Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.947
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 176(4): 702-715.e14, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661758

RESUMO

Voltage-gated sodium (Nav) channels are targets of disease mutations, toxins, and therapeutic drugs. Despite recent advances, the structural basis of voltage sensing, electromechanical coupling, and toxin modulation remains ill-defined. Protoxin-II (ProTx2) from the Peruvian green velvet tarantula is an inhibitor cystine-knot peptide and selective antagonist of the human Nav1.7 channel. Here, we visualize ProTx2 in complex with voltage-sensor domain II (VSD2) from Nav1.7 using X-ray crystallography and cryoelectron microscopy. Membrane partitioning orients ProTx2 for unfettered access to VSD2, where ProTx2 interrogates distinct features of the Nav1.7 receptor site. ProTx2 positions two basic residues into the extracellular vestibule to antagonize S4 gating-charge movement through an electrostatic mechanism. ProTx2 has trapped activated and deactivated states of VSD2, revealing a remarkable ∼10 Å translation of the S4 helix, providing a structural framework for activation gating in voltage-gated ion channels. Finally, our results deliver key templates to design selective Nav channel antagonists.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/ultraestrutura , Peptídeos/metabolismo , Venenos de Aranha/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetulus , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Células HEK293 , Humanos , Ativação do Canal Iônico , Peptídeos/toxicidade , Domínios Proteicos , Venenos de Aranha/toxicidade , Aranhas , Bloqueadores do Canal de Sódio Disparado por Voltagem , Canais de Sódio Disparados por Voltagem/metabolismo
2.
Nature ; 624(7991): 295-302, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092907

RESUMO

Connecting different electronic devices is usually straightforward because they have paired, standardized interfaces, in which the shapes and sizes match each other perfectly. Tissue-electronics interfaces, however, cannot be standardized, because tissues are soft1-3 and have arbitrary shapes and sizes4-6. Shape-adaptive wrapping and covering around irregularly sized and shaped objects have been achieved using heat-shrink films because they can contract largely and rapidly when heated7. However, these materials are unsuitable for biological applications because they are usually much harder than tissues and contract at temperatures higher than 90 °C (refs. 8,9). Therefore, it is challenging to prepare stimuli-responsive films with large and rapid contractions for which the stimuli and mechanical properties are compatible with vulnerable tissues and electronic integration processes. Here, inspired by spider silk10-12, we designed water-responsive supercontractile polymer films composed of poly(ethylene oxide) and poly(ethylene glycol)-α-cyclodextrin inclusion complex, which are initially dry, flexible and stable under ambient conditions, contract by more than 50% of their original length within seconds (about 30% per second) after wetting and become soft (about 100 kPa) and stretchable (around 600%) hydrogel thin films thereafter. This supercontraction is attributed to the aligned microporous hierarchical structures of the films, which also facilitate electronic integration. We used this film to fabricate shape-adaptive electrode arrays that simplify the implantation procedure through supercontraction and conformally wrap around nerves, muscles and hearts of different sizes when wetted for in vivo nerve stimulation and electrophysiological signal recording. This study demonstrates that this water-responsive material can play an important part in shaping the next-generation tissue-electronics interfaces as well as broadening the biomedical application of shape-adaptive materials.


Assuntos
Eletrofisiologia , Polímeros , Água , Animais , alfa-Ciclodextrinas/química , Eletrodos , Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Eletrofisiologia/tendências , Coração , Músculos , Polietilenoglicóis/química , Polímeros/química , Seda/química , Aranhas , Água/química , Hidrogéis/química , Eletrônica/instrumentação , Eletrônica/métodos , Eletrônica/tendências
3.
Proc Natl Acad Sci U S A ; 121(31): e2406814121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042699

RESUMO

Animal vision depends on opsins, a category of G protein-coupled receptor (GPCR) that achieves light sensitivity by covalent attachment to retinal. Typically binding as an inverse agonist, 11-cis retinal photoisomerizes to the all-trans isomer and activates the receptor, initiating downstream signaling cascades. Retinal bound to bistable opsins isomerizes back to the 11-cis state after absorption of a second photon, inactivating the receptor. Bistable opsins are essential for invertebrate vision and nonvisual light perception across the animal kingdom. While crystal structures are available for bistable opsins in the inactive state, it has proven difficult to form homogeneous populations of activated bistable opsins either via illumination or reconstitution with all-trans retinal. Here, we show that a nonnatural retinal analog, all-trans retinal 6.11 (ATR6.11), can be reconstituted with the invertebrate bistable opsin, Jumping Spider Rhodopsin-1 (JSR1). Biochemical activity assays demonstrate that ATR6.11 functions as a JSR1 agonist. ATR6.11 binding also enables complex formation between JSR1 and signaling partners. Our findings demonstrate the utility of retinal analogs for biophysical characterization of bistable opsins, which will deepen our understanding of light perception in animals.


Assuntos
Opsinas , Retinaldeído , Animais , Retinaldeído/metabolismo , Retinaldeído/química , Retinaldeído/análogos & derivados , Opsinas/metabolismo , Opsinas/química , Rodopsina/metabolismo , Rodopsina/química , Aranhas/metabolismo , Humanos
4.
Proc Natl Acad Sci U S A ; 120(31): e2305273120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487072

RESUMO

Spider webs are incredible biological structures, comprising thin but strong silk filament and arranged into complex hierarchical architectures with striking mechanical properties (e.g., lightweight but high strength, achieving diverse mechanical responses). While simple 2D orb webs can easily be mimicked, the modeling and synthesis of 3D-based web structures remain challenging, partly due to the rich set of design features. Here, we provide a detailed analysis of the heterogeneous graph structures of spider webs and use deep learning as a way to model and then synthesize artificial, bioinspired 3D web structures. The generative models are conditioned based on key geometric parameters (including average edge length, number of nodes, average node degree, and others). To identify graph construction principles, we use inductive representation sampling of large experimentally determined spider web graphs, to yield a dataset that is used to train three conditional generative models: 1) an analog diffusion model inspired by nonequilibrium thermodynamics, with sparse neighbor representation; 2) a discrete diffusion model with full neighbor representation; and 3) an autoregressive transformer architecture with full neighbor representation. All three models are scalable, produce complex, de novo bioinspired spider web mimics, and successfully construct graphs that meet the design objectives. We further propose an algorithm that assembles web samples produced by the generative models into larger-scale structures based on a series of geometric design targets, including helical and parametric shapes, mimicking, and extending natural design principles toward integration with diverging engineering objectives. Several webs are manufactured using 3D printing and tested to assess mechanical properties.


Assuntos
Aprendizado Profundo , Aranhas , Animais , Algoritmos , Comércio , Citoesqueleto
5.
Proc Natl Acad Sci U S A ; 120(18): e2221528120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094147

RESUMO

Arthropod silk is vital to the evolutionary success of hundreds of thousands of species. The primary proteins in silks are often encoded by long, repetitive gene sequences. Until recently, sequencing and assembling these complex gene sequences has proven intractable given their repetitive structure. Here, using high-quality long-read sequencing, we show that there is extensive variation-both in terms of length and repeat motif order-between alleles of silk genes within individual arthropods. Further, this variation exists across two deep, independent origins of silk which diverged more than 500 Mya: the insect clade containing caddisflies and butterflies and spiders. This remarkable convergence in previously overlooked patterns of allelic variation across multiple origins of silk suggests common mechanisms for the generation and maintenance of structural protein-coding genes. Future genomic efforts to connect genotypes to phenotypes should account for such allelic variation.


Assuntos
Borboletas , Fibroínas , Aranhas , Animais , Seda/química , Sequência de Aminoácidos , Fibroínas/química , Alelos , Insetos/genética , Borboletas/genética , Variação Genética , Aranhas/genética , Proteínas de Insetos/genética , Filogenia
6.
Proc Natl Acad Sci U S A ; 120(40): e2305629120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748064

RESUMO

Women remain underrepresented in most math-intensive fields. [Breda and Napp, Proc. Natl. Acad. Sci. U.S.A. 116, 15435 (2019)] reported that girls' comparative advantage in reading over math (i.e., the intraindividual differences between girls' reading vs. math performance, compared to such differences for boys) could explain up to 80% of the gender gap in students' intentions to pursue math-intensive studies and careers, in conflict with findings from previous research. We conducted a conceptual replication and expanded upon Breda and Napp's study by using new global data (PISA2018, N = 466,165) and a recent US nationally representative longitudinal study (High School Longitudinal Study of 2009, N = 6,560). We coded students' intended majors and careers and their actual college majors. The difference between a student's math vs. reading performance explained only small proportions of the gender gap in students' intentions to pursue math-intensive fields (0.4 to 10.2%) and in their enrollment in math-intensive college majors (12.3%). Consistent with previous studies, our findings suggest girls' comparative advantage in reading explains a minority of the gender gap in math-related majors and occupational intentions and choices. Potential reasons for differences in the estimated effect sizes include differences in the operationalization of math-related choices, the operationalization of math and reading performance, and possibly the timing of measuring intentions and choices. Therefore, it seems premature to conclude that girls' comparative advantage in reading, rather than the cumulative effects of other structural and/or psychological factors, can largely explain the persistent gender gap in math-intensive educational and career choices.


Assuntos
Estudos de Linguagem , Aranhas , Masculino , Animais , Humanos , Feminino , Estudos Longitudinais , Fatores Sexuais , Apoptose , Escolha da Profissão
7.
Proc Natl Acad Sci U S A ; 119(14): e2122789119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349337

RESUMO

SignificanceThe sense of hearing in all known animals relies on possessing auditory organs that are made up of cellular tissues and constrained by body sizes. We show that hearing in the orb-weaving spider is functionally outsourced to its extended phenotype, the proteinaceous self-manufactured web, and hence processes behavioral controllability. This finding opens new perspectives on animal extended cognition and hearing-the outsourcing and supersizing of auditory function in spiders. This study calls for reinvestigation of the remarkable evolutionary ecology and sensory ecology in spiders-one of the oldest land animals. The sensory modality of outsourced hearing provides a unique model for studying extended and regenerative sensing and presents new design features for inspiring novel acoustic flow detectors.


Assuntos
Percepção Auditiva , Evolução Biológica , Aranhas , Animais , Audição , Comportamento Predatório , Seda/genética , Aranhas/genética
8.
Proc Natl Acad Sci U S A ; 119(33): e2204754119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939710

RESUMO

Sleep and sleep-like states are present across the animal kingdom, with recent studies convincingly demonstrating sleep-like states in arthropods, nematodes, and even cnidarians. However, the existence of different sleep phases across taxa is as yet unclear. In particular, the study of rapid eye movement (REM) sleep is still largely centered on terrestrial vertebrates, particularly mammals and birds. The most salient indicator of REM sleep is the movement of eyes during this phase. Movable eyes, however, have evolved only in a limited number of lineages-an adaptation notably absent in insects and most terrestrial arthropods-restricting cross-species comparisons. Jumping spiders, however, possess movable retinal tubes to redirect gaze, and in newly emerged spiderlings, these movements can be directly observed through their temporarily translucent exoskeleton. Here, we report evidence for an REM sleep-like state in a terrestrial invertebrate: periodic bouts of retinal movements coupled with limb twitching and stereotyped leg curling behaviors during nocturnal resting in a jumping spider. Observed retinal movement bouts were consistent, including regular durations and intervals, with both increasing over the course of the night. That these characteristic REM sleep-like behaviors exist in a highly visual, long-diverged lineage further challenges our understanding of this sleep state. Comparisons across such long-diverged lineages likely hold important questions and answers about the visual brain as well as the origin, evolution, and function of REM sleep.


Assuntos
Movimentos Oculares , Retina , Sono REM , Aranhas , Animais , Retina/fisiologia , Aranhas/fisiologia
9.
Proc Natl Acad Sci U S A ; 119(12): e2115103119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35254873

RESUMO

Synchronized oscillations are found in all living systems, from cellsto ecosystems and on varying time scales. A generic principlebehind the production of oscillations involves a delay in theresponse of one entity to stimulations from the others in the sys-tem. Communication among entities is required for the emergenceof synchronization, but its efficacy can be impaired by surroundingnoise. In the social spiderAnelosimus eximius, individuals coordi-nate their activity to catch large prey that are otherwise inaccessi-ble to solitary hunters. When hunting in groups, dozens of spidersmove rhythmically toward their prey by synchronizing movingand stopping phases. We proposed a mechanistic model imple-menting individual behavioral rules, all derived fromfield experi-ments, to elucidate the underlying principles of synchronization.We showed that the emergence of oscillations in spiders involvesa refractory state, the duration of which depends on the relativeintensity of prey versus conspecific signals. Thisflexible behaviorallows individuals to rapidly adapt to variations in their vibrationallandscapes. Exploring the model reveals that the benefits of syn-chronization resulting from improved accuracy in prey detectionand reduced latency to capture prey more than offset the cost ofthe delay associated with immobility phases. Overall, our studyshows that a refractory period whose duration is variable anddependent on information accessible to all entities in the systemcontributes to the emergence of self-organized oscillations innoisy environments. Ourfindings may inspire the design of artifi-cial systems requiring fast andflexible synchronization betweentheir components.


Assuntos
Comportamento Predatório , Aranhas , Animais , Fenômenos Fisiológicos Celulares , Tomada de Decisões , Vibração
10.
Proc Natl Acad Sci U S A ; 119(40): e2205942119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36122198

RESUMO

Spiders, the most specious taxon of predators, have evolved an astounding range of predatory strategies, including group hunting, specialized silk traps, pheromone-loaded bolas, and aggressive mimicry. Spiders that hunt prey defended with behavioral, mechanical, or chemical means are under additional selection pressure to avoid injury and death. Ants are considered dangerous because they can harm or kill their predators, but some groups of spiders, such as the Theridiidae, have a very high diversification of ant-hunting species and strategies [J. Liu et al., Mol. Phylogenet. Evol. 94, 658-675 (2016)]. Here, we provide detailed behavioral analyses of the highly acrobatic Australian ant-slayer spider, Euryopis umbilicata (Theridiidae), that captures much larger and defended Camponotus ants on vertical tree trunks. The hunting sequence consists of ritualized steps performed within split seconds, resulting in an exceptionally high prey capture success rate.


Assuntos
Formigas , Comportamento Predatório , Aranhas , Animais , Austrália , Feromônios , Comportamento Predatório/fisiologia , Seda , Aranhas/fisiologia , Árvores
11.
PLoS Genet ; 18(12): e1010537, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36508456

RESUMO

The evolutionary diversification of orb-web weaving spiders is closely tied to the mechanical performance of dragline silk. This proteinaceous fiber provides the primary structural framework of orb web architecture, and its extraordinary toughness allows these structures to absorb the high energy of aerial prey impact. The dominant model of dragline silk molecular structure involves the combined function of two highly repetitive, spider-specific, silk genes (spidroins)-MaSp1 and MaSp2. Recent genomic studies, however, have suggested this framework is overly simplistic, and our understanding of how MaSp genes evolve is limited. Here we present a comprehensive analysis of MaSp structural and evolutionary diversity across species of Argiope (garden spiders). This genomic analysis reveals the largest catalog of MaSp genes found in any spider, driven largely by an expansion of MaSp2 genes. The rapid diversification of Argiope MaSp genes, located primarily in a single genomic cluster, is associated with profound changes in silk gene structure. MaSp2 genes, in particular, have evolved complex hierarchically organized repeat units (ensemble repeats) delineated by novel introns that exhibit remarkable evolutionary dynamics. These repetitive introns have arisen independently within the genus, are highly homogenized within a gene, but diverge rapidly between genes. In some cases, these iterated introns are organized in an alternating structure in which every other intron is nearly identical in sequence. We hypothesize that this intron structure has evolved to facilitate homogenization of the coding sequence. We also find evidence of intergenic gene conversion and identify a more diverse array of stereotypical amino acid repeats than previously recognized. Overall, the extreme diversification found among MaSp genes requires changes in the structure-function model of dragline silk performance that focuses on the differential use and interaction among various MaSp paralogs as well as the impact of ensemble repeat structure and different amino acid motifs on mechanical behavior.


Assuntos
Fibroínas , Aranhas , Animais , Seda/genética , Aranhas/genética , Aranhas/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Jardins , Fibroínas/genética , Fibroínas/química , Fibroínas/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074873

RESUMO

The King Baboon spider, Pelinobius muticus, is a burrowing African tarantula. Its impressive size and appealing coloration are tempered by reports describing severe localized pain, swelling, itchiness, and muscle cramping after accidental envenomation. Hyperalgesia is the most prominent symptom after bites from P. muticus, but the molecular basis by which the venom induces pain is unknown. Proteotranscriptomic analysis of P. muticus venom uncovered a cysteine-rich peptide, δ/κ-theraphotoxin-Pm1a (δ/κ-TRTX-Pm1a), that elicited nocifensive behavior when injected into mice. In small dorsal root ganglion neurons, synthetic δ/κ-TRTX-Pm1a (sPm1a) induced hyperexcitability by enhancing tetrodotoxin-resistant sodium currents, impairing repolarization and lowering the threshold of action potential firing, consistent with the severe pain associated with envenomation. The molecular mechanism of nociceptor sensitization by sPm1a involves multimodal actions over several ion channel targets, including NaV1.8, KV2.1, and tetrodotoxin-sensitive NaV channels. The promiscuous targeting of peptides like δ/κ-TRTX-Pm1a may be an evolutionary adaptation in pain-inducing defensive venoms.


Assuntos
Nociceptores/efeitos dos fármacos , Papio/metabolismo , Peptídeos/farmacologia , Venenos de Aranha/farmacologia , Aranhas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Canais Iônicos/metabolismo , Camundongos , Dor/tratamento farmacológico , Tetrodotoxina/farmacologia
13.
Annu Rev Entomol ; 69: 481-501, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37788437

RESUMO

Aquatic environments are an unusual habitat for most arthropods. Nevertheless, many arthropod species that were once terrestrial dwelling have transitioned back to marine and freshwater environments, either as semiaquatic or, more rarely, as fully aquatic inhabitants. Transition to water from land is exceptional, and without respiratory modifications to allow for extended submergence and the associated hypoxic conditions, survival is limited. In this article, we review marine-associated species that have made this rare transition in a generally terrestrial group, spiders. We include several freshwater spider species for comparative purposes. Marine-associated spiders comprise less than 0.3% of spider species worldwide but are found in over 14% of all spider families. As we discuss, these spiders live in environments that, with tidal action, hydraulic forces, and saltwater, are more extreme than freshwater habitats, often requiring physiological and behavioral adaptations to survive. Spiders employ many methods to survive inundation from encroaching tides, such as air bubble respiration, airtight nests, hypoxic comas, and fleeing incoming tides. While airway protection is the primary survival strategy, further survival adaptations include saltwater-induced osmotic regulation, dietary composition, predator avoidance, reproduction, locomotory responses, and adaptation to extreme temperatures and hydrostatic pressures that challenge existence in marine environments.


Assuntos
Artrópodes , Aranhas , Humanos , Animais , Ecossistema , Hipóxia , Reprodução
14.
Mol Pharmacol ; 105(3): 144-154, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37739813

RESUMO

A special category of phospholipase D (PLD) in the venom of the brown recluse spider (Loxosceles reclusa) and several other sicariid spiders accounts for the dermonecrosis and many of the other clinical symptoms of envenomation. Related proteins are produced by other organisms, including fungi and bacteria. These PLDs are often referred to as sphingomyelinase Ds (SMase Ds) because they cleave sphingomyelin (SM) to choline and "ceramide phosphate." The lipid product has actually been found to be a novel sphingolipid: ceramide 1,3-cyclic phosphate (Cer1,3P). Since there are no effective treatments for the injury induced by the bites of these spiders, SMase D/PLDs are attractive targets for therapeutic intervention, and some of their features will be described in this minireview. In addition, two simple methods are described for detecting the characteristic SMase D activity using a fluorescent SM analog, (N-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-SM (C12-NBD-SM), that is cleaved to C12-NBD-Cer1,3P, which is easily separated from other potential metabolites by thin-layer chromatography and visualized under UV light. Besides confirming that C12-NBD-Cer1,3P is the only product detected upon incubation of C12-NBD-SM with brown recluse spider venom, the method was also able to detect for the first time very low levels of activity in venom from another spider, Kukulcania hibernalis The simplicity of the methods makes it relatively easy to determine this signature activity of SMase D/PLD. SIGNIFICANCE STATEMENT: The sphingomyelinase D/phospholipase D that are present in the venom of the brown recluse spider and other sources cause considerable human injury, but detection of the novel sphingolipid product, ceramide 1,3-cyclic phosphate, is not easy by previously published methods. This minireview describes simple methods for detection of this activity that will be useful for studies of its occurrence in spider venoms and other biological samples, perhaps including lesions from suspected spider bites and infections.


Assuntos
Fosfolipase D , Venenos de Aranha , Aranhas , Humanos , Animais , Esfingomielina Fosfodiesterase , Fosfolipase D/química , Fosfolipase D/metabolismo , Ceramidas , Fosfatos , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Aranhas/metabolismo
15.
Dev Biol ; 494: 35-45, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36470448

RESUMO

Cell migration is a fundamental component during the development of most multicellular organisms. In the early spider embryo, the collective migration of signalling cells, known as the cumulus, is required to set the dorsoventral body axis. Here, we show that FGF signalling plays an important role during cumulus migration in the spider Parasteatoda tepidariorum. Spider embryos with reduced FGF signalling show reduced or absent cumulus migration and display dorsoventral patterning defects. Our study reveals that the transcription factor Ets4 regulates the expression of several FGF signalling components in the cumulus. In conjunction with a previous study, we show that the expression of fgf8 in the germ-disc is regulated via the Hedgehog signalling pathway. We also demonstrate that FGF signalling influences the BMP signalling pathway activity in the region around cumulus cells. Finally, we show that FGFR signalling might also influence cumulus migration in basally branching spiders and we propose that fgf8 might act as a chemo-attractant to guide cumulus cells towards the future dorsal pole of the spider embryo.


Assuntos
Aranhas , Animais , Padronização Corporal/fisiologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Aranhas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Crescimento de Fibroblastos
16.
BMC Genomics ; 25(1): 150, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326752

RESUMO

BACKGROUND: The common house spider Parasteatoda tepidariorum represents an emerging new model organism of arthropod evolutionary and developmental (EvoDevo) studies. Recent technical advances have resulted in the first single-cell sequencing (SCS) data on this species allowing deeper insights to be gained into its early development, but mid-to-late stage embryos were not included in these pioneering studies. RESULTS: Therefore, we performed SCS on mid-to-late stage embryos of Parasteatoda and characterized resulting cell clusters by means of in-silico analysis (comparison of key markers of each cluster with previously published information on these genes). In-silico prediction of the nature of each cluster was then tested/verified by means of additional in-situ hybridization experiments with additional markers of each cluster. CONCLUSIONS: Our data show that SCS data reliably group cells with similar genetic fingerprints into more or less distinct clusters, and thus allows identification of developing cell types on a broader level, such as the distinction of ectodermal, mesodermal and endodermal cell lineages, as well as the identification of distinct developing tissues such as subtypes of nervous tissue cells, the developing heart, or the ventral sulcus (VS). In comparison with recent other SCS studies on the same species, our data represent later developmental stages, and thus provide insights into different stages of developing cell types and tissues such as differentiating neurons and the VS that are only present at these later stages.


Assuntos
Aranhas , Animais , Aranhas/genética , Aranhas/metabolismo , Evolução Biológica , Mesoderma , Células Germinativas , Análise de Sequência de RNA
17.
Ecol Lett ; 27(3): e14394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511320

RESUMO

Functional responses describe foraging rates across prey densities and underlie many fundamental ecological processes. Most functional response knowledge comes from simplified lab experiments, but we do not know whether these experiments accurately represent foraging in nature. In addition, the difficulty of conducting multispecies functional response experiments means that it is unclear whether interaction strengths are weakened in the presence of multiple prey types. We developed a novel method to estimate wild predators' foraging rates from metabarcoding data and use this method to present functional responses for wild wolf spiders foraging on 27 prey families. These field functional responses were considerably reduced compared to lab functional responses. We further find that foraging is sometimes increased in the presence of other prey types, contrary to expectations. Our novel method for estimating field foraging rates will allow researchers to determine functional responses for wild predators and address long-standing questions about foraging in nature.


Assuntos
Animais Peçonhentos , Comportamento Predatório , Aranhas , Animais , Humanos , Comportamento Predatório/fisiologia , Aranhas/fisiologia
18.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935059

RESUMO

Gene duplication generates new genetic material that can contribute to the evolution of gene regulatory networks and phenotypes. Duplicated genes can undergo subfunctionalization to partition ancestral functions and/or neofunctionalization to assume a new function. We previously found there had been a whole genome duplication (WGD) in an ancestor of arachnopulmonates, the lineage including spiders and scorpions but excluding other arachnids like mites, ticks, and harvestmen. This WGD was evidenced by many duplicated homeobox genes, including two Hox clusters, in spiders. However, it was unclear which homeobox paralogues originated by WGD versus smaller-scale events such as tandem duplications. Understanding this is a key to determining the contribution of the WGD to arachnopulmonate genome evolution. Here we characterized the distribution of duplicated homeobox genes across eight chromosome-level spider genomes. We found that most duplicated homeobox genes in spiders are consistent with an origin by WGD. We also found two copies of conserved homeobox gene clusters, including the Hox, NK, HRO, Irx, and SINE clusters, in all eight species. Consistently, we observed one copy of each cluster was degenerated in terms of gene content and organization while the other remained more intact. Focussing on the NK cluster, we found evidence for regulatory subfunctionalization between the duplicated NK genes in the spider Parasteatoda tepidariorum compared to their single-copy orthologues in the harvestman Phalangium opilio. Our study provides new insights into the relative contributions of multiple modes of duplication to the homeobox gene repertoire during the evolution of spiders and the function of NK genes.


Assuntos
Aracnídeos , Aranhas , Animais , Aranhas/genética , Duplicação Gênica , Genes Homeobox , Aracnídeos/genética , Genoma , Evolução Molecular , Filogenia
19.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36798978

RESUMO

Despite an abundance of gene expression surveys, comparatively little is known about Hox gene function in Chelicerata. Previous investigations of paralogs of labial (lab) and Deformed (Dfd) in a spider have shown that these play a role in tissue maintenance of the pedipalp segment (lab-1) and in patterning the first walking leg identity (Dfd-1), respectively. However, extrapolations of these data across chelicerates are hindered by the existence of duplicated Hox genes in arachnopulmonates (e.g., spiders and scorpions), which have resulted from an ancient whole genome duplication (WGD) event. Here, we investigated the function of the single-copy ortholog of lab in the harvestman Phalangium opilio, an exemplar of a lineage that was not subject to this WGD. Embryonic RNA interference against lab resulted in two classes of phenotypes: homeotic transformations of pedipalps to chelicerae, as well as reduction and fusion of the pedipalp and leg 1 segments. To test for combinatorial function, we performed a double knockdown of lab and Dfd, which resulted in a homeotic transformation of both pedipalps and the first walking legs into cheliceral identity, whereas the second walking leg is transformed into a pedipalpal identity. Taken together, these results elucidate a model for the Hox logic of head segments in Chelicerata. To substantiate the validity of this model, we performed expression surveys for lab and Dfd paralogs in scorpions and horseshoe crabs. We show that repetition of morphologically similar appendages is correlated with uniform expression levels of the Hox genes lab and Dfd, irrespective of the number of gene copies.


Assuntos
Aracnídeos , Aranhas , Animais , Aranhas/genética , Genes Homeobox , Escorpiões/genética , Fenótipo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
20.
Am Nat ; 204(1): 55-72, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857341

RESUMO

AbstractIdealized ring species, with approximately continuous gene flow around a geographic barrier but singular reproductive isolation at a ring terminus, are rare in nature. A broken ring species model preserves the geographic setting and fundamental features of an idealized model but accommodates varying degrees of gene flow restriction over complex landscapes through evolutionary time. Here we examine broken ring species dynamics in Calisoga spiders, which, like the classic ring species Ensatina salamanders, are distributed around the Central Valley of California. Using nuclear and mitogenomic data, we test key predictions of common ancestry, ringlike biogeography, biogeographic timing, population connectivity, and terminal overlap. We show that a ring complex of populations shares a single common ancestor, and from an ancestral area in the Sierra Nevada mountains, two distributional and phylogenomic arms encircle the Central Valley. Isolation by distance occurs along these distributional arms, although gene flow restriction is also evident. Where divergent lineages meet in the South Coast Ranges, we find rare lineage sympatry, without evidence for nuclear gene flow and with clear evidence for morphological and ecological divergence. We discuss general insights provided by broken ring species and how such a model could be explored and extended in other systems and future studies.


Assuntos
Fluxo Gênico , Especiação Genética , Aranhas , Animais , California , Aranhas/genética , Aranhas/anatomia & histologia , Aranhas/fisiologia , Aranhas/classificação , Filogenia , Isolamento Reprodutivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA