Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332.087
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 41: 301-316, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36750315

RESUMO

As an important sensor in the innate immune system, NLRP3 detects exogenous pathogenic invasions and endogenous cellular damage and responds by forming the NLRP3 inflammasome, a supramolecular complex that activates caspase-1. The three major components of the NLRP3 inflammasome are NLRP3, which captures the danger signals and recruits downstream molecules; caspase-1, which elicits maturation of the cytokines IL-1ß and IL-18 and processing of gasdermin D to mediate cytokine release and pyroptosis; and ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain), which functions as a bridge connecting NLRP3 and caspase-1. In this article, we review the structural information that has been obtained on the NLRP3 inflammasome and its components or subcomplexes, with special focus on the inactive NLRP3 cage, the active NLRP3-NEK7 (NIMA-related kinase 7)-ASC inflammasome disk, and the PYD-PYD and CARD-CARD homotypic filamentous scaffolds of the inflammasome. We further implicate structure-derived mechanisms for the assembly and activation of the NLRP3 inflammasome.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Animais , Inflamassomos/química , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Apoptose , Citocinas/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo
2.
Annu Rev Immunol ; 40: 469-498, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35138947

RESUMO

Intracellular pathogens pose a significant threat to animals. In defense, innate immune sensors attempt to detect these pathogens using pattern recognition receptors that either directly detect microbial molecules or indirectly detect their pathogenic activity. These sensors trigger different forms of regulated cell death, including pyroptosis, apoptosis, and necroptosis, which eliminate the infected host cell niche while simultaneously promoting beneficial immune responses. These defenses force intracellular pathogens to evolve strategies to minimize or completely evade the sensors. In this review, we discuss recent advances in our understanding of the cytosolic pattern recognition receptors that drive cell death, including NLRP1, NLRP3, NLRP6, NLRP9, NLRC4, AIM2, IFI16, and ZBP1.


Assuntos
Inflamassomos , Piroptose , Animais , Apoptose , Morte Celular , Humanos , Inflamassomos/metabolismo , Necroptose
3.
Annu Rev Immunol ; 39: 791-817, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902311

RESUMO

Programmed cell death (PCD) is a requisite feature of development and homeostasis but can also be indicative of infections, injuries, and pathologies. In concordance with these heterogeneous contexts, an array of disparate effector responses occur downstream of cell death and its clearance-spanning tissue morphogenesis, homeostatic turnover, host defense, active dampening of inflammation, and tissue repair. This raises a fundamental question of how a single contextually appropriate response ensues after an event of PCD. To explore how complex inputs may together tailor the specificity of the resulting effector response, here we consider (a) the varying contexts during which different cell death modalities are observed, (b) the nature of the information that can be passed on by cell corpses, and (c) the ways by which efferocyte populations synthesize signals from dying cells with those from the surrounding microenvironment.


Assuntos
Apoptose , Animais , Morte Celular , Homeostase , Humanos
4.
Annu Rev Immunol ; 39: 77-101, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33441019

RESUMO

Nearly all animal cells contain proteins evolved to trigger the destruction of the cell in which they reside. The activation of these proteins occurs via sequential programs, and much effort has been expended in delineating the molecular mechanisms underlying the resulting processes of programmed cell death (PCD). These efforts have led to the definition of apoptosis as a form of nonimmunogenic PCD that is required for normal development and tissue homeostasis, and of pyroptosis and necroptosis as forms of PCD initiated by pathogen infection that are associated with inflammation and immune activation. While this paradigm has served the field well, numerous recent studies have highlighted cross talk between these programs, challenging the idea that apoptosis, pyroptosis, and necroptosis are linear pathways with defined immunological outputs. Here, we discuss the emerging idea of cell death as a signaling network, considering connections between cell death pathways both as we observe them now and in their evolutionary origins. We also discuss the engagement and subversion of cell death pathways by pathogens, as well as the key immunological outcomes of these processes.


Assuntos
Necroptose , Piroptose , Animais , Apoptose , Humanos , Inflamação , Transdução de Sinais
5.
Annu Rev Immunol ; 38: 455-485, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32004099

RESUMO

Immune cells use a variety of membrane-disrupting proteins [complement, perforin, perforin-2, granulysin, gasdermins, mixed lineage kinase domain-like pseudokinase (MLKL)] to induce different kinds of death of microbes and host cells, some of which cause inflammation. After activation by proteolytic cleavage or phosphorylation, these proteins oligomerize, bind to membrane lipids, and disrupt membrane integrity. These membrane disruptors play a critical role in both innate and adaptive immunity. Here we review our current knowledge of the functions, specificity, activation, and regulation of membrane-disrupting immune proteins and what is known about the mechanisms behind membrane damage, the structure of the pores they form, how the cells expressing these lethal proteins are protected, and how cells targeted for destruction can sometimes escape death by repairing membrane damage.


Assuntos
Citotoxicidade Imunológica , Interações Hospedeiro-Patógeno/imunologia , Imunidade , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Apoptose/genética , Apoptose/imunologia , Biomarcadores , Membrana Celular/imunologia , Membrana Celular/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Regulação da Expressão Gênica , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Metabolismo dos Lipídeos , Necroptose/genética , Necroptose/imunologia , Necrose/genética , Necrose/imunologia , Necrose/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Relação Estrutura-Atividade
6.
Annu Rev Immunol ; 38: 567-595, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017655

RESUMO

Caspases are a family of conserved cysteine proteases that play key roles in programmed cell death and inflammation. In multicellular organisms, caspases are activated via macromolecular signaling complexes that bring inactive procaspases together and promote their proximity-induced autoactivation and proteolytic processing. Activation of caspases ultimately results in programmed execution of cell death, and the nature of this cell death is determined by the specific caspases involved. Pioneering new research has unraveled distinct roles and cross talk of caspases in the regulation of programmed cell death, inflammation, and innate immune responses. In-depth understanding of these mechanisms is essential to foster the development of precise therapeutic targets to treat autoinflammatory disorders, infectious diseases, and cancer. This review focuses on mechanisms governing caspase activation and programmed cell death with special emphasis on the recent progress in caspase cross talk and caspase-driven gasdermin D-induced pyroptosis.


Assuntos
Caspases/metabolismo , Morte Celular , Inflamação/etiologia , Inflamação/metabolismo , Proteínas de Neoplasias/genética , Piroptose/genética , Animais , Apoptose , Biomarcadores , Caspases/genética , Morte Celular/genética , Suscetibilidade a Doenças , Ativação Enzimática , Humanos , Inflamação/patologia , Proteínas de Neoplasias/metabolismo , Transdução de Sinais
7.
Annu Rev Immunol ; 36: 489-517, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29400998

RESUMO

The human body generates 10-100 billion cells every day, and the same number of cells die to maintain homeostasis in our body. Cells infected by bacteria or viruses also die. The cell death that occurs under physiological conditions mainly proceeds by apoptosis, which is a noninflammatory, or silent, process, while pathogen infection induces necroptosis or pyroptosis, which activates the immune system and causes inflammation. Dead cells generated by apoptosis are quickly engulfed by macrophages for degradation. Caspases are a large family of cysteine proteases that act in cascades. A cascade that leads to caspase 3 activation mediates apoptosis and is responsible for killing cells, recruiting macrophages, and presenting an "eat me" signal(s). When apoptotic cells are not efficiently engulfed by macrophages, they undergo secondary necrosis and release intracellular materials that represent a damage-associated molecular pattern, which may lead to a systemic lupus-like autoimmune disease.


Assuntos
Apoptose/imunologia , Fagocitose/imunologia , Animais , Biomarcadores , Caspases/metabolismo , Morte Celular , Humanos , Lisossomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Receptores de Morte Celular/metabolismo , Transdução de Sinais , Especificidade por Substrato
8.
Cell ; 187(2): 235-256, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242081

RESUMO

Cell death supports morphogenesis during development and homeostasis after birth by removing damaged or obsolete cells. It also curtails the spread of pathogens by eliminating infected cells. Cell death can be induced by the genetically programmed suicide mechanisms of apoptosis, necroptosis, and pyroptosis, or it can be a consequence of dysregulated metabolism, as in ferroptosis. Here, we review the signaling mechanisms underlying each cell-death pathway, discuss how impaired or excessive activation of the distinct cell-death processes can promote disease, and highlight existing and potential therapies for redressing imbalances in cell death in cancer and other diseases.


Assuntos
Morte Celular , Transdução de Sinais , Humanos , Apoptose , Ferroptose , Homeostase , Piroptose
9.
Cell ; 187(14): 3652-3670.e40, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38843833

RESUMO

While ultraviolet (UV) radiation damages DNA, eliciting the DNA damage response (DDR), it also damages RNA, triggering transcriptome-wide ribosomal collisions and eliciting a ribotoxic stress response (RSR). However, the relative contributions, timing, and regulation of these pathways in determining cell fate is unclear. Here we use time-resolved phosphoproteomic, chemical-genetic, single-cell imaging, and biochemical approaches to create a chronological atlas of signaling events activated in cells responding to UV damage. We discover that UV-induced apoptosis is mediated by the RSR kinase ZAK and not through the DDR. We identify two negative-feedback modules that regulate ZAK-mediated apoptosis: (1) GCN2 activation limits ribosomal collisions and attenuates ZAK-mediated RSR and (2) ZAK activity leads to phosphodegron autophosphorylation and its subsequent degradation. These events tune ZAK's activity to collision levels to establish regimes of homeostasis, tolerance, and death, revealing its key role as the cellular sentinel for nucleic acid damage.


Assuntos
Apoptose , Dano ao DNA , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Apoptose/efeitos da radiação , Fosforilação/efeitos da radiação , Humanos , Transdução de Sinais/efeitos da radiação , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico/efeitos da radiação , Ribossomos/metabolismo , Morte Celular/efeitos da radiação
10.
Cell ; 187(3): 624-641.e23, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211590

RESUMO

The therapeutic potential for human type 2 innate lymphoid cells (ILC2s) has been underexplored. Although not observed in mouse ILC2s, we found that human ILC2s secrete granzyme B (GZMB) and directly lyse tumor cells by inducing pyroptosis and/or apoptosis, which is governed by a DNAM-1-CD112/CD155 interaction that inactivates the negative regulator FOXO1. Over time, the high surface density expression of CD155 in acute myeloid leukemia cells impairs the expression of DNAM-1 and GZMB, thus allowing for immune evasion. We describe a reliable platform capable of up to 2,000-fold expansion of human ILC2s within 4 weeks, whose molecular and cellular ILC2 profiles were validated by single-cell RNA sequencing. In both leukemia and solid tumor models, exogenously administered expanded human ILC2s show significant antitumor effects in vivo. Collectively, we demonstrate previously unreported properties of human ILC2s and identify this innate immune cell subset as a member of the cytolytic immune effector cell family.


Assuntos
Granzimas , Imunidade Inata , Linfócitos , Neoplasias , Animais , Humanos , Camundongos , Apoptose , Citocinas , Neoplasias/imunologia , Neoplasias/terapia
11.
Cell ; 187(11): 2785-2800.e16, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657604

RESUMO

Natural cell death pathways such as apoptosis and pyroptosis play dual roles: they eliminate harmful cells and modulate the immune system by dampening or stimulating inflammation. Synthetic protein circuits capable of triggering specific death programs in target cells could similarly remove harmful cells while appropriately modulating immune responses. However, cells actively influence their death modes in response to natural signals, making it challenging to control death modes. Here, we introduce naturally inspired "synpoptosis" circuits that proteolytically regulate engineered executioner proteins and mammalian cell death. These circuits direct cell death modes, respond to combinations of protease inputs, and selectively eliminate target cells. Furthermore, synpoptosis circuits can be transmitted intercellularly, offering a foundation for engineering synthetic killer cells that induce desired death programs in target cells without self-destruction. Together, these results lay the groundwork for programmable control of mammalian cell death.


Assuntos
Morte Celular , Humanos , Apoptose , Caspases/metabolismo , Células HEK293 , Proteólise , Piroptose/efeitos dos fármacos , Biologia Sintética/métodos , Células Cultivadas
12.
Cell ; 187(14): 3671-3689.e23, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38866017

RESUMO

Ongoing, early-stage clinical trials illustrate the translational potential of human pluripotent stem cell (hPSC)-based cell therapies in Parkinson's disease (PD). However, an unresolved challenge is the extensive cell death following transplantation. Here, we performed a pooled CRISPR-Cas9 screen to enhance postmitotic dopamine neuron survival in vivo. We identified p53-mediated apoptotic cell death as a major contributor to dopamine neuron loss and uncovered a causal link of tumor necrosis factor alpha (TNF-α)-nuclear factor κB (NF-κB) signaling in limiting cell survival. As a translationally relevant strategy to purify postmitotic dopamine neurons, we identified cell surface markers that enable purification without the need for genetic reporters. Combining cell sorting and treatment with adalimumab, a clinically approved TNF-α inhibitor, enabled efficient engraftment of postmitotic dopamine neurons with extensive reinnervation and functional recovery in a preclinical PD mouse model. Thus, transient TNF-α inhibition presents a clinically relevant strategy to enhance survival and enable engraftment of postmitotic hPSC-derived dopamine neurons in PD.


Assuntos
Sobrevivência Celular , Neurônios Dopaminérgicos , NF-kappa B , Fator de Necrose Tumoral alfa , Proteína Supressora de Tumor p53 , Neurônios Dopaminérgicos/metabolismo , Animais , Humanos , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais , Doença de Parkinson/metabolismo , Células-Tronco Pluripotentes/metabolismo , Apoptose , Modelos Animais de Doenças , Sistemas CRISPR-Cas
13.
Cell ; 186(25): 5606-5619.e24, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065081

RESUMO

Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity-shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.


Assuntos
Fibroblastos Associados a Câncer , Humanos , Apoptose , Organoides , Transdução de Sinais , Análise de Célula Única , Avaliação Pré-Clínica de Medicamentos , Algoritmos , Células-Tronco
14.
Cell ; 186(6): 1144-1161.e18, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36868219

RESUMO

Germinal centers (GCs) that form within lymphoid follicles during antibody responses are sites of massive cell death. Tingible body macrophages (TBMs) are tasked with apoptotic cell clearance to prevent secondary necrosis and autoimmune activation by intracellular self antigens. We show by multiple redundant and complementary methods that TBMs derive from a lymph node-resident, CD169-lineage, CSF1R-blockade-resistant precursor that is prepositioned in the follicle. Non-migratory TBMs use cytoplasmic processes to chase and capture migrating dead cell fragments using a "lazy" search strategy. Follicular macrophages activated by the presence of nearby apoptotic cells can mature into TBMs in the absence of GCs. Single-cell transcriptomics identified a TBM cell cluster in immunized lymph nodes which upregulated genes involved in apoptotic cell clearance. Thus, apoptotic B cells in early GCs trigger activation and maturation of follicular macrophages into classical TBMs to clear apoptotic debris and prevent antibody-mediated autoimmune diseases.


Assuntos
Centro Germinativo , Linfonodos , Macrófagos , Apoptose , Linfócitos B , Linfonodos/citologia , Macrófagos/citologia , Macrófagos/metabolismo
15.
Cell ; 185(9): 1521-1538.e18, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35447071

RESUMO

Interest in harnessing natural killer (NK) cells for cancer immunotherapy is rapidly growing. However, efficacy of NK cell-based immunotherapy remains limited in most trials. Strategies to augment the killing efficacy of NK cells are thus much needed. In the current study, we found that mitochondrial apoptosis (mtApoptosis) pathway is essential for efficient NK killing, especially at physiologically relevant effector-to-target ratios. Furthermore, NK cells can prime cancer cells for mtApoptosis and mitochondrial priming status affects cancer-cell susceptibility to NK-mediated killing. Interestingly, pre-activating NK cells confers on them resistance to BH3 mimetics. Combining BH3 mimetics with NK cells synergistically kills cancer cells in vitro and suppresses tumor growth in vivo. The ideal BH3 mimetic to use in such an approach can be predicted by BH3 profiling. We herein report a rational and precision strategy to augment NK-based immunotherapy, which may be adaptable to T cell-based immunotherapies as well.


Assuntos
Imunoterapia , Células Matadoras Naturais , Neoplasias/terapia , Apoptose , Neoplasias/patologia
16.
Cell ; 185(9): 1451-1454, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35487189

RESUMO

Natural killer (NK)-based therapies against cancer are emerging, but the understanding of NK cell functions needs to be completed to optimize these treatments. In this issue, Pan et al. (2022) show that pro-apoptotic molecules, such as BH3-mimetics, synergize with NK cells to induce mitochondria-driven apoptosis in tumor cells, thereby enhancing the efficacy of NK cell therapies.


Assuntos
Células Matadoras Naturais , Neoplasias , Apoptose , Humanos , Imunoterapia Adotiva , Mitocôndrias/patologia , Neoplasias/patologia , Neoplasias/terapia
17.
Cell ; 185(26): 4887-4903.e17, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36563662

RESUMO

Our bodies turn over billions of cells daily via apoptosis and are in turn cleared by phagocytes via the process of "efferocytosis." Defects in efferocytosis are now linked to various inflammatory diseases. Here, we designed a strategy to boost efferocytosis, denoted "chimeric receptor for efferocytosis" (CHEF). We fused a specific signaling domain within the cytoplasmic adapter protein ELMO1 to the extracellular phosphatidylserine recognition domains of the efferocytic receptors BAI1 or TIM4, generating BELMO and TELMO, respectively. CHEF-expressing phagocytes display a striking increase in efferocytosis. In mouse models of inflammation, BELMO expression attenuates colitis, hepatotoxicity, and nephrotoxicity. In mechanistic studies, BELMO increases ER-resident enzymes and chaperones to overcome protein-folding-associated toxicity, which was further validated in a model of ER-stress-induced renal ischemia-reperfusion injury. Finally, TELMO introduction after onset of kidney injury significantly reduced fibrosis. Collectively, these data advance a concept of chimeric efferocytic receptors to boost efferocytosis and dampen inflammation.


Assuntos
Macrófagos , Fagocitose , Animais , Camundongos , Macrófagos/metabolismo , Inflamação/metabolismo , Fagócitos/metabolismo , Proteínas de Transporte/metabolismo , Apoptose , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
18.
Cell ; 185(18): 3356-3374.e22, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055199

RESUMO

Drug-tolerant persister cells (persisters) evade apoptosis upon targeted and conventional cancer therapies and represent a major non-genetic barrier to effective cancer treatment. Here, we show that cells that survive treatment with pro-apoptotic BH3 mimetics display a persister phenotype that includes colonization and metastasis in vivo and increased sensitivity toward ferroptosis by GPX4 inhibition. We found that sublethal mitochondrial outer membrane permeabilization (MOMP) and holocytochrome c release are key requirements for the generation of the persister phenotype. The generation of persisters is independent of apoptosome formation and caspase activation, but instead, cytosolic cytochrome c induces the activation of heme-regulated inhibitor (HRI) kinase and engagement of the integrated stress response (ISR) with the consequent synthesis of ATF4, all of which are required for the persister phenotype. Our results reveal that sublethal cytochrome c release couples sublethal MOMP to caspase-independent initiation of an ATF4-dependent, drug-tolerant persister phenotype.


Assuntos
Citocromos c , Neoplasias/tratamento farmacológico , Animais , Apoptose , Proteínas de Transporte , Caspases/metabolismo , Citocromos c/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Mitocôndrias/metabolismo
19.
Cell ; 185(14): 2576-2590.e12, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623357

RESUMO

Mouse germline cysts, on average, develop into six oocytes supported by 24 nurse cells that transfer cytoplasm and organelles to generate a Balbiani body. We showed that between E14.5 and P5, cysts periodically activate some nurse cells to begin cytoplasmic transfer, which causes them to shrink and turnover within 2 days. Nurse cells die by a programmed cell death (PCD) pathway involving acidification, similar to Drosophila nurse cells, and only infrequently by apoptosis. Prior to initiating transfer, nurse cells co-cluster by scRNA-seq with their pro-oocyte sisters, but during their final 2 days, they cluster separately. The genes promoting oocyte development and nurse cell PCD are upregulated, whereas the genes that repress transfer, such as Tex14, and oocyte factors, such as Nobox and Lhx8, are under-expressed. The transferred nurse cell centrosomes build a cytocentrum that establishes a large microtubule aster in the primordial oocyte that organizes the Balbiani body, defining the earliest oocyte polarity.


Assuntos
Linhagem da Célula , Cistos , Oócitos , Animais , Apoptose , Crescimento Celular , Cistos/genética , Cistos/metabolismo , Citoplasma/metabolismo , Drosophila melanogaster , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Oócitos/citologia , Oócitos/metabolismo , Ovário/citologia , Ovário/embriologia , Ovário/metabolismo
20.
Nat Rev Mol Cell Biol ; 25(5): 379-395, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38110635

RESUMO

Regulated cell death mediated by dedicated molecular machines, known as programmed cell death, plays important roles in health and disease. Apoptosis, necroptosis and pyroptosis are three such programmed cell death modalities. The caspase family of cysteine proteases serve as key regulators of programmed cell death. During apoptosis, a cascade of caspase activation mediates signal transduction and cellular destruction, whereas pyroptosis occurs when activated caspases cleave gasdermins, which can then form pores in the plasma membrane. Necroptosis, a form of caspase-independent programmed necrosis mediated by RIPK3 and MLKL, is inhibited by caspase-8-mediated cleavage of RIPK1. Disruption of cellular homeostatic mechanisms that are essential for cell survival, such as normal ionic and redox balance and lysosomal flux, can also induce cell death without invoking programmed cell death mechanisms. Excitotoxicity, ferroptosis and lysosomal cell death are examples of such cell death modes. In this Review, we provide an overview of the major cell death mechanisms, highlighting the latest insights into their complex regulation and execution, and their relevance to human diseases.


Assuntos
Morte Celular , Animais , Humanos , Apoptose/fisiologia , Caspases/metabolismo , Morte Celular/fisiologia , Ferroptose/fisiologia , Lisossomos/metabolismo , Necroptose , Piroptose/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA