Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 484
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(6): 139, 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149826

RESUMO

Currently, no effective therapeutics exist for the treatment of incurable neurodegenerative diseases such as Alzheimer's disease (AD). The cellular prion protein (PrPC) acts as a high-affinity receptor for amyloid beta oligomers (AßO), a main neurotoxic species mediating AD pathology. The interaction of AßO with PrPC subsequently activates Fyn tyrosine kinase and neuroinflammation. Herein, we used our previously developed peptide aptamer 8 (PA8) binding to PrPC as a therapeutic to target the AßO-PrP-Fyn axis and prevent its associated pathologies. Our in vitro results indicated that PA8 prevents the binding of AßO with PrPC and reduces AßO-induced neurotoxicity in mouse neuroblastoma N2a cells and primary hippocampal neurons. Next, we performed in vivo experiments using the transgenic 5XFAD mouse model of AD. The 5XFAD mice were treated with PA8 and its scaffold protein thioredoxin A (Trx) at a 14.4 µg/day dosage for 12 weeks by intraventricular infusion through Alzet® osmotic pumps. We observed that treatment with PA8 improves learning and memory functions of 5XFAD mice as compared to Trx-treated 5XFAD mice. We found that PA8 treatment significantly reduces AßO levels and Aß plaques in the brain tissue of 5XFAD mice. Interestingly, PA8 significantly reduces AßO-PrP interaction and its downstream signaling such as phosphorylation of Fyn kinase, reactive gliosis as well as apoptotic neurodegeneration in the 5XFAD mice compared to Trx-treated 5XFAD mice. Collectively, our results demonstrate that treatment with PA8 targeting the AßO-PrP-Fyn axis is a promising and novel approach to prevent and treat AD.


Assuntos
Doença de Alzheimer , Aptâmeros de Peptídeos , Proteínas PrPC , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Proteínas PrPC/metabolismo , Modelos Animais de Doenças
2.
Anal Chem ; 95(2): 1016-1026, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36534080

RESUMO

Small extracellular vesicles (sEVs) are heterogeneous membrane-bound vesicles that carry numerous bioactive molecules. Studies have reported that sEVs carrying PD-L1 on the surface could contribute to immunosuppression; however, the precise mechanisms are unclear. To fully dissect their mode of action, it requires qualified methods to specifically isolate natural PD-L1-positive sEVs from heterogeneous sEVs. This study reported an aptamer-assisted capture-and-release strategy for traceless isolation of PD-L1-positive sEVs. The PD-L1 aptamer-anchored magnetic microspheres enable the specific capture of PD-L1-positive sEVs. The traceless release of captured PD-L1-positive sEVs was triggered by competition of complementary oligonucleotides, endowing the obtained label-free PD-L1-positive sEVs with natural properties. Benefited from this traceless isolation strategy, the distinct molecule profiles in adhesion and immuno-regulation between PD-L1-positive and PD-L1-negative sEVs were revealed. Compared to PD-L1-negative sEVs, PD-L1-positive sEVs were much more concentrated in cadherin binding, accompanied by increased adhesion to lymphatic endothelial cells and T cells but decreased adhesion to the extracellular matrix. Moreover, PD-L1-positive sEVs could transfer their enriched immunosuppressive "synapse"-related proteins to antigen-presenting cells, thereby inducing a tolerogenic-like phenotype. In summary, the present work dissects the subpopulation signature and action mode of PD-L1-positive sEVs for the first time and provides a general approach to the traceless isolation of sEV subpopulations.


Assuntos
Células Endoteliais , Vesículas Extracelulares , Antígeno B7-H1/metabolismo , Vesículas Extracelulares/metabolismo , Fenótipo , Aptâmeros de Peptídeos/química , Aptâmeros de Peptídeos/farmacologia
3.
Virol J ; 20(1): 166, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501131

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) and Dengue virus (DENV) have similar clinical symptoms, which often induce misdiagnoses. Therefore, an antigen detection diagnostic system that can clearly identify these two viruses is desirable. METHODS: In this study, we developed a novel peptide with high affinity and specificity to CHIKV, and further constructed peptide aptamer-based TRFIA assay to efficiently detect CHIKV. Peptide aptamer B2 (ITPQSSTTEAEL) and B3 (DTQGSNWI) were obtained through computer-aided design and selected as CHIKV-specific peptide aptamers based on their high binding affinity, strong hydrogen bonding, and RMSD of molecular docking. Then, a sandwich-Time-Resolved Fluoroimmunoassay (TRFIA) was successfully constructed for the detection of the interaction between peptide aptamers and viruses. RESULTS: When using B2 as the detection element, highly specific detection of CHIKV E2 was achieved with detection limits of 8.5 ng/ml in PBS solution. Variation coefficient between inter-assay showed the disturbances received from the detection of clinical fluid specimens (including serum and urine), were also within acceptable limits. The detection limits for 10-fold dilution serum and urine were 57.8 ng/mL and 147.3 ng/mL, respectively. The fluorescent signal intensity exhibited a good linear correlation with E2 protein concentration in the range of 0-1000 ng/mL, indicating the potential for quantitative detection of E2 protein. CONCLUSIONS: These results demonstrate that the construction of peptide aptamers with high affinity and specificity provides an excellent method for rapid diagnostic element screening, and the developed peptide aptamer B2 contributed to better detection of CHIKV viral particles compared to traditional antibodies.


Assuntos
Aptâmeros de Peptídeos , Febre de Chikungunya , Vírus Chikungunya , Dengue , Humanos , Febre de Chikungunya/diagnóstico , Simulação de Acoplamento Molecular , Fluorimunoensaio
4.
Nucleic Acids Res ; 49(16): 9042-9052, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34403467

RESUMO

Rolling circle amplification (RCA) is a powerful tool for the construction of DNA nanomaterials such as hydrogels, high-performance scaffolds and DNA nanoflowers (DNFs), hybrid materials formed of DNA and magnesium pyrophosphate. Such DNA nanomaterials have great potential in therapeutics, imaging, protein immobilisation, and drug delivery, yet limited chemistry is available to expand their functionality. Here, we present orthogonal strategies to produce densely modified RCA products and DNFs. We provide methods to selectively modify the DNA component and/or the protein cargo of these materials, thereby greatly expanding the range of chemical functionalities available to these systems. We have used our methodology to construct DNFs bearing multiple surface aptamers and peptides capable of binding to cancer cells that overexpress the HER2 oncobiomarker, demonstrating their potential for diagnostic and therapeutic applications.


Assuntos
DNA/química , Nanoestruturas/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Aptâmeros de Peptídeos/química , Linhagem Celular Tumoral , Reação de Cicloadição/métodos , Humanos
5.
Proc Natl Acad Sci U S A ; 117(40): 25026-25035, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958645

RESUMO

In addition to their fundamental role in clearance, the kidneys release select molecules into the circulation, but whether any of these anabolic functions provides insight on kidney health is unknown. Using aptamer-based proteomics, we characterized arterial (A)-to-renal venous (V) gradients for >1,300 proteins in 22 individuals who underwent invasive sampling. Although most of the proteins that changed significantly decreased from A to V, consistent with renal clearance, several were found to increase, the most significant of which was testican-2. To assess the clinical implications of these physiologic findings, we examined proteomic data in the Jackson Heart Study (JHS), an African-American cohort (n = 1,928), with replication in the Framingham Heart Study (FHS), a White cohort (n = 1,621). In both populations, testican-2 had a strong, positive correlation with estimated glomerular filtration rate (eGFR). In addition, higher baseline testican-2 levels were associated with a lower rate of eGFR decline in models adjusted for age, gender, hypertension, type 2 diabetes, body mass index, baseline eGFR, and albuminuria. Glomerular expression of testican-2 in human kidneys was demonstrated by immunohistochemistry, immunofluorescence, and electron microscopy, while single-cell RNA sequencing of human kidneys showed expression of the cognate gene, SPOCK2, exclusively in podocytes. In vitro, testican-2 increased glomerular endothelial tube formation and motility, raising the possibility that its secretion has a functional role within the glomerulus. Taken together, our findings identify testican-2 as a podocyte-derived biomarker of kidney health and prognosis.


Assuntos
Biomarcadores/metabolismo , Rim/metabolismo , Proteoglicanas/genética , Proteômica , Negro ou Afro-Americano/genética , Aptâmeros de Peptídeos , Feminino , Taxa de Filtração Glomerular/genética , Humanos , Hipertensão/genética , Hipertensão/patologia , Rim/patologia , Testes de Função Renal , Glomérulos Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Podócitos/metabolismo , Podócitos/patologia , Proteoglicanas/metabolismo
6.
Mol Divers ; 26(1): 157-169, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33389440

RESUMO

Short synthetic peptide molecules which bind to a specific target protein with a high affinity to exert its function are known as peptide aptamers. The high specificity of aptamers with small-molecule targets (metal ions, dyes and theophylline; ATP) is within 1 pM and 1 µM range, whereas with the proteins (thrombin, CD4 and antibodies) it is in the nanomolar range (which is equivalent to monoclonal antibodies). The recently identified coronavirus (SARS-CoV-2) genome encodes for various proteins, such as envelope, membrane, nucleocapsid, and spike protein. Among these, the protein necessary for the virus to enter inside the host cell is spike protein. The work focuses on designing peptide aptamer targeting the spike receptor-binding domain of SARS-CoV-2. The peptide aptamer has been designed by using bacterial Thioredoxin A as the scaffold protein and an 18-residue-long peptide. The tertiary structure of the peptide aptamer is modeled and docked to spike receptor-binding domain of SARS CoV2. Molecular dynamic simulation has been done to check the stability of the aptamer and receptor-binding domain complex. It was observed that the aptamer binds to spike receptor-binding domain of SARS-CoV-2 in a similar pattern as that of ACE2. The aptamer-receptor-binding domain complex was found to be stable in a 100 ns molecular dynamic simulation. The aptamer is also predicted to be non-antigenic, non-allergenic, non-hemolytic, non-inflammatory, water-soluble with high affinity toward ACE2 than serum albumin. Thus, peptide aptamer can be a novel approach for the therapeutic treatment for SARS-CoV-2.


Assuntos
Aptâmeros de Peptídeos , Tratamento Farmacológico da COVID-19 , Antivirais/química , Aptâmeros de Peptídeos/metabolismo , Humanos , Peptídeos/metabolismo , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
Chem Rev ; 119(17): 9950-9970, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30838853

RESUMO

Protein-catalyzed capture agents (PCCs) are synthetic and modular peptide-based affinity agents that are developed through the use of single-generation in situ click chemistry screens against large peptide libraries. In such screens, the target protein, or a synthetic epitope fragment of that protein, provides a template for selectively promoting the noncopper catalyzed azide-alkyne dipolar cycloaddition click reaction between either a library peptide and a known ligand or a library peptide and the synthetic epitope. The development of epitope-targeted PCCs was motivated by the desire to fully generalize pioneering work from the Sharpless and Finn groups in which in situ click screens were used to develop potent, divalent enzymatic inhibitors. In fact, a large degree of generality has now been achieved. Various PCCs have demonstrated utility for selective protein detection, as allosteric or direct inhibitors, as modulators of protein folding, and as tools for in vivo tumor imaging. We provide a historical context for PCCs and place them within the broader scope of biological and synthetic aptamers. The development of PCCs is presented as (i) Generation I PCCs, which are branched ligands engineered through an iterative, nonepitope-targeted process, and (ii) Generation II PCCs, which are typically developed from macrocyclic peptide libraries and are precisely epitope-targeted. We provide statistical comparisons of Generation II PCCs relative to monoclonal antibodies in which the protein target is the same. Finally, we discuss current challenges and future opportunities of PCCs.


Assuntos
Aptâmeros de Peptídeos/química , Sequência de Aminoácidos , Animais , Aptâmeros de Peptídeos/síntese química , Aptâmeros de Peptídeos/metabolismo , Química Click , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Ligantes , Biblioteca de Peptídeos , Peptoides/síntese química , Peptoides/química , Peptoides/metabolismo , Ligação Proteica , Proteínas/metabolismo
8.
Mol Ther ; 28(3): 901-913, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31991109

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a predominant cancer type in developing countries such as China, where ESCC accounts for approximately 90% of esophageal malignancies. Lacking effective and targeted therapy contributes to the poor 5-year survival rate. Recent studies showed that about 30% of ESCC cases have high levels of SOX2. Herein, we aim to target this transcription factor with aptamer. We established a peptide aptamer library and then performed an unbiased screening to identify several peptide aptamers including P42 that can bind and inhibit SOX2 downstream target genes. We further found that P42 overexpression or incubation with a synthetic peptide 42 inhibited the proliferation, migration, and invasion of ESCC cells. Moreover, peptide 42 treatment inhibited the growth and metastasis of ESCC xenografts in mouse and zebrafish. Further analysis revealed that P42 overexpression led to alternations in the levels of proteins that are important for the proliferation and migration of ESCC cells. Taken together, our study identified the peptide 42 as a key inhibitor of SOX2 function, reducing the proliferation and migration of ESCC cells in vitro and in vivo, and thereby offering a potential therapy against ESCC.


Assuntos
Antineoplásicos/farmacologia , Aptâmeros de Peptídeos/farmacologia , Fatores de Transcrição SOXB1/antagonistas & inibidores , Animais , Aptâmeros de Peptídeos/química , Aptâmeros de Peptídeos/metabolismo , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/mortalidade , Humanos , Camundongos , Terapia de Alvo Molecular , Prognóstico , Ligação Proteica , Técnica de Seleção de Aptâmeros , Fatores de Transcrição SOXB1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
9.
J Nanobiotechnology ; 19(1): 388, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823537

RESUMO

BACKGROUND: Esophageal cancer is the fifth most common cancer affecting men in China. The primary treatment options are surgery and traditional radio-chemotherapy; no effective targeted therapy exists yet. Self-assembled RNA nanocarriers are highly stable, easily functionally modified, and have weak off-tumor targeting effects. Thus, they are among the most preferred carriers for mediating the targeted delivery of anti-tumor drugs. miR-375 was found to be significantly down-regulated in esophageal squamous cell carcinoma (ESCC) tissues and its overexpression effectively inhibits the proliferation, migration, and invasion of ESCC cells. Moreover, epidermal growth factor receptor (EGFR) was overexpressed in ESCC cells, and accumulation of RNA nanoparticles in ESCC tumors was enhanced by EGFR-specific aptamer (EGFRapt) modification. RESULTS: Herein, a novel four-way junction RNA nanocarrier, 4WJ-EGFRapt-miR-375-PTX simultaneously loaded with miR-375, PTX and decorated with EGFRapt, was developed. In vitro analysis demonstrated that 4WJ-EGFRapt-miR-375-PTX possesses strong thermal and pH stabilities. EGFRapt decoration facilitated tumor cell endocytosis and promoted deep penetration into 3D-ESCC spheroids. Xenograft mouse model for ESCC confirmed that 4WJ-EGFRapt-miR-375-PTX was selectively distributed in tumor sites via EGFRapt-mediating active targeting and targeted co-delivery of miR-375 and PTX exhibited more effective therapeutic efficacy with low systemic toxicity. CONCLUSION: This strategy may provide a practical approach for targeted therapy of ESCC.


Assuntos
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , MicroRNAs , Terapia de Alvo Molecular/métodos , Nanopartículas , Animais , Apoptose/efeitos dos fármacos , Aptâmeros de Peptídeos/metabolismo , Aptâmeros de Peptídeos/farmacocinética , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Receptores ErbB/farmacocinética , Feminino , Humanos , Camundongos , Camundongos Nus , MicroRNAs/química , MicroRNAs/farmacocinética , MicroRNAs/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/farmacocinética , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia
10.
Chem Soc Rev ; 49(15): 5446-5472, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32627779

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and affects more than 10% of the population aged over 65 worldwide. Despite considerable global efforts, AD patients can only be diagnosed after the onset of symptoms based on neuropsychological tests and neuroimaging. Because the changes in the levels of biomarkers associated with Aß deposits and tau tangles precede the appearance of the first cognitive symptoms, accurate measurements of AD core biomarkers is critical for identifying asymptomatic AD patients and predicting disease progression. In this regard, significant efforts have been made to develop novel AD biomarker-targeting sensor platforms that have superb sensitivity and high accessibility. This review provides an overview of recent advances in optical and electrical sensing of core AD biomarkers in clinically relevant fluids such as the cerebrospinal fluid and human blood. We have summarized current challenges and future strategies for translating the sensing techniques discovered in the academic laboratories into clinical analytic platforms for early diagnosis of AD.


Assuntos
Doença de Alzheimer/diagnóstico , Biomarcadores/análise , Peptídeos beta-Amiloides/análise , Animais , Anticorpos/química , Apolipoproteínas/análise , Aptâmeros de Peptídeos/química , Melhoramento Biomédico , Técnicas Biossensoriais , Técnicas Eletroquímicas , Humanos , Proteínas de Membrana/análise , MicroRNAs/análise , Nanoestruturas/química , Processos Fotoquímicos , Propriedades de Superfície , Proteínas tau/análise
11.
J Am Chem Soc ; 142(8): 3862-3872, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31991082

RESUMO

The lack of blood-brain barrier (BBB) penetrating ability has hindered the delivery of many therapeutic agents for tauopathy treatment. In this study, we report the synthesis of a circular bifunctional aptamer to enhance the in vivo BBB penetration for better tauopathy therapy. The circular aptamer consists of one reported transferrin receptor (TfR) aptamer to facilitate TfR-aptamer recognition-induced transcytosis across BBB endothelial cells, and one Tau protein aptamer that we recently selected to inhibit Tau phosphorylation and other tauopathy-related pathological events in the brain. This novel circular Tau-TfR bifunctional aptamer displays significantly improved plasma stability and brain exposure, as well as the ability to disrupt tauopathy and improve traumatic brain injury (TBI)-induced cognitive/memory deficits in vivo, providing important proof-of-principle evidence that circular Tau-TfR aptamer can be further developed into diagnostic and therapeutic candidates for tauopathies.


Assuntos
Aptâmeros de Peptídeos/metabolismo , Barreira Hematoencefálica , Receptores da Transferrina/metabolismo , Tauopatias/terapia , Transferrina/metabolismo , Proteínas tau/metabolismo , Animais , Humanos , Camundongos , Estudo de Prova de Conceito
12.
Anal Chem ; 92(16): 11260-11267, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32506902

RESUMO

In this study, we demonstrated an electrochemical aptasensor for calmodulin (CaM) detection and the peptide sequence (YWDKIKDFIGG) is obtained from in vitro ribosome display selection. To immobilize this peptide probe on the electrode surface, cystine was incorporated at the end of this peptide sequence. After a maleimide-functionalized poly(3,4-ethylenedioxythiophene), poly(EODT-MI), film was electropolymerized on the electrode, the peptide probe was immobilized through thiol-ene conjugation with the cystine end. Four peptides with different linkers were used for the binding test of bovine serum albumin and CaM using a quartz crystal microbalance. The zwitterionic linker EKEKEKEKEKEK provided good antifouling properties and the highest CaM binding. Furthermore, the immobilization of the peptide with this zwitterionic linker resulted in a minimal increase in the electrochemical impedance. By immobilizing the peptide with the selected zwitterionic linker, we successfully demonstrated an electrochemical aptasensor with a linear detection range for CaM from 0.01 to 10 mg/L and a detection limit of 0.001 mg/L.


Assuntos
Aptâmeros de Peptídeos/química , Calmodulina/análise , Proteínas Imobilizadas/química , Sequência de Aminoácidos , Aptâmeros de Peptídeos/genética , Técnicas Biossensoriais/métodos , Espectroscopia Dielétrica , Evolução Molecular Direcionada , Proteínas Imobilizadas/genética , Limite de Detecção , Polímeros/química , Engenharia de Proteínas
13.
Anal Chem ; 92(13): 9330-9337, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483968

RESUMO

Electrolyte gated organic transistors can operate as powerful ultrasensitive biosensors, and efforts are currently devoted to devising strategies for reducing the contribution of hardly avoidable, nonspecific interactions to their response, to ultimately harness selectivity in the detection process. We report a novel lab-on-a-chip device integrating a multigate electrolyte gated organic field-effect transistor (EGOFET) with a 6.5 µL microfluidics set up capable to provide an assessment of both the response reproducibility, by enabling measurement in triplicate, and of the device selectivity through the presence of an internal reference electrode. As proof-of-concept, we demonstrate the efficient operation of our pentacene based EGOFET sensing platform through the quantification of tumor necrosis factor alpha with a detection limit as low as 3 pM. Sensing of inflammatory cytokines, which also include TNFα, is of the outmost importance for monitoring a large number of diseases. The multiplexable organic electronic lab-on-chip provides a statistically solid, reliable, and selective response on microliters sample volumes on the minutes time scale, thus matching the relevant key-performance indicators required in point-of-care diagnostics.


Assuntos
Técnicas Biossensoriais/métodos , Fator de Necrose Tumoral alfa/análise , Aptâmeros de Peptídeos/química , Aptâmeros de Peptídeos/metabolismo , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Técnicas Biossensoriais/instrumentação , Eletrodos , Ouro/química , Humanos , Dispositivos Lab-On-A-Chip , Limite de Detecção , Transistores Eletrônicos , Fator de Necrose Tumoral alfa/metabolismo
14.
Crit Care Med ; 48(1): e48-e57, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31714400

RESUMO

OBJECTIVES: Sepsis, a life-threatening organ dysfunction caused by a dysregulated host response to infection, is a leading cause of death and disability among children worldwide. Identifying sepsis in pediatric patients is difficult and can lead to treatment delay. Our objective was to assess the host proteomic response to infection utilizing an aptamer-based multiplexed proteomics approach to identify novel serum protein changes that might help distinguish between pediatric sepsis and infection-negative systemic inflammation and hence can potentially improve sensitivity and specificity of the diagnosis of sepsis over current clinical criteria approaches. DESIGN: Retrospective, observational cohort study. SETTING: PICU and cardiac ICU, Seattle Children's Hospital, Seattle, WA. PATIENTS: A cohort of 40 children with clinically overt sepsis and 30 children immediately postcardiopulmonary bypass surgery (infection-negative systemic inflammation control subjects) was recruited. Children with sepsis had a confirmed or suspected infection, two or more systemic inflammatory response syndrome criteria, and at least cardiovascular and/or pulmonary organ dysfunction. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Serum samples from 35 of the sepsis and 28 of the bypass surgery subjects were available for screening with an aptamer-based proteomic platform that measures 1,305 proteins to search for large-scale serum protein expression pattern changes in sepsis. A total of 111 proteins were significantly differentially expressed between the sepsis and control groups, using the linear models for microarray data (linear modeling) and Boruta (decision trees) R packages, with 55 being previously identified in sepsis patients. Weighted gene correlation network analysis helped identify 76 proteins that correlated highly with clinical sepsis traits, 27 of which had not been previously reported in sepsis. CONCLUSIONS: The serum protein changes identified with the aptamer-based multiplexed proteomics approach used in this study can be useful to distinguish between sepsis and noninfectious systemic inflammation.


Assuntos
Proteínas Sanguíneas/análise , Proteômica/métodos , Sepse/sangue , Sepse/diagnóstico , Aptâmeros de Peptídeos , Criança , Estudos de Coortes , Humanos , Estudos Retrospectivos , Sepse/genética
15.
Anal Biochem ; 589: 113489, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31655050

RESUMO

Rapid detection of foodborne pathogens is crucial as ingestion of contaminated food products may endanger human health. Thus, the objective of this study was to develop a biosensor using reduced graphene oxide-carbon nanotubes (rGO-CNT) nanocomposite via the hydrothermal method for accurate and rapid label-free electrochemical detection of pathogenic bacteria such as Salmonella enterica. The rGO-CNT nanocomposite was characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction and transmission electron microscopy. The nanocomposite was dropped cast on the glassy carbon electrode and further modified with amino-modified DNA aptamer. The resultant ssDNA/rGO-CNT/GCE aptasensor was then used to detect bacteria by using differential pulse voltammetry (DPV) technique. Synergistic effects of aptasensor was evident through the combination of enhanced electrical properties and facile chemical functionality of both rGO and CNT for the stable interface. Under optimal experimental conditions, the aptasensor could detect S. Typhimurium in a wide linear dynamic range from 101 until 108 cfu mL-1 with a 101 cfu mL-1 of the limit of detection. This aptasensor also showed good sensitivity, selectivity and specificity for the detection of microorganisms. Furthermore, we have successfully applied the aptasensor for S. Typhimurium detection in real food samples.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Microbiologia de Alimentos/métodos , Produtos Avícolas/microbiologia , Salmonella typhimurium/isolamento & purificação , Animais , Aptâmeros de Nucleotídeos , Aptâmeros de Peptídeos , Galinhas , Eletrodos , Grafite/química , Limite de Detecção , Nanocompostos/química , Nanotubos de Carbono/química
16.
Anal Biochem ; 609: 113921, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32828793

RESUMO

Alzheimer's disease (AD) causes cognitive impairment and serious social isolation. However, there are no effective treatments and even no established confirmatory diagnostic tools for the disease. Amyloid beta (Aß) aggregation in the brain is the best-known pathognomonic mechanism of AD, so various methods for Aß detection have been developed for the diagnosis of this disease. We synthesized two novel, ultra-sensitive peptide probes specialized in detecting Aß aggregates, and examined their potential for future diagnostic application. The peptides are produced through phage high-throughput screening (HTS) and amplified through a serial process called biopanning, which is a repeating method of elution and amplification of probes. We picked phages specific for amyloid from two kinds of phage display. The synthesized peptides were confirmed to have excellent binding affinity to Aß aggregates, by immunohistochemical staining and western blotting using the brains of 3X transgenic (Tg) AD mice at different stages (5-7, 12-17 months old) of AD severity. In the present study, it was confirmed that newly developed amyloid-binding peptides could be used as novel probes for the detection of Aß aggregates, which can be used for clinical diagnosis of AD in the future.


Assuntos
Peptídeos beta-Amiloides/análise , Aptâmeros de Peptídeos/metabolismo , Fragmentos de Peptídeos/análise , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Aptâmeros de Peptídeos/química , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Biblioteca de Peptídeos , Agregados Proteicos/fisiologia , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Índice de Gravidade de Doença
17.
Mol Pharm ; 17(8): 2882-2890, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32584586

RESUMO

Pyropheophorbide a (Pyro) is a widely used photosensitizer for photodynamic therapy (PDT). However, poor water solubility, aggregation-induced fluorescence quenching, and lack of selectivity to targeted cells seriously limit its application. In this work, we prepared aptamer-Pyro conjugates (APCs) by linking Pyro to hydrophilic nucleic acid aptamer to enhance its water solubility and endow it with protein tyrosine kinase 7 (PTK7) overexpressed tumor spheroid specific targeting and penetration abilities for photodynamic therapy. The molecular conjugate was successfully synthesized and dissolved well in an aqueous solution. The APCs showed strong near-infrared fluorescence in the aqueous solution and produced singlet oxygen both in the solution and cells under laser irradiation, indicating its generation of singlet oxygen during PDT was guaranteed. Owing to the cancer cell targeting ability of the aptamer, the APCs specifically bound with PTK7 overexpressed cancerous cells and showed fluorescence signal for tumor cell imaging and diagnosis. The APCs exhibited favorable enhanced phototoxicity to target tumor cells compared with control cells. More importantly, due to the small size of the molecular conjugate, the APCs efficiently penetrated into the interior of multicellular tumor spheroids (MCTS) and caused cell damage. All these results indicated that the robust aptamer-Pyro conjugate is a promising selective tumor-targeting and penetrable molecule for cancer photodynamic therapy.


Assuntos
Aptâmeros de Peptídeos/química , Clorofila/análogos & derivados , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Esferoides Celulares/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Clorofila/química , Fluorescência , Células HeLa , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Fotoquimioterapia/métodos , Oxigênio Singlete/química , Solubilidade/efeitos dos fármacos
18.
Nanotechnology ; 31(2): 025605, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31557732

RESUMO

In the present work, a fluorescent gold nanoclusters (GNCs)/superparamagnetic (Fe3O4/GNCs) nanoprobe was prepared via a facile approach for the selective detection and imaging of human leukemica cancer cells (HL-60). (γ-Mercaptopropyl)trimethoxysilane (MPS) was used as a stabilizer to prepare functionalized GNCs. The prepared GNCs@MPS was then self-assembly decorated on the surface of Fe3O4@SiO2 nanoparticles followed by poly(ethylene glycol) dimethacrylate (PGD) addition at room temperature to form Fe3O4/GNCs nanoprobe. Surface functionalization of the Fe3O4/GNCs with the thiol-modified KH1C12 aptamer was done through thiol-en click reaction between PGD and the thiol group of the aptamer. An extensive characterization of the Fe3O4/GNCs revealed strong red fluorescence (λ em = 627 nm), T 2-based contrast agent for MRI and excellent colloidal and photo stability in buffer medium. So, the aptamer-functionalized Fe3O4/GNCs nanoprobe (Fe3O4/GNCs/Aptamer) is capable to uptake and dual-image HL-60 cancer cells from a mixture. Furthermore, the MRI signal intensity of the pictures decreased linearly with an increase in the concentrations of the nanoprobe. It is also enable to detect cancer cells from a range of concentrations 10 up to 200 cells µL-1. The fluorescent/magnetic characteristics of the nanoprobe are of great significance for MRI-based and fluorescence imaging and collection of HL-60 cancer cells which implies potential help for the development of early diagnosis of highly malignant human leukemia.


Assuntos
Aptâmeros de Peptídeos/química , Separação Celular/métodos , Ouro/química , Nanopartículas de Magnetita/química , Fluorescência , Células HL-60 , Células Hep G2 , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/ultraestrutura
19.
Exp Cell Res ; 382(2): 111478, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31233742

RESUMO

Small cell lung cancer (SCLC) has been a recalcitrant cancer without significant breakthroughs in clinical treatment during the past three decades. As there is a lack of effective protein inhibitor for SCLC targeted therapy, the discovery of new druggable SCLC biomarkers is a pressing work. Here we identified a new protein biomarker of SCLC, which is high density lipoprotein binding protein (HDLBP), through the aptamer generated by cell-SELEX against SCLC cells. Immunohistochemistry results showed an elevated HDLBP level in SCLC tissues from clinical samples. Attenuating HDLBP expression with siRNA inhibited proliferation and metastasis of SCLC cells in vitro and tumor formation in vivo. Mechanism study revealed the new function of HDLBP in promoting G1/S cell cycle transition for tumor progression. While the inhibitor of HDLBP has been reported, our work suggested a promising potential of targeting HDLBP to improve the treatment of fatal SCLC and a powerful tool of using cell-SELEX in cancer medicine.


Assuntos
Aptâmeros de Peptídeos/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Técnica de Seleção de Aptâmeros , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Linhagem Celular Tumoral , Progressão da Doença , Fase G1 , Humanos , Metástase Neoplásica , Fenótipo , Proteínas de Ligação a RNA/metabolismo , Reprodutibilidade dos Testes , Fase S
20.
Med Sci Monit ; 26: e925583, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32574155

RESUMO

BACKGROUND The clinical challenges of triple-negative breast cancer (TNBC) includes the lack of targeted therapy and chemoresistance. TNBC has relatively high PD-L1 expression, and PD-L1 antibody in combination with nab-paclitaxel has been approved by FDA for TNBC treatment. Aptamers, also termed chemical antibody, are widely used in targeted drug delivery. The present study aimed to select a DNA aptamer that could specifically bind and deliver drugs to TNBC cells. MATERIAL AND METHODS An innovative loss-gain cell-SELEX strategy was used to select DNA aptamer for PD-L1 protein. Construction of PD-L1 knock-out and over-expression MDA-MB-231 cell lines were conducted through transfection and confirmed by western blot and flow cytometry. Confocal microscopy and flow cytometry were used to analyze the binding ability of aptamer with TNBC cells. The cytotoxicity of aptamer-paclitaxel complex against TNBC cells was evaluated by Cell Counting Kit-8 assay. The reactivation of the T cell function by aptamer was measured by IL-2 enzyme-linked immunosorbent assay after T cells co-cultured with tumor cells. RESULTS In this work, using an innovative loss-gain cell-SELEX strategy, we screened a PD-L1-targeting aptamer. PD-L1 aptamer selectively bound to PD-L1 over-expressed TNBC cells with a dissociation constant in the nanomolar range. PD-L1 aptamer could also inhibit PD-1/PD-L1 interaction and restore the function of T cells. Moreover, we developed a PD-L1 aptamer-paclitaxel conjugate which showed improved cellular uptake and anti-proliferation efficacy in PD-L1 over-expressed TNBC cells. CONCLUSIONS In summary, these findings suggest that the selected PD-L1 aptamer might have potential implication in immune modulation and targeted therapy against TNBC.


Assuntos
Aptâmeros de Peptídeos/farmacologia , Antígeno B7-H1/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Anticorpos/uso terapêutico , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Paclitaxel/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Técnica de Seleção de Aptâmeros/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA