that play a key role in thrombosis and hemostasis. Our group previously identified apolipoprotein A-IV (apoA-IV) as an endogenous inhibitor of thrombosis by competitive blockade of the αIIbß3 integrin on platelets. ApoA-IV inhibition of platelets was dependent on the N-terminal D5/D13 residues, and enhanced with absence of the C-terminus, suggesting it sterically hinders its N-terminal platelet binding site. The C-terminus is also the site of common apoA-IV polymorphisms apoA-IV-1a (T347S) and apoA-IV-2 (Q360H). Interestingly, both are linked with an increased risk of cardiovascular disease, however, the underlying mechanism remains unclear. Here, we generated recombinant apoA-IV and found that the Q360H or T347S polymorphisms dampened its inhibition of platelet aggregation in human platelet-rich plasma and gel-filtered platelets, reduced its inhibition of platelet spreading, and its inhibition of P-selectin on activated platelets. Using an ex vivo thrombosis assay, we found that Q360H and T347S attenuated its inhibition of thrombosis at both high (1800s-1) and low (300s-1) shear rates. We then demonstrate a conserved monomer-dimer distribution among apoA-IV WT, Q360H, and T347S and use protein structure modelling software to show Q360H and T347S enhance C-terminal steric hindrance over the N-terminal platelet-binding site. These data provide critical insight into increased cardiovascular risk for individuals with Q360H or T347S polymorphisms.


Assuntos
Apolipoproteínas A , Plaquetas , Agregação Plaquetária , Trombose , Humanos , Trombose/genética , Trombose/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/genética , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Polimorfismo Genético , Apoproteína(a)/genética , Apoproteína(a)/metabolismo , Apoproteína(a)/química , Selectina-P/genética , Selectina-P/metabolismo
4.
Nat Methods ; 18(9): 1075-1081, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34354266

RESUMO

Epigenetic editing is an emerging technology that uses artificial transcription factors (aTFs) to regulate expression of a target gene. Although human genes can be robustly upregulated by targeting aTFs to promoters, the activation induced by directing aTFs to distal transcriptional enhancers is substantially less robust and consistent. Here we show that long-range activation using CRISPR-based aTFs in human cells can be made more efficient and reliable by concurrently targeting an aTF to the target gene promoter. We used this strategy to direct target gene choice for enhancers capable of regulating more than one promoter and to achieve allele-selective activation of human genes by targeting aTFs to single-nucleotide polymorphisms embedded in distally located sequences. Our results broaden the potential applications of the epigenetic editing toolbox for research and therapeutics.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Marcação de Genes/métodos , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Alelos , Apolipoproteína C-III/genética , Apolipoproteínas A/genética , Linhagem Celular , Elementos Facilitadores Genéticos , Humanos , Subunidade alfa de Receptor de Interleucina-2/genética , Proteína MyoD/genética , Polimorfismo de Nucleotídeo Único , Ativação Transcricional , Globinas beta/genética
5.
BMC Cancer ; 24(1): 320, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454416

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is highly connected to inflammation and oxidative stress. Both favour the development of cancer in CKD patients. Serum apolipoprotein A-IV (apoA-IV) concentrations are influenced by kidney function and are an early marker of kidney impairment. Besides others, it has antioxidant and anti-inflammatory properties. Proteomic studies and small case-control studies identified low apoA-IV as a biomarker for various forms of cancer; however, prospective studies are lacking. We therefore investigated whether serum apoA-IV is associated with cancer in the German Chronic Kidney Disease (GCKD) study. METHODS: These analyses include 5039 Caucasian patients from the prospective GCKD cohort study followed for 6.5 years. Main inclusion criteria were an eGFR of 30-60 mL/min/1.73m2 or an eGFR > 60 mL/min/1.73m2 in the presence of overt proteinuria. RESULTS: Mean apoA-IV concentrations of the entire cohort were 28.9 ± 9.8 mg/dL (median 27.6 mg/dL). 615 patients had a history of cancer before the enrolment into the study. ApoA-IV concentrations above the median were associated with a lower odds for a history of cancer (OR = 0.79, p = 0.02 when adjusted age, sex, smoking, diabetes, BMI, albuminuria, statin intake, and eGFRcreatinine). During follow-up 368 patients developed an incident cancer event and those with apoA-IV above the median had a lower risk (HR = 0.72, 95%CI 0.57-0.90, P = 0.004). Finally, 62 patients died from such an incident cancer event and each 10 mg/dL higher apoA-IV concentrations were associated with a lower risk for fatal cancer (HR = 0.62, 95%CI 0.44-0.88, P = 0.007). CONCLUSIONS: Our data indicate an association of high apoA-IV concentrations with reduced frequencies of a history of cancer as well as incident fatal and non-fatal cancer events in a large cohort of patients with CKD.


Assuntos
Neoplasias , Insuficiência Renal Crônica , Humanos , Estudos Prospectivos , Estudos de Coortes , Proteômica , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/epidemiologia , Apolipoproteínas A , Taxa de Filtração Glomerular , Fatores de Risco , Neoplasias/complicações , Neoplasias/epidemiologia
6.
Arterioscler Thromb Vasc Biol ; 43(10): 2030-2041, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37615111

RESUMO

BACKGROUND: Impaired cholesterol efflux capacity (CEC) is a novel lipid metabolism trait associated with atherosclerotic cardiovascular disease. Mechanisms underlying CEC variation are unknown. We evaluated associations of circulating metabolites with CEC to advance understanding of metabolic pathways involved in cholesterol efflux regulation. METHODS: Participants enrolled in the MESA (Multi-Ethnic Study of Atherosclerosis) who underwent nuclear magnetic resonance metabolome profiling and CEC measurement (N=3543) at baseline were included. Metabolite associations with CEC were evaluated using standard linear regression analyses. Repeated ElasticNet and multilayer perceptron regression were used to assess metabolite profile predictive performance for CEC. Features important for CEC prediction were identified using Shapley Additive Explanations values. RESULTS: Greater CEC was significantly associated with metabolite clusters composed of the largest-sized particle subclasses of VLDL (very-low-density lipoprotein) and HDL (high-density lipoprotein), as well as their constituent apo A1, apo A2, phospholipid, and cholesterol components (ß=0.072-0.081; P<0.001). Metabolite profiles had poor accuracy for predicting in vitro CEC in linear and nonlinear analyses (R2<0.02; Spearman ρ<0.18). The most important feature for CEC prediction was race, with Black participants having significantly lower CEC compared with other races. CONCLUSIONS: We identified independent associations among CEC, the largest-sized particle subclasses of VLDL and HDL, and their constituent apolipoproteins and lipids. A large proportion of variation in CEC remained unexplained by metabolites and traditional clinical risk factors, supporting further investigation into genomic, proteomic, and phospholipidomic determinants of CEC.


Assuntos
Aterosclerose , Proteômica , Humanos , HDL-Colesterol , Lipoproteínas HDL , Colesterol , Aterosclerose/genética , Apolipoproteínas A
7.
Arterioscler Thromb Vasc Biol ; 43(10): 1851-1866, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589135

RESUMO

BACKGROUND: High levels of Lp(a) (lipoprotein(a)) are associated with multiple forms of cardiovascular disease. Lp(a) consists of an apoB100-containing particle attached to the plasminogen homologue apo(a). The pathways for Lp(a) clearance are not well understood. We previously discovered that the plasminogen receptor PlgRKT (plasminogen receptor with a C-terminal lysine) promoted Lp(a) uptake in liver cells. Here, we aimed to further define the role of PlgRKT and to investigate the role of 2 other plasminogen receptors, annexin A2 and S100A10 (S100 calcium-binding protein A10) in the endocytosis of Lp(a). METHODS: Human hepatocellular carcinoma (HepG2) cells and haploid human fibroblast-like (HAP1) cells were used for overexpression and knockout of plasminogen receptors. The uptake of Lp(a), LDL (low-density lipoprotein), apo(a), and endocytic cargos was visualized and quantified by confocal microscopy and Western blotting. RESULTS: The uptake of both Lp(a) and apo(a), but not LDL, was significantly increased in HepG2 and HAP1 cells overexpressing PlgRKT, annexin A2, or S100A10. Conversely, Lp(a) and apo(a), but not LDL, uptake was significantly reduced in HAP1 cells in which PlgRKT and S100A10 were knocked out. Surface binding studies in HepG2 cells showed that overexpression of PlgRKT, but not annexin A2 or S100A10, increased Lp(a) and apo(a) plasma membrane binding. Annexin A2 and S100A10, on the other hand, appeared to regulate macropinocytosis with both proteins significantly increasing the uptake of the macropinocytosis marker dextran when overexpressed in HepG2 and HAP1 cells and knockout of S100A10 significantly reducing dextran uptake. Bringing these observations together, we tested the effect of a PI3K (phosphoinositide-3-kinase) inhibitor, known to inhibit macropinocytosis, on Lp(a) uptake. Results showed a concentration-dependent reduction confirming that Lp(a) uptake was indeed mediated by macropinocytosis. CONCLUSIONS: These findings uncover a novel pathway for Lp(a) endocytosis involving multiple plasminogen receptors that enhance surface binding and stimulate macropinocytosis of Lp(a). Although the findings were produced in cell culture models that have limitations, they could have clinical relevance since drugs that inhibit macropinocytosis are in clinical use, that is, the PI3K inhibitors for cancer therapy and some antidepressant compounds.


Assuntos
Anexina A2 , Plasminogênio , Humanos , Plasminogênio/química , Plasminogênio/metabolismo , Lipoproteína(a)/metabolismo , Anexina A2/genética , Dextranos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Transporte , Apolipoproteínas A/metabolismo
8.
Med Sci Monit ; 30: e942832, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321725

RESUMO

BACKGROUND Hypertriglyceridemia-induced acute pancreatitis (HTG-AP), representing 10% of all acute pancreatitis cases, is characterized by younger onset age and more severe progression, often leading to higher ICU admission rates. This condition poses a significant challenge due to its rapid progression and the potential for severe complications, including multiple organ failure. HTG-AP is distinct from other forms of pancreatitis, such as those caused by cholelithiasis or alcohol, in terms of clinical presentation and outcomes. It's essential to identify early markers that can predict the severity of HTG-AP to improve patient management and outcomes. MATERIAL AND METHODS This study divided 127 HTG-AP patients into mild acute pancreatitis (MAP, n=71) and moderate-to-severe acute pancreatitis (MSAP/SAP, n=56) groups. Blood biological indicators within the first 24 hours of admission were analyzed. Risk factors for HTG-AP progression were determined using binary logistic regression and ROC curves. RESULTS Elevated levels of HCT, NLR, TBI, DBI, AST, Cre, and AMS were noted in the MSAP/SAP group, with lower levels of LYM, Na⁺, Ca²âº, ApoA, and ApoB compared to the MAP group (p<0.05). NEUT%, Ca²âº, ApoA, and ApoB were significantly linked with HTG-AP severity. Their combined ROC analysis yielded an area of 0.81, with a sensitivity of 61.8% and specificity of 90%. CONCLUSIONS NEUT%, Ca²âº, ApoA, and ApoB are significant risk factors for progressing to MSAP/SAP in HTG-AP. Their combined assessment provides a reliable predictive measure for early intervention in patients at risk of severe progression.


Assuntos
Hipertrigliceridemia , Pancreatite , Humanos , Cálcio , Neutrófilos , Doença Aguda , Estudos Retrospectivos , Hipertrigliceridemia/complicações , Apolipoproteínas , Apolipoproteínas A , Apolipoproteínas B
9.
Lipids Health Dis ; 23(1): 44, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331899

RESUMO

BACKGROUND AND AIMS: To study the role of gene mutations in the development of severe hypertriglyceridemia (HTG) in patients with hyperlipidemic acute pancreatitis (HLAP), especially different apolipoprotein A5 (APOA5) mutations. METHODS: Whole-exome sequencing was performed on 163 patients with HLAP and 30 patients with biliary acute pancreatitis (BAP). The pathogenicity of mutations was then assessed by combining clinical information, predictions of bioinformatics programs, information from multiple gene databases, and residue location and conservation. The pathogenic mutations of APOA5 were visualized using the software. RESULTS: 1. Compared with BAP patients, pathogenic mutations of APOA5 were frequent in HLAP patients; among them, the heterozygous mutation of p.G185C was the most common. 2. All six pathogenic mutations of APOA5 identified in this study (p.S35N, p.D167V, p.G185C, p.K188I, p.R223C, and p.H182fs) were positively correlated with severe HTG; they were all in the important domains of apolipoprotein A-V (apoA-V). Residue 223 is strictly conserved in multiple mammals and is located in the lipoprotein lipase (LPL)-binding domain (Pro215-Phe261). When Arg 223 is mutated to Cys 223, the positive charge of this residue is reduced, which is potentially destructive to the binding function of apoA-V to LPL. 3. Four new APOA5 mutations were identified, namely c.563A > T, c.667C > T, c.788G > A, and c.544_545 insGGTGC. CONCLUSIONS: The pathogenic mutations of APOA5 were specific to the patients with HLAP and severe HTG in China, and identifying such mutations had clinical significance in elucidating the etiology and subsequent treatment.


Assuntos
Hipertrigliceridemia , Pancreatite , Humanos , Apolipoproteína A-V/genética , Apolipoproteínas A/genética , Apolipoproteínas A/metabolismo , Doença Aguda , Pancreatite/genética , Lipase Lipoproteica/genética , Hipertrigliceridemia/complicações , Hipertrigliceridemia/genética , Mutação
10.
Lipids Health Dis ; 23(1): 63, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419057

RESUMO

BACKGROUND AND OBJECTIVE: Dyslipidemia is significantly more common in those with concurrent chronic kidney disease (CKD) and chronic heart failure (CHF). Sacubitril/valsartan has showcased its influence on both cardiac and renal functions, extending its influence to the modulation of lipid metabolism pathways. This study aimed to examine how sacubitril/valsartan affects lipid metabolism within the context of CKD and CHF. METHODS: This study adopted a retrospective design, focusing on a single center and involving participants who were subjected to treatment with sacubitril/valsartan and valsartan. The investigation assessed the treatment duration, with a particular emphasis on recording blood lipid indicators, including triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), apolipoprotein A (ApoA), and apolipoprotein B (ApoB). Furthermore, cardiac and renal functions, blood pressure, potassium levels, and other factors influencing the blood lipids were analyzed in both groups at identical time points. RESULTS: After 16 weeks of observation, the sacubitril/valsartan group exhibited lower TG levels compared to the valsartan group. Noteworthy was the fact that individuals undergoing sacubitril/valsartan treatment experienced an average reduction of 0.84 mmol/L in TG levels, in stark contrast to the valsartan group, which registered a decline of 0.27 mmol/L (P < 0.001). The sacubitril/valsartan group exhibited elevated levels of HDL-C and ApoA in comparison to the valsartan group (PHDL-C = 0.023, PApoA = 0.030). While TC, LDL-C, and ApoB decreased compared to baseline, the differences between groups were not statistical significance. Regarding cardiac indicators, there was an observed enhancement in the left ventricular ejection fraction (LVEF) within the sacubitril/valsartan group when compared to the baseline, and it was noticeably higher than that of the valsartan group. Spearman correlation analysis and multiple linear regression analysis revealed that medication, body mass index(BMI), and hemoglobin A1c (HbA1c) had a direct influencing effect on TG levels. CONCLUSION: Sacubitril/valsartan demonstrated improvements in lipid metabolism and cardiac indicators in patients with CKD and CHF. Specifically, it presented promising benefits in reducing TG levels. In addition, both BMI and HbA1c emerged as influential factors contributing to alterations in TG levels, independent of the administration of sacubitril/valsartan.


Assuntos
Aminobutiratos , Insuficiência Cardíaca , Insuficiência Renal Crônica , Humanos , Estudos Retrospectivos , Volume Sistólico/fisiologia , LDL-Colesterol , Hemoglobinas Glicadas , Metabolismo dos Lipídeos , Tetrazóis/uso terapêutico , Tetrazóis/farmacologia , Função Ventricular Esquerda/fisiologia , Valsartana/uso terapêutico , Valsartana/farmacologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico , Compostos de Bifenilo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Combinação de Medicamentos , Apolipoproteínas A/farmacologia , Apolipoproteínas B , Apolipoproteínas
11.
Mikrochim Acta ; 191(4): 179, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443677

RESUMO

A novel electrochemical immunosensor for detecting potential depression biomarker Apolipoprotein A4 (Apo-A4) was developed using a multi-signal amplification approach. Firstly, the sensor utilized a modified electrode material, NG-PEI-COF, combining bipyridine-functionalized covalent organic framework (COF) and polyethyleneimine-functionalized nitrogen-doped graphene (NG-PEI), providing high surface area and excellent electron transfer capability for the first-stage amplification in electrical signal conduction. Subsequently, gold nanoparticles (AuNPs) were further electrodeposited onto the electrode, providing good biocompatibility and abundant binding sites for immobilizing the target antigen, thus achieving the second-stage amplification in target recognition and binding. To address the lack of redox properties of the antigen, a tracer probe was formed by loading AuNPs, anti-Apo-A4, and toluidine blue (TB) successively onto COF, leading to the third-stage amplification in signal conversion. The constructed electrochemical immunosensor TB/Ab/AuNPs/COF-Apo-A4/AuNPs/NG-PEI-COF/GCE exhibited excellent detection performance against Apo-A4 with a linear range of 0.01 to 300 ng mL-1 and had a low detection limit of 2.16 pg mL-1 (S/N = 3). In addition, the biosensor had good reproducibility (RSD = 2.31%), stability, and significant anti-interference performance toward other depression biomarkers. The sensor has been successfully used for the quantitative detection of Apo-A4 in serum, providing potential applications for detecting Apo-A4 in the clinic and serving as a reference for constructing sensing methods based on COF.


Assuntos
Apolipoproteínas A , Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Ouro , Depressão , Reprodutibilidade dos Testes , Imunoensaio , Cloreto de Tolônio
12.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542510

RESUMO

Lipoprotein(a) [Lp(a)] consists of a low-density lipoprotein-like molecule and an apolipoprotein(a) [apo(a)] particle. Lp(a) has been suggested to be an independent risk factor of atherosclerotic cardiovascular disease (ASCVD). Lp(a) plasma levels are considered to be 70-90% genetically determined through the codominant expression of the LPA gene. Therefore, Lp(a) levels are almost stable during an individual's lifetime. This lifelong stability, together with the difficulties in measuring Lp(a) levels in a standardized manner, may account for the scarcity of available drugs targeting Lp(a). In this review, we synopsize the latest data regarding the structure, metabolism, and factors affecting circulating levels of Lp(a), as well as the laboratory determination measurement of Lp(a), its role in the pathogenesis of ASCVD and thrombosis, and the potential use of various therapeutic agents targeting Lp(a). In particular, we discuss novel agents, such as antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) that are currently being developed and target Lp(a). The promising role of muvalaplin, an oral inhibitor of Lp(a) formation, is then further analyzed.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Lipoproteína(a)/genética , Aterosclerose/tratamento farmacológico , Fatores de Risco , Apoproteína(a) , Apolipoproteínas A
13.
J Obstet Gynaecol ; 44(1): 2369929, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38963226

RESUMO

BACKGROUND: To analyse changes in lipid levels during the development of intrahepatic cholestasis of pregnancy (ICP) and identify new biomarkers for predicting ICP. METHODS: A retrospective case-control study was conducted to analyse 473 pregnant women who underwent regular prenatal examinations and delivered at the Women and Children's Hospital, School of Medicine, Xiamen University, between June 2020 and June 2023, including 269 normal pregnancy controls and 204 pregnant women with cholestasis. RESULTS: Patients with ICP with gestational diabetes mellitus (GDM) have lower high-density lipoprotein (HDL) levels than in those without GDM. Total bile acid (TBA) levels were significantly higher in pregnant women with GDM than those without. The apolipoprotein A (APOA) level was lower in patients with ICP and hypothyroidism than those without hypothyroidism. TBA levels were significantly higher in pregnant women with hypothyroidism than those without. Triglyceride (TG) levels were significantly higher in patients with preeclampsia (PE) than those without. HDL and APOA levels were lower in women with ICP complicated by preterm delivery than those with normal delivery. The AUC (area under the curve) of the differential diagnosis of cholestasis of pregnancy for the APOA/APOB (apolipoprotein B) ratio was 0.727, with a sensitivity of 85.9% and specificity of 47.5%. CONCLUSIONS: The results suggested that dyslipidaemia is associated with an increased risk of ICP and its complications. The timely detection of blood lipid and bile acid levels can assist in the diagnosis of ICP and effectively prevent ICP and other complications.


Intrahepatic cholestasis of pregnancy (ICP) is recognized as one of the most severe complications during pregnancy. Currently, elevated fasting serum total bile acid (TBA) levels are commonly used as diagnostic markers for ICP. However, it has been observed that women diagnosed with ICP often do not exhibit elevated TBA levels. Additionally, other medical conditions can also lead to increased TBA levels. Our study has revealed a potential correlation between abnormal lipid metabolism and the occurrence and progression of ICP and its associated complications. Specifically, we found that patients with ICP who have higher serum bile acid levels tend to have more disrupted lipid metabolism, as well as a higher risk of complications and adverse pregnancy outcomes. This manuscript is the first to investigate the link between dyslipidemia and ICP, as well as other pregnancy complications. As a result, our findings offer a foundation for the clinical diagnosis and treatment of ICP and its comorbidities during pregnancy, while also highlighting the need for further research in this area.


Assuntos
Ácidos e Sais Biliares , Biomarcadores , Colestase Intra-Hepática , Complicações na Gravidez , Humanos , Feminino , Gravidez , Colestase Intra-Hepática/sangue , Colestase Intra-Hepática/complicações , Complicações na Gravidez/sangue , Complicações na Gravidez/diagnóstico , Adulto , Estudos Retrospectivos , Estudos de Casos e Controles , Biomarcadores/sangue , Ácidos e Sais Biliares/sangue , Diabetes Gestacional/sangue , Hipotireoidismo/sangue , Lipídeos/sangue , Triglicerídeos/sangue , Apolipoproteínas A/sangue
14.
J Lipid Res ; 64(3): 100336, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36706955

RESUMO

Lipoprotein(a) [Lp(a)] has two main proteins, apoB100 and apo(a). High levels of Lp(a) confer an increased risk for atherosclerotic cardiovascular disease. Most people have two circulating isoforms of apo(a) differing in their molecular mass, determined by the number of Kringle IV Type 2 repeats. Previous studies report a strong inverse relationship between Lp(a) levels and apo(a) isoform sizes. The roles of Lp(a) production and fractional clearance and how ancestry affects this relationship remain incompletely defined. We therefore examined the relationships of apo(a) size with Lp(a) levels and both apo(a) fractional clearance rates (FCR) and production rates (PR) in 32 individuals not on lipid-lowering treatment. We determined plasma Lp(a) levels and apo(a) isoform sizes, and used the relative expression of the two isoforms to calculate a "weighted isoform size" (wIS). Stable isotope studies were performed, using D3-leucine, to determine the apo(a) FCR and PR. As expected, plasma Lp(a) concentrations were inversely correlated with wIS (R2 = 0.27; P = 0.002). The wIS had a modest positive correlation with apo(a) FCR (R2 = 0.10, P = 0.08), and a negative correlation with apo(a) PR (R2 = 0.11; P = 0.06). The relationship between wIS and PR became significant when we controlled for self-reported race and ethnicity (SRRE) (R2 = 0.24, P = 0.03); controlling for SRRE did not affect the relationship between wIS and FCR. Apo(a) wIS plays a role in both FCR and PR; however, adjusting for SRRE strengthens the correlation between wIS and PR, suggesting an effect of ancestry.


Assuntos
Aterosclerose , Lipoproteína(a) , Humanos , Apoproteína(a)/metabolismo , Apolipoproteínas A , Isoformas de Proteínas
15.
Hepatology ; 76(1): 78-93, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34626126

RESUMO

BACKGROUND AND AIMS: High plasma lipid/lipoprotein levels are risk factors for various metabolic diseases. We previously showed that circadian rhythms regulate plasma lipids and deregulation of these rhythms causes hyperlipidemia and atherosclerosis in mice. Here, we show that global and liver-specific brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1)-deficient mice maintained on a chow or Western diet developed hyperlipidemia, denoted by the presence of higher amounts of triglyceride-rich and apolipoprotein AIV (ApoAIV)-rich larger chylomicron and VLDL due to overproduction. APPROACH AND RESULTS: Bmal1 deficiency decreased small heterodimer partner (Shp) and increased microsomal triglyceride transfer protein (MTP), a key protein that facilitates primordial lipoprotein assembly and secretion. Moreover, we show that Bmal1 regulates cAMP-responsive element-binding protein H (Crebh) to modulate ApoAIV expression and the assembly of larger lipoproteins. This is supported by the observation that Crebh-deficient and ApoAIV-deficient mice, along with Bmal1-deficient mice with knockdown of Crebh, had smaller lipoproteins. Further, overexpression of Bmal1 in Crebh-deficient mice had no effect on ApoAIV expression and lipoprotein size. CONCLUSIONS: These studies indicate that regulation of ApoAIV and assembly of larger lipoproteins by Bmal1 requires Crebh. Mechanistic studies showed that Bmal1 regulates Crebh expression by two mechanisms. First, Bmal1 interacts with the Crebh promoter to control circadian regulation. Second, Bmal1 increases Rev-erbα expression, and nuclear receptor subfamily 1 group D member 1 (Nr1D1, Rev-erbα) interacts with the Crebh promoter to repress expression. In short, Bmal1 modulates both the synthesis of primordial lipoproteins and their subsequent expansion into larger lipoproteins by regulating two different proteins, MTP and ApoAIV, through two different transcription factors, Shp and Crebh. It is likely that disruptions in circadian mechanisms contribute to hyperlipidemia and that avoiding disruptions in circadian rhythms may limit/prevent hyperlipidemia and atherosclerosis.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Aterosclerose , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hiperlipidemias , Animais , Apolipoproteínas A/metabolismo , Aterosclerose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
16.
Arterioscler Thromb Vasc Biol ; 42(3): 289-304, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045727

RESUMO

BACKGROUND: Elevated plasma Lp(a) (lipoprotein(a)) levels are associated with increased risk for atherosclerotic cardiovascular disease and aortic valve stenosis. However, the cell biology of Lp(a) biosynthesis remains poorly understood, with the locations of the noncovalent and covalent steps of Lp(a) assembly unclear and the nature of the apoB-containing particle destined for Lp(a) unknown. We, therefore, asked if apo(a) and apoB interact noncovalently within hepatocytes and if this impacts Lp(a) biosynthesis. METHODS: Using human hepatocellular carcinoma cells expressing 17K (17 kringle) apo(a), or a 17KΔLBS7,8 variant with a reduced ability to bind noncovalently to apoB, we performed coimmunoprecipitation, coimmunofluorescence, and proximity ligation assays to document intracellular apo(a):apoB interactions. We used a pulse-chase metabolic labeling approach to measure apo(a) and apoB secretion rates. RESULTS: Noncovalent complexes containing apo(a)/apoB are present in lysates from cells expressing 17K but not 17KΔLBS7,8, whereas covalent apo(a)/apoB complexes are absent from lysates. 17K and apoB colocalized intracellularly, overlapping with staining for markers of endoplasmic reticulum trans-Golgi, and early endosomes, and less so with lysosomes. The 17KΔLBS7,8 had lower colocalization with apoB. Proximity ligation assays directly documented intracellular 17K/apoB interactions, which were dramatically reduced for 17KΔLBS7,8. Treatment of cells with PCSK9 (proprotein convertase subtilisin/kexin type 9) enhanced, and lomitapide reduced, apo(a) secretion in a manner dependent on the noncovalent interaction between apo(a) and apoB. Apo(a) secretion was also reduced by siRNA-mediated knockdown of APOB. CONCLUSIONS: Our findings explain the coupling of apo(a) and Lp(a)-apoB production observed in human metabolic studies using stable isotopes as well as the ability of agents that inhibit apoB biosynthesis to lower Lp(a) levels.


Assuntos
Apolipoproteína B-100/metabolismo , Apolipoproteínas A/metabolismo , Hepatócitos/metabolismo , Lipoproteína(a)/metabolismo , Apolipoproteína B-100/química , Apolipoproteínas A/química , Apolipoproteínas A/genética , Sítios de Ligação/genética , Células Hep G2 , Humanos , Kringles/genética , Lipoproteína(a)/química , Lisina/química , Redes e Vias Metabólicas , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Lipids Health Dis ; 22(1): 144, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670291

RESUMO

BACKGROUND: Lipoprotein (a) [Lp(a)] is an apoB100-containing lipoprotein with high levels being positively associated with atherosclerotic cardiovascular disease. Lp(a) levels are genetically determined. However, previous studies report a negative association between Lp(a) and saturated fatty acid intake. Currently, apoB100 lowering therapies are used to lower Lp(a) levels, and apheresis therapy is FDA approved for patients with extreme elevations of Lp(a). The current study analyzed the association of free-living diet components with plasma Lp(a) levels. METHODS: Dietary composition data was collected during screening visits for enrollment in previously completed lipid and lipoprotein metabolism studies at Columbia University Irving Medical Center via a standardized protocol by registered dietitians using 24 hour recalls. Data were analyzed with the Nutrition Data System for Research (Version 2018). Diet quality was calculated using the Healthy Eating Index (HEI) score. Fasting plasma Lp(a) levels were measured via an isoform-independent ELISA and apo(a) isoforms were measured using gel electrophoresis. RESULTS: We enrolled 28 subjects [Black (n = 18); Hispanic (n = 7); White (n = 3)]. The mean age was 48.3 ± 12.5 years with 17 males. Median level of Lp(a) was 79.9 nmol/L (34.4-146.0) and it was negatively associated with absolute (grams/day) and relative (percent of total calories) intake of dietary saturated fatty acids (SFA) (R = -0.43, P = 0.02, SFA …(% CAL): R = -0.38, P = 0.04), palmitic acid intake (R = -0.38, P = 0.05), and stearic acid intake (R = -0.40, P = 0.03). Analyses of associations with HEI score when stratified based on Lp(a) levels > or ≤ 100 nmol/L revealed no significant associations with any of the constituent factors. CONCLUSIONS: Using 24 hour recall, we confirm previous findings that Lp(a) levels are negatively associated with dietary saturated fatty acid intake. Additionally, Lp(a) levels are not related to diet quality, as assessed by the HEI score. The mechanisms underlying the relationship of SFA with Lp(a) require further investigation.


Assuntos
Dieta , Lipoproteína(a) , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Apolipoproteínas A , Jejum , Ingestão de Energia
18.
JAMA ; 330(21): 2075-2083, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37952254

RESUMO

Importance: Epidemiological and genetic data have implicated lipoprotein(a) as a potentially modifiable risk factor for atherosclerotic disease and aortic stenosis, but there are no approved pharmacological treatments. Objectives: To assess the safety, tolerability, pharmacokinetics, and effects of lepodisiran on lipoprotein(a) concentrations after single doses of the drug; lepodisiran is a short interfering RNA directed at hepatic synthesis of apolipoprotein(a), an essential component necessary for assembly of lipoprotein(a) particles. Design, Setting, and Participants: A single ascending-dose trial conducted at 5 clinical research sites in the US and Singapore that enrolled 48 adults without cardiovascular disease and with lipoprotein(a) serum concentrations of 75 nmol/L or greater (or ≥30 mg/dL) between November 18, 2020, and December 7, 2021; the last follow-up visit occurred on November 9, 2022. Interventions: Participants were randomized to receive placebo or a single dose of lepodisiran (4 mg, 12 mg, 32 mg, 96 mg, 304 mg, or 608 mg) administered subcutaneously. Main Outcomes and Measures: The primary outcome was the safety and tolerability of the single ascending doses of lepodisiran. The secondary outcomes included plasma levels of lepodisiran for 168 days after dose administration and changes in fasting lipoprotein(a) serum concentrations through a maximum follow-up of 336 days (48 weeks). Results: Of the 48 participants enrolled (mean age, 46.8 [SD, 11.6] years; 35% were women), 1 serious adverse event occurred. The plasma concentrations of lepodisiran reached peak levels within 10.5 hours and were undetectable by 48 hours. The median baseline lipoprotein(a) concentration was 111 nmol/L (IQR, 78 to 134 nmol/L) in the placebo group, 78 nmol/L (IQR, 50 to 152 nmol/L) in the 4 mg of lepodisiran group, 97 nmol/L (IQR, 86 to 107 nmol/L) in the 12-mg dose group, 120 nmol/L (IQR, 110 to 188 nmol/L) in the 32-mg dose group, 167 nmol/L (IQR, 124 to 189 nmol/L) in the 96-mg dose group, 96 nmol/L (IQR, 72 to 132 nmol/L) in the 304-mg dose group, and 130 nmol/L (IQR, 87 to 151 nmol/L) in the 608-mg dose group. The maximal median change in lipoprotein(a) concentration was -5% (IQR, -16% to 11%) in the placebo group, -41% (IQR, -47% to -20%) in the 4 mg of lepodisiran group, -59% (IQR, -66% to -53%) in the 12-mg dose group, -76% (IQR, -76% to -75%) in the 32-mg dose group, -90% (IQR, -94% to -85%) in the 96-mg dose group, -96% (IQR, -98% to -95%) in the 304-mg dose group, and -97% (IQR, -98% to -96%) in the 608-mg dose group. At day 337, the median change in lipoprotein(a) concentration was -94% (IQR, -94% to -85%) in the 608 mg of lepodisiran group. Conclusions and Relevance: In this phase 1 study of 48 participants with elevated lipoprotein(a) levels, lepodisiran was well tolerated and produced dose-dependent, long-duration reductions in serum lipoprotein(a) concentrations. The findings support further study of lepodisiran. Trial Registration: ClinicalTrials.gov Identifier: NCT04914546.


Assuntos
Apolipoproteínas A , Lipoproteína(a) , RNA Interferente Pequeno , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método Duplo-Cego , Lipoproteína(a)/antagonistas & inibidores , Lipoproteína(a)/sangue , Fatores de Risco , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/uso terapêutico , Singapura , Apolipoproteínas A/biossíntese , Fígado/metabolismo , Administração Cutânea , Estados Unidos
19.
Int J Mol Sci ; 24(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37686428

RESUMO

Lipoprotein(a) [Lp(a)] is a well-established risk factor for cardiovascular disease, predisposing to major cardiovascular events, including coronary heart disease, stroke, aortic valve calcification and abdominal aortic aneurysm. Lp(a) is differentiated from other lipoprotein molecules through apolipoprotein(a), which possesses atherogenic and antithrombolytic properties attributed to its structure. Lp(a) levels are mostly genetically predetermined and influenced by the size of LPA gene variants, with smaller isoforms resulting in a greater synthesis rate of apo(a) and, ultimately, elevated Lp(a) levels. As a result, serum Lp(a) levels may highly vary from extremely low to extremely high. Hyperlipoproteinemia(a) is defined as Lp(a) levels > 30 mg/dL in the US and >50 mg/dL in Europe. Because of its association with CVD, Lp(a) levels should be measured at least once a lifetime in adults. The ultimate goal is to identify individuals with increased risk of CVD and intervene accordingly. Traditional pharmacological interventions like niacin, statins, ezetimibe, aspirin, PCSK-9 inhibitors, mipomersen, estrogens and CETP inhibitors have not yet yielded satisfactory results. The mean Lp(a) reduction, if any, is barely 50% for all agents, with statins increasing Lp(a) levels, whereas a reduction of 80-90% appears to be required to achieve a significant decrease in major cardiovascular events. Novel RNA-interfering agents that specifically target hepatocytes are aimed in this direction. Pelacarsen is an antisense oligonucleotide, while olpasiran, LY3819469 and SLN360 are small interfering RNAs, all conjugated with a N-acetylgalactosamine molecule. Their ultimate objective is to genetically silence LPA, reduce apo(a) production and lower serum Lp(a) levels. Evidence thus so far demonstrates that monthly subcutaneous administration of a single dose yields optimal results with persisting substantial reductions in Lp(a) levels, potentially enhancing CVD risk reduction. The Lp(a) reduction achieved with novel RNA agents may exceed 95%. The results of ongoing and future clinical trials are eagerly anticipated, and it is hoped that guidelines for the tailored management of Lp(a) levels with these novel agents may not be far off.


Assuntos
Estenose da Valva Aórtica , Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipoproteinemias , Adulto , Humanos , Apoproteína(a) , Lipoproteína(a) , Apolipoproteínas A
20.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902035

RESUMO

SARS-CoV-2 infection goes beyond acute pneumonia, as it also impacts lipid metabolism. Decreased HDL-C and LDL-C levels have been reported in patients with COVID-19. The lipid profile is a less robust biochemical marker than apolipoproteins, components of lipoproteins. However, the association of apolipoprotein levels during COVID-19 is not well described and understood. The objective of our study is to measure plasma levels of 14 apolipoproteins in patients with COVID-19 and to evaluate the relationships between apolipoprotein levels, severity factors and patient outcomes. From November to March 2021, 44 patients were recruited on admission to the intensive care unit because of COVID-19. Fourteen apolipoproteins and LCAT were measured by LC-MS/MS in plasma of 44 COVID-19 patients on admission to the ICU and 44 healthy control subjects. Absolute apolipoprotein concentrations were compared between COVID-19 patients and controls. Plasma apolipoproteins (Apo) A (I, II, IV), C(I, II), D, H, J and M and LCAT were lower in COVID-19 patients, whereas Apo E was higher. COVID-19 severity factors such as PaO2/FiO2 ratio, SO-FA score and CRP were correlated with certain apolipoproteins. Lower Apo B100 and LCAT levels were observed in non-survivors of COVID-19 versus survivors. To conclude, in this study, lipid and apolipoprotein profiles are altered in COVID-19 patients. Low Apo B100 and LCAT levels may be predictive of non-survival in COVID-19 patients.


Assuntos
COVID-19 , Colesterol , Humanos , Estudos de Coortes , Cromatografia Líquida , Colesterol/metabolismo , SARS-CoV-2/metabolismo , Espectrometria de Massas em Tandem , Apolipoproteínas , Apolipoproteínas A , Apolipoproteína B-100 , Unidades de Terapia Intensiva , Apolipoproteína A-I , Apolipoproteínas B , Apolipoproteína A-II
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA