Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.191
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 180(3): 552-567.e25, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004462

RESUMO

Cognitive faculties such as imagination, planning, and decision-making entail the ability to represent hypothetical experience. Crucially, animal behavior in natural settings implies that the brain can represent hypothetical future experience not only quickly but also constantly over time, as external events continually unfold. To determine how this is possible, we recorded neural activity in the hippocampus of rats navigating a maze with multiple spatial paths. We found neural activity encoding two possible future scenarios (two upcoming maze paths) in constant alternation at 8 Hz: one scenario per ∼125-ms cycle. Further, we found that the underlying dynamics of cycling (both inter- and intra-cycle dynamics) generalized across qualitatively different representational correlates (location and direction). Notably, cycling occurred across moving behaviors, including during running. These findings identify a general dynamic process capable of quickly and continually representing hypothetical experience, including that of multiple possible futures.


Assuntos
Comportamento Animal/fisiologia , Cognição/fisiologia , Tomada de Decisões/fisiologia , Hipocampo/fisiologia , Potenciais de Ação/fisiologia , Animais , Locomoção/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Ratos , Ratos Long-Evans , Ritmo Teta/fisiologia
2.
Cell ; 178(4): 867-886.e24, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398341

RESUMO

Somatosensory over-reactivity is common among patients with autism spectrum disorders (ASDs) and is hypothesized to contribute to core ASD behaviors. However, effective treatments for sensory over-reactivity and ASDs are lacking. We found distinct somatosensory neuron pathophysiological mechanisms underlie tactile abnormalities in different ASD mouse models and contribute to some ASD-related behaviors. Developmental loss of ASD-associated genes Shank3 or Mecp2 in peripheral mechanosensory neurons leads to region-specific brain abnormalities, revealing links between developmental somatosensory over-reactivity and the genesis of aberrant behaviors. Moreover, acute treatment with a peripherally restricted GABAA receptor agonist that acts directly on mechanosensory neurons reduced tactile over-reactivity in six distinct ASD models. Chronic treatment of Mecp2 and Shank3 mutant mice improved body condition, some brain abnormalities, anxiety-like behaviors, and some social impairments but not memory impairments, motor deficits, or overgrooming. Our findings reveal a potential therapeutic strategy targeting peripheral mechanosensory neurons to treat tactile over-reactivity and select ASD-related behaviors.


Assuntos
Transtorno do Espectro Autista/metabolismo , Agonistas GABAérgicos/farmacologia , Ácidos Isonicotínicos/farmacologia , Fenótipo , Células Receptoras Sensoriais/efeitos dos fármacos , Tato/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Ansiedade/tratamento farmacológico , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Agonistas GABAérgicos/uso terapêutico , Ácidos Isonicotínicos/uso terapêutico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética , Inibição Pré-Pulso/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo
3.
Cell ; 173(5): 1280-1292.e18, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29681453

RESUMO

The mammalian hippocampus, comprised of serially connected subfields, participates in diverse behavioral and cognitive functions. It has been postulated that parallel circuitry embedded within hippocampal subfields may underlie such functional diversity. We sought to identify, delineate, and manipulate this putatively parallel architecture in the dorsal subiculum, the primary output subfield of the dorsal hippocampus. Population and single-cell RNA-seq revealed that the subiculum can be divided into two spatially adjacent subregions associated with prominent differences in pyramidal cell gene expression. Pyramidal cells occupying these two regions differed in their long-range inputs, local wiring, projection targets, and electrophysiological properties. Leveraging gene-expression differences across these regions, we use genetically restricted neuronal silencing to show that these regions differentially contribute to spatial working memory. This work provides a coherent molecular-, cellular-, circuit-, and behavioral-level demonstration that the hippocampus embeds structurally and functionally dissociable streams within its serial architecture.


Assuntos
Hipocampo/metabolismo , Animais , Axônios/fisiologia , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Hipocampo/citologia , Técnicas In Vitro , Masculino , Aprendizagem em Labirinto , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Análise de Componente Principal , Células Piramidais/citologia , Células Piramidais/metabolismo , Análise de Sequência de RNA , Transcriptoma
4.
Cell ; 174(5): 1216-1228.e19, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30057111

RESUMO

Protein phosphorylation is a prevalent and ubiquitous mechanism of regulation. Kinases are popular drug targets, but identifying selective phosphatase inhibitors has been challenging. Here, we used surface plasmon resonance to design a method to enable target-based discovery of selective serine/threonine phosphatase inhibitors. The method targeted a regulatory subunit of protein phosphatase 1, PPP1R15B (R15B), a negative regulator of proteostasis. This yielded Raphin1, a selective inhibitor of R15B. In cells, Raphin1 caused a rapid and transient accumulation of its phosphorylated substrate, resulting in a transient attenuation of protein synthesis. In vitro, Raphin1 inhibits the recombinant R15B-PP1c holoenzyme, but not the closely related R15A-PP1c, by interfering with substrate recruitment. Raphin1 was orally bioavailable, crossed the blood-brain barrier, and demonstrated efficacy in a mouse model of Huntington's disease. This identifies R15B as a druggable target and provides a platform for target-based discovery of inhibitors of serine/threonine phosphatases.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Proteína Fosfatase 1/antagonistas & inibidores , Animais , Peso Corporal , Modelos Animais de Doenças , Descoberta de Drogas , Feminino , Guanidinas/química , Células HeLa , Humanos , Doença de Huntington/metabolismo , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteína Fosfatase 1/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Proteostase , Proteínas Recombinantes/farmacologia , Ressonância de Plasmônio de Superfície
5.
Cell ; 161(6): 1320-33, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26027737

RESUMO

A striking neurochemical form of compartmentalization has been found in the striatum of humans and other species, dividing it into striosomes and matrix. The function of this organization has been unclear, but the anatomical connections of striosomes indicate their relation to emotion-related brain regions, including the medial prefrontal cortex. We capitalized on this fact by combining pathway-specific optogenetics and electrophysiology in behaving rats to search for selective functions of striosomes. We demonstrate that a medial prefronto-striosomal circuit is selectively active in and causally necessary for cost-benefit decision-making under approach-avoidance conflict conditions known to evoke anxiety in humans. We show that this circuit has unique dynamic properties likely reflecting striatal interneuron function. These findings demonstrate that cognitive and emotion-related functions are, like sensory-motor processing, subject to encoding within compartmentally organized representations in the forebrain and suggest that striosome-targeting corticostriatal circuits can underlie neural processing of decisions fundamental for survival.


Assuntos
Comportamento de Escolha , Conflito Psicológico , Tomada de Decisões , Córtex Pré-Frontal/fisiologia , Animais , Núcleo Caudado/citologia , Núcleo Caudado/fisiologia , Meio Ambiente , Giro do Cíngulo/citologia , Giro do Cíngulo/fisiologia , Aprendizagem em Labirinto , Córtex Pré-Frontal/citologia , Ratos
6.
Nature ; 629(8012): 630-638, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720085

RESUMO

Hippocampal representations that underlie spatial memory undergo continuous refinement following formation1. Here, to track the spatial tuning of neurons dynamically during offline states, we used a new Bayesian learning approach based on the spike-triggered average decoded position in ensemble recordings from freely moving rats. Measuring these tunings, we found spatial representations within hippocampal sharp-wave ripples that were stable for hours during sleep and were strongly aligned with place fields initially observed during maze exploration. These representations were explained by a combination of factors that included preconfigured structure before maze exposure and representations that emerged during θ-oscillations and awake sharp-wave ripples while on the maze, revealing the contribution of these events in forming ensembles. Strikingly, the ripple representations during sleep predicted the future place fields of neurons during re-exposure to the maze, even when those fields deviated from previous place preferences. By contrast, we observed tunings with poor alignment to maze place fields during sleep and rest before maze exposure and in the later stages of sleep. In sum, the new decoding approach allowed us to infer and characterize the stability and retuning of place fields during offline periods, revealing the rapid emergence of representations following new exploration and the role of sleep in the representational dynamics of the hippocampus.


Assuntos
Hipocampo , Sono , Memória Espacial , Animais , Ratos , Potenciais de Ação/fisiologia , Teorema de Bayes , Hipocampo/citologia , Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Sono/fisiologia , Memória Espacial/fisiologia , Ritmo Teta/fisiologia , Vigília/fisiologia
7.
Nature ; 630(8018): 935-942, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867049

RESUMO

Memories benefit from sleep1, and the reactivation and replay of waking experiences during hippocampal sharp-wave ripples (SWRs) are considered to be crucial for this process2. However, little is known about how these patterns are impacted by sleep loss. Here we recorded CA1 neuronal activity over 12 h in rats across maze exploration, sleep and sleep deprivation, followed by recovery sleep. We found that SWRs showed sustained or higher rates during sleep deprivation but with lower power and higher frequency ripples. Pyramidal cells exhibited sustained firing during sleep deprivation and reduced firing during sleep, yet their firing rates were comparable during SWRs regardless of sleep state. Despite the robust firing and abundance of SWRs during sleep deprivation, we found that the reactivation and replay of neuronal firing patterns was diminished during these periods and, in some cases, completely abolished compared to ad libitum sleep. Reactivation partially rebounded after recovery sleep but failed to reach the levels found in natural sleep. These results delineate the adverse consequences of sleep loss on hippocampal function at the network level and reveal a dissociation between the many SWRs elicited during sleep deprivation and the few reactivations and replays that occur during these events.


Assuntos
Região CA1 Hipocampal , Células Piramidais , Privação do Sono , Sono , Animais , Privação do Sono/fisiopatologia , Ratos , Masculino , Células Piramidais/fisiologia , Sono/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA1 Hipocampal/citologia , Hipocampo/fisiologia , Hipocampo/citologia , Vigília/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Ratos Sprague-Dawley
8.
Cell ; 157(4): 845-57, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24768692

RESUMO

Neuronal oscillations have been hypothesized to play an important role in cognition and its ensuing behavior, but evidence that links a specific neuronal oscillation to a discrete cognitive event is largely lacking. We measured neuronal activity in the entorhinal-hippocampal circuit while mice performed a reward-based spatial working memory task. During the memory retention period, a transient burst of high gamma synchronization preceded an animal's correct choice in both prospective planning and retrospective mistake correction, but not an animal's incorrect choice. Optogenetic inhibition of the circuit targeted to the choice point area resulted in a coordinated reduction in both high gamma synchrony and correct execution of a working-memory-guided behavior. These findings suggest that transient high gamma synchrony contributes to the successful execution of spatial working memory. Furthermore, our data are consistent with an association between transient high gamma synchrony and explicit awareness of the working memory content.


Assuntos
Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Aprendizagem em Labirinto , Memória de Curto Prazo , Neurônios/fisiologia , Animais , Fenômenos Eletrofisiológicos , Córtex Entorrinal/citologia , Hipocampo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Nature ; 620(7974): 595-599, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558871

RESUMO

Migratory songbirds have the remarkable ability to extract directional information from the Earth's magnetic field1,2. The exact mechanism of this light-dependent magnetic compass sense, however, is not fully understood. The most promising hypothesis focuses on the quantum spin dynamics of transient radical pairs formed in cryptochrome proteins in the retina3-5. Frustratingly, much of the supporting evidence for this theory is circumstantial, largely because of the extreme challenges posed by genetic modification of wild birds. Drosophila has therefore been recruited as a model organism, and several influential reports of cryptochrome-mediated magnetic field effects on fly behaviour have been widely interpreted as support for a radical pair-based mechanism in birds6-23. Here we report the results of an extensive study testing magnetic field effects on 97,658 flies moving in a two-arm maze and on 10,960 flies performing the spontaneous escape behaviour known as negative geotaxis. Under meticulously controlled conditions and with vast sample sizes, we have been unable to find evidence for magnetically sensitive behaviour in Drosophila. Moreover, after reassessment of the statistical approaches and sample sizes used in the studies that we tried to replicate, we suggest that many-if not all-of the original results were false positives. Our findings therefore cast considerable doubt on the existence of magnetic sensing in Drosophila and thus strongly suggest that night-migratory songbirds remain the organism of choice for elucidating the mechanism of light-dependent magnetoreception.


Assuntos
Drosophila melanogaster , Campos Magnéticos , Resultados Negativos , Animais , Migração Animal , Criptocromos/metabolismo , Aves Canoras/fisiologia , Drosophila melanogaster/fisiologia , Modelos Animais , Reação de Fuga , Aprendizagem em Labirinto , Tamanho da Amostra , Luz
10.
Nature ; 607(7920): 741-746, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794477

RESUMO

The hippocampal cognitive map supports navigation towards, or away from, salient locations in familiar environments1. Although much is known about how the hippocampus encodes location in world-centred coordinates, how it supports flexible navigation is less well understood. We recorded CA1 place cells while rats navigated to a goal on the honeycomb maze2. The maze tests navigation via direct and indirect paths to the goal and allows the directionality of place cells to be assessed at each choice point. Place fields showed strong directional polarization characterized by vector fields that converged to sinks distributed throughout the environment. The distribution of these 'convergence sinks' (ConSinks) was centred near the goal location and the population vector field converged on the goal, providing a strong navigational signal. Changing the goal location led to movement of ConSinks and vector fields towards the new goal. The honeycomb maze allows independent assessment of spatial representation and spatial action in place cell activity and shows how the latter relates to the former. The results suggest that the hippocampus creates a vector-based model to support flexible navigation, allowing animals to select optimal paths to destinations from any location in the environment.


Assuntos
Região CA1 Hipocampal , Células de Lugar , Navegação Espacial , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Objetivos , Aprendizagem em Labirinto , Células de Lugar/fisiologia , Ratos , Navegação Espacial/fisiologia
11.
Nature ; 599(7885): 442-448, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34671157

RESUMO

Three major pillars of hippocampal function are spatial navigation1, Hebbian synaptic plasticity2 and spatial selectivity3. The hippocampus is also implicated in episodic memory4, but the precise link between these four functions is missing. Here we report the multiplexed selectivity of dorsal CA1 neurons while rats performed a virtual navigation task using only distal visual cues5, similar to the standard water maze test of spatial memory1. Neural responses primarily encoded path distance from the start point and the head angle of rats, with a weak allocentric spatial component similar to that in primates but substantially weaker than in rodents in the real world. Often, the same cells multiplexed and encoded path distance, angle and allocentric position in a sequence, thus encoding a journey-specific episode. The strength of neural activity and tuning strongly correlated with performance, with a temporal relationship indicating neural responses influencing behaviour and vice versa. Consistent with computational models of associative and causal Hebbian learning6,7, neural responses showed increasing clustering8 and became better predictors of behaviourally relevant variables, with the average neurometric curves exceeding and converging to psychometric curves. Thus, hippocampal neurons multiplex and exhibit highly plastic, task- and experience-dependent tuning to path-centric and allocentric variables to form episodic sequences supporting navigation.


Assuntos
Hipocampo/citologia , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Navegação Espacial/fisiologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Sinais (Psicologia) , Masculino , Aprendizagem em Labirinto , Neurônios/fisiologia , Psicometria , Ratos , Ratos Long-Evans , Memória Espacial/fisiologia
12.
Nature ; 591(7851): 615-619, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33627872

RESUMO

The ability to rapidly adapt to novel situations is essential for survival, and this flexibility is impaired in many neuropsychiatric disorders1. Thus, understanding whether and how novelty prepares, or primes, brain circuitry to facilitate cognitive flexibility has important translational relevance. Exposure to novelty recruits the hippocampus and medial prefrontal cortex (mPFC)2 and may prime hippocampal-prefrontal circuitry for subsequent learning-associated plasticity. Here we show that novelty resets the neural circuits that link the ventral hippocampus (vHPC) and the mPFC, facilitating the ability to overcome an established strategy. Exposing mice to novelty disrupted a previously encoded strategy by reorganizing vHPC activity to local theta (4-12 Hz) oscillations and weakening existing vHPC-mPFC connectivity. As mice subsequently adapted to a new task, vHPC neurons developed new task-associated activity, vHPC-mPFC connectivity was strengthened, and mPFC neurons updated to encode the new rules. Without novelty, however, mice adhered to their established strategy. Blocking dopamine D1 receptors (D1Rs) or inhibiting novelty-tagged cells that express D1Rs in the vHPC prevented these behavioural and physiological effects of novelty. Furthermore, activation of D1Rs mimicked the effects of novelty. These results suggest that novelty promotes adaptive learning by D1R-mediated resetting of vHPC-mPFC circuitry, thereby enabling subsequent learning-associated circuit plasticity.


Assuntos
Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Feminino , Hipocampo/citologia , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/citologia
13.
Nature ; 580(7805): 647-652, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32350463

RESUMO

Neurodevelopment is characterized by rapid rates of neural cell proliferation and differentiation followed by massive cell death in which more than half of all recently generated brain cells are pruned back. Large amounts of DNA damage, cellular debris, and by-products of cellular stress are generated during these neurodevelopmental events, all of which can potentially activate immune signalling. How the immune response to this collateral damage influences brain maturation and function remains unknown. Here we show that the AIM2 inflammasome contributes to normal brain development and that disruption of this immune sensor of genotoxic stress leads to behavioural abnormalities. During infection, activation of the AIM2 inflammasome in response to double-stranded DNA damage triggers the production of cytokines as well as a gasdermin-D-mediated form of cell death known as pyroptosis1-4. We observe pronounced AIM2 inflammasome activation in neurodevelopment and find that defects in this sensor of DNA damage result in anxiety-related behaviours in mice. Furthermore, we show that the AIM2 inflammasome contributes to central nervous system (CNS) homeostasis specifically through its regulation of gasdermin-D, and not via its involvement in the production of the cytokines IL-1 and/or IL-18. Consistent with a role for this sensor of genomic stress in the purging of genetically compromised CNS cells, we find that defective AIM2 inflammasome signalling results in decreased neural cell death both in response to DNA damage-inducing agents and during neurodevelopment. Moreover, mutations in AIM2 lead to excessive accumulation of DNA damage in neurons as well as an increase in the number of neurons that incorporate into the adult brain. Our findings identify the inflammasome as a crucial player in establishing a properly formed CNS through its role in the removal of genetically compromised cells.


Assuntos
Encéfalo/crescimento & desenvolvimento , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Animais , Animais Recém-Nascidos , Ansiedade/patologia , Ansiedade/fisiopatologia , Ansiedade/psicologia , Comportamento Animal/fisiologia , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/deficiência , Caspase 1/metabolismo , Morte Celular , Proteínas de Ligação a DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Mutação , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas de Ligação a Fosfato/metabolismo
14.
PLoS Biol ; 20(1): e3001546, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100261

RESUMO

The subiculum is positioned at a critical juncture at the interface of the hippocampus with the rest of the brain. However, the exact roles of the subiculum in most hippocampal-dependent memory tasks remain largely unknown. One obstacle to make comparisons of neural firing patterns between the subiculum and hippocampus is the broad firing fields of the subicular cells. Here, we used spiking phases in relation to theta rhythm to parse the broad firing field of a subicular neuron into multiple subfields to find the unique functional contribution of the subiculum while male rats performed a hippocampal-dependent visual scene memory task. Some of the broad firing fields of the subicular neurons were successfully divided into multiple subfields similar to those in the CA1 by using the theta phase precession cycle. The new paradigm significantly improved the detection of task-relevant information in subicular cells without affecting the information content represented by CA1 cells. Notably, we found that multiple fields of a single subicular neuron, unlike those in the CA1, carried heterogeneous task-related information such as visual context and choice response. Our findings suggest that the subicular cells integrate multiple task-related factors by using theta rhythm to associate environmental context with action.


Assuntos
Potenciais de Ação/fisiologia , Região CA1 Hipocampal/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Ritmo Teta/fisiologia , Algoritmos , Animais , Região CA1 Hipocampal/anatomia & histologia , Masculino , Aprendizagem em Labirinto/fisiologia , Neurônios/citologia , Reconhecimento Visual de Modelos/fisiologia , Ratos , Ratos Long-Evans
15.
Mol Cell ; 66(3): 358-372.e7, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475871

RESUMO

A decline in proteasome function is causally connected to neuronal aging and aging-associated neuropathologies. By using hippocampal neurons in culture and in vivo, we show that aging triggers a reduction and a cytoplasm-to-nucleus redistribution of the E3 ubiquitin ligase mahogunin (MGRN1). Proteasome impairment induces MGRN1 monoubiquitination, the key post-translational modification for its nuclear entry. One potential mechanism for MGRN1 monoubiquitination is via progressive deubiquitination at the proteasome of polyubiquitinated MGRN1. Once in the nucleus, MGRN1 potentiates the transcriptional cellular response to proteotoxic stress. Inhibition of MGRN1 impairs ATF3-mediated neuronal responsiveness to proteosomal stress and increases neuronal stress, while increasing MGRN1 ameliorates signs of neuronal aging, including cognitive performance in old animals. Our results imply that, among others, the strength of neuronal survival in a proteasomal deterioration background, like during aging, depends on the fine-tuning of ubiquitination-deubiquitination.


Assuntos
Envelhecimento/metabolismo , Núcleo Celular/enzimologia , Citoplasma/enzimologia , Hipocampo/enzimologia , Neurônios/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Envelhecimento/genética , Envelhecimento/patologia , Animais , Comportamento Animal , Núcleo Celular/ultraestrutura , Sobrevivência Celular , Cromatina/enzimologia , Cognição , Células HEK293 , Hipocampo/ultraestrutura , Humanos , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Neurônios/ultraestrutura , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Ratos Wistar , Transdução de Sinais , Estresse Fisiológico , Transcrição Gênica , Transfecção , Ubiquitina-Proteína Ligases/genética
16.
Cell Mol Life Sci ; 81(1): 273, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900294

RESUMO

Long-term memory formation requires de novo RNA and protein synthesis. Using differential display PCR, we found that the NCoR1 cDNA fragment is differentially expressed between fast learners and slow learners, with fast learners showing a lower expression level than slow learners in the water maze learning task. Fast learners also show lower NCoR1 mRNA and protein expression levels. In addition, spatial training decreases both NCoR1 mRNA and protein expression, whereas NCoR1 conditional knockout (cKO) mice show enhanced spatial memory. In studying the molecular mechanism, we found that spatial training decreases the association between NCoR1 and DEC2. Both NCoR1 and DEC2 suppress the expression of BDNF, integrin α3 and SGK1 through C/EBPα binding to their DNA promoters, but overexpression of DEC2 in NCoR1 cKO mice rescues the decreased expression of these proteins compared with NCoR1 loxP mice overexpressing DEC2. Further, spatial training decreases DEC2 expression. Spatial training also enhances C/EBPα binding to Bdnf, Itga3 and Sgk1 promoters, an effect also observed in fast learners, and both NCoR1 and DEC2 control C/EBPα activity. Whereas knockdown of BDNF, integrin α3 or SGK1 expression impairs spatial learning and memory, it does not affect Y-maze performance, suggesting that BDNF, integrin α3 and SGK1 are involved in long-term memory formation, but not short-term memory formation. Moreover, NCoR1 expression is regulated by the JNK/c-Jun signaling pathway. Collectively, our findings identify DEC2 as a novel interacting protein of NCoR1 and elucidate the novel roles and mechanisms of NCoR1 and DEC2 in negative regulation of spatial memory formation.


Assuntos
Aprendizagem em Labirinto , Camundongos Knockout , Correpressor 1 de Receptor Nuclear , Memória Espacial , Animais , Memória Espacial/fisiologia , Camundongos , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 1 de Receptor Nuclear/genética , Aprendizagem em Labirinto/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas Serina-Treonina Quinases , Proteínas Imediatamente Precoces
17.
Proc Natl Acad Sci U S A ; 119(14): e2120717119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349340

RESUMO

SignificanceDistributed training has long been known to lead to more robust memory formation as compared to massed training. Using the water maze, a well-established task for assessing memory in laboratory rodents, we found that distributed and massed training differentially engage the dorsolateral and dorsomedial striatum, and optogenetic priming of dorsolateral striatum can artificially increase the robustness of massed training to the level of distributed training. Overall, our findings demonstrate that spatial memory consolidation engages different neural substrates depending on the training regimen, identifying a therapeutic avenue for memory enhancement.


Assuntos
Consolidação da Memória , Memória Espacial , Corpo Estriado , Hipocampo , Aprendizagem em Labirinto , Neostriado
18.
BMC Biol ; 22(1): 121, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783261

RESUMO

BACKGROUND: Huntington disease (HD) is a neurodegenerative disorder with complex motor and behavioural manifestations. The Q175 knock-in mouse model of HD has gained recent popularity as a genetically accurate model of the human disease. However, behavioural phenotypes are often subtle and progress slowly in this model. Here, we have implemented machine-learning algorithms to investigate behaviour in the Q175 model and compare differences between sexes and disease stages. We explore distinct behavioural patterns and motor functions in open field, rotarod, water T-maze, and home cage lever-pulling tasks. RESULTS: In the open field, we observed habituation deficits in two versions of the Q175 model (zQ175dn and Q175FDN, on two different background strains), and using B-SOiD, an advanced machine learning approach, we found altered performance of rearing in male manifest zQ175dn mice. Notably, we found that weight had a considerable effect on performance of accelerating rotarod and water T-maze tasks and controlled for this by normalizing for weight. Manifest zQ175dn mice displayed a deficit in accelerating rotarod (after weight normalization), as well as changes to paw kinematics specific to males. Our water T-maze experiments revealed response learning deficits in manifest zQ175dn mice and reversal learning deficits in premanifest male zQ175dn mice; further analysis using PyMouseTracks software allowed us to characterize new behavioural features in this task, including time at decision point and number of accelerations. In a home cage-based lever-pulling assessment, we found significant learning deficits in male manifest zQ175dn mice. A subset of mice also underwent electrophysiology slice experiments, revealing a reduced spontaneous excitatory event frequency in male manifest zQ175dn mice. CONCLUSIONS: Our study uncovered several behavioural changes in Q175 mice that differed by sex, age, and strain. Our results highlight the impact of weight and experimental protocol on behavioural results, and the utility of machine learning tools to examine behaviour in more detailed ways than was previously possible. Specifically, this work provides the field with an updated overview of behavioural impairments in this model of HD, as well as novel techniques for dissecting behaviour in the open field, accelerating rotarod, and T-maze tasks.


Assuntos
Comportamento Animal , Peso Corporal , Modelos Animais de Doenças , Doença de Huntington , Fenótipo , Animais , Doença de Huntington/fisiopatologia , Doença de Huntington/genética , Camundongos , Masculino , Feminino , Comportamento Animal/fisiologia , Fatores Sexuais , Fatores Etários , Aprendizado de Máquina , Aprendizagem em Labirinto
19.
J Neurosci ; 43(12): 2153-2167, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36596695

RESUMO

Study of the hippocampal place cell system has greatly enhanced our understanding of memory encoding for distinct places, but how episodic memories for distinct experiences occurring within familiar environments are encoded is less clear. We developed a spatial decision-making task in which male rats learned to navigate a multiarm maze to a goal location for food reward while avoiding maze arms in which aversive stimuli were delivered. Task learning induced partial remapping in CA1 place cells, allowing us to identify both remapping and stable cell populations. Remapping cells were recruited into sharp-wave ripples and associated replay events to a greater extent than stable cells, despite having similar firing rates during navigation of the maze. Our results suggest that recruitment into replay events may be a mechanism to incorporate new contextual information into a previously formed and stabilized spatial representation.SIGNIFICANCE STATEMENT Hippocampal place cells provide a map of space that animals use to navigate. This map can change to reflect changes in the physical properties of the environment in which the animal finds itself, and also in response to nonphysical contextual changes, such as changes in the valence of specific locations within that environment. We show here that cells which change their spatial tuning after a change in context are preferentially recruited into sharp-wave ripple-associated replay events compared with stable nonremapping cells. Thus, our data lend strong support to the hypothesis that replay is a mechanism for the storage of new spatial maps.


Assuntos
Hipocampo , Células de Lugar , Ratos , Masculino , Animais , Hipocampo/fisiologia , Ratos Long-Evans , Células de Lugar/fisiologia , Aprendizagem da Esquiva , Recompensa , Aprendizagem em Labirinto/fisiologia
20.
J Neurosci ; 43(34): 6061-6083, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37532464

RESUMO

Exposure to elevated doses of ionizing radiation, such as those in therapeutic procedures, catastrophic accidents, or space exploration, increases the risk of cognitive dysfunction. The full range of radiation-induced cognitive deficits is unknown, partly because commonly used tests may be insufficiently sensitive or may not be adequately tuned for assessing the fine behavioral features affected by radiation. Here, we asked whether γ-radiation might affect learning, memory, and the overall ability to adapt behavior to cope with a challenging environment (cognitive/behavioral flexibility). We developed a new behavioral assay, the context discrimination Morris water maze (cdMWM) task, which is hippocampus-dependent and requires the integration of various contextual cues and the adjustment of search strategies. We exposed male mice to 1 or 5 Gy of γ rays and, at different time points after irradiation, trained them consecutively in spatial MWM, reversal MWM, and cdMWM tasks, and assessed their learning, navigational search strategies, and memory. Mice exposed to 5 Gy performed successfully in the spatial and reversal MWM tasks; however, in the cdMWM task 6 or 8 weeks (but not 3 weeks) after irradiation, they demonstrated transient learning deficit, decreased use of efficient spatially precise search strategies during learning, and, 6 weeks after irradiation, memory deficit. We also observed impaired neurogenesis after irradiation and selective activation of 12-week-old newborn neurons by specific components of cdMWM training paradigm. Thus, our new behavioral paradigm reveals the effects of γ-radiation on cognitive flexibility and indicates an extended timeframe for the functional maturation of new hippocampal neurons.SIGNIFICANCE STATEMENT Exposure to radiation can affect cognitive performance and cognitive flexibility - the ability to adapt to changed circumstances and demands. The full range of consequences of irradiation on cognitive flexibility is unknown, partly because of a lack of suitable models. Here, we developed a new behavioral task requiring mice to combine various types of cues and strategies to find a correct solution. We show that animals exposed to γ-radiation, despite being able to successfully solve standard problems, show delayed learning, deficient memory, and diminished use of efficient navigation patterns in circumstances requiring adjustments of previously used search strategies. This new task could be applied in other settings for assessing the cognitive changes induced by aging, trauma, or disease.


Assuntos
Hipocampo , Aprendizagem , Camundongos , Masculino , Animais , Hipocampo/fisiologia , Neurogênese/fisiologia , Cognição/fisiologia , Neurônios/fisiologia , Aprendizagem em Labirinto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA