Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Metabolomics ; 20(5): 89, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095669

RESUMO

INTRODUCTION: Breeding for oil palm resistance against basal stem rot caused by Ganoderma boninense is challenging and time-consuming. Advanced oil palm gene pools are very limited, hence it is assumed that parental palms have experienced genetic drift and lost their resistance genes against Ganoderma. High-throughput selection criteria should be developed. Metabolomic analysis using 1H nuclear magnetic resonance (NMR) spectroscopy is easy, and the resulting metabolite can be used as a diagnostic tool for detecting disease in various host-pathogen combinations. OBJECTIVES: The objective of this study was to identify metabolite variations in Dura (D) and Pisifera (P) parental palms with different resistance levels against Ganoderma and moderately resistant DxP using 1H NMR analysis. METHODS: Leaf tissues of seven different oil palm categories consisting of: resistant, moderate, and susceptible Dura (D); moderate and susceptible Pisifera (P); resistant Tenera/Pisifera (T/P) parental palms; and moderately resistant DxP variety progenies, were sampled and their metabolites were determined using NMR spectroscopy. RESULTS: Twenty-nine types of metabolites were identified, and most of the metabolites fall in the monosaccharides, amino acids, and fatty acids compound classes. The PCA, PLS-DA, and heatmap multivariate analysis indicated two identified groups of resistance based on their metabolites. The first group consisted of resistant T/P, moderate P, resistant D, and moderately resistant DxP. In contrast, the second group consisted of susceptible P, moderate D, and susceptible D. Glycerol and ascorbic acid were detected as biomarker candidates by OPLS-DA to differentiate moderately resistant DxP from susceptible D and P. The pathway analysis suggested that glycine, serine, and threonine metabolism and taurine and hypotaurine metabolism were involved in the oil palm defense mechanism against Ganoderma. CONCLUSION: A metabolomic study with 1H NMR was able to describe the metabolite composition that could differentiate the characteristics of oil palm resistance against basal stem rot (BSR) caused by G. boninense. These metabolites revealed in this study have enormous potential to become support tools for breeding new oil palm varieties with higher resistance against BSR.


Assuntos
Arecaceae , Resistência à Doença , Ganoderma , Metabolômica , Doenças das Plantas , Folhas de Planta , Ganoderma/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/química , Doenças das Plantas/microbiologia , Arecaceae/metabolismo , Arecaceae/química , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Metaboloma
2.
Mol Biol Rep ; 51(1): 212, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273212

RESUMO

BACKGROUND: Ganoderma boninense is a phytopathogen of oil palm, causing basal and upper stem rot diseases. METHODS: The genome sequence was used as a reference to study gene expression during growth in a starved carbon (C) and nitrogen (N) environment with minimal sugar and sawdust as initial energy sources. This study was conducted to mimic possible limitations of the C-N nutrient sources during the growth of G. boninense in oil palm plantations. RESULTS: Genome sequencing of an isolate collected from a palm tree in West Malaysia generated an assembly of 67.12 Mb encoding 19,851 predicted genes. Transcriptomic analysis from a time course experiment during growth in this starvation media identified differentially expressed genes (DEGs) that were found to be associated with 29 metabolic pathways. During the active growth phase, 26 DEGs were related to four pathways, including secondary metabolite biosynthesis, carbohydrate metabolism, glycan metabolism and mycotoxin biosynthesis. G. boninense genes involved in the carbohydrate metabolism pathway that contribute to the degradation of plant cell walls were up-regulated. Interestingly, several genes associated with the mycotoxin biosynthesis pathway were identified as playing a possible role in pathogen-host interaction. In addition, metabolomics analysis revealed six metabolites, maltose, xylobiose, glucooligosaccharide, glycylproline, dimethylfumaric acid and arabitol that were up-regulated on Day2 of the time course experiment. CONCLUSIONS: This study provides information on genes expressed by G. boninense in metabolic pathways that may play a role in the initial infection of the host.


Assuntos
Arecaceae , Ganoderma , Micotoxinas , Arecaceae/genética , Arecaceae/metabolismo , Doenças das Plantas/genética , Perfilação da Expressão Gênica , Ganoderma/genética , Micotoxinas/metabolismo
3.
Plant Cell Rep ; 43(4): 107, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558250

RESUMO

KEY MESSAGE: EgMADS3, a pivotal transcription factor, positively regulates MCFA accumulation via binding to the EgLPAAT promoter, advancing lipid content in mesocarp of oil palm. Lipids function as the structural components of cell membranes, which serve as permeable barriers to the external environment of cells. The medium-chain fatty acid in the stored lipids of plants is an important renewable energy. Most research on MCFA production in plant lipid synthesis is based on biochemical methods, and the importance of transcriptional regulation in MCFA synthesis and its incorporation into TAGs needs further research. Oil palm is the most productive oil crop in the world and has the highest productivity among the main oil crops. In this study, the MADS transcription factor (EgMADS3) in the mesocarp of oil palm was characterized. Through the VIGS-virus induced gene silencing, it was determined that the potential target gene of EgMADS3 was related to the biosynthesis of medium-chain fatty acid (MCFA). Transient transformation in protoplasts and qRT-PCR analysis showed that EgMADS3 positively regulated the expression of EgLPAAT. The results of the yeast one-hybrid assays and EMSA indicated the interaction between EgMADS3 and EgLPAAT promoter. Through genetic transformation and fatty acid analysis, it is concluded that EgMADS3 directly regulates the mid-chain fatty acid synthesis pathway of the potential target gene EgLPAAT, thus promotes the accumulation of MCFA and improves the total lipid content. This study is innovative in the functional analysis of the MADS family transcription factor in the metabolism of medium-chain fatty acids (MCFA) of oil palm, provides a certain research basis for improving the metabolic pathway of chain fatty acids in oil palm, and improves the synthesis of MCFA in plants. Our results will provide a reference direction for further research on improving the oil quality through biotechnology of oil palm.


Assuntos
Arecaceae , Arecaceae/genética , Arecaceae/metabolismo , Ácidos Graxos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Redes e Vias Metabólicas , Óleo de Palmeira/metabolismo
4.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39062936

RESUMO

Oil palm (Elaeis guineensis Jacq.) is a typical tropical oil crop with a temperature of 26-28 °C, providing approximately 35% of the total world's vegetable oil. Growth and productivity are significantly affected by low-temperature stress, resulting in inhibited growth and substantial yield losses. To comprehend the intricate molecular mechanisms underlying the response and acclimation of oil palm under low-temperature stress, multi-omics approaches, including metabolomics, proteomics, and transcriptomics, have emerged as powerful tools. This comprehensive review aims to provide an in-depth analysis of recent advancements in multi-omics studies on oil palm under low-temperature stress, including the key findings from omics-based research, highlighting changes in metabolite profiles, protein expression, and gene transcription, as well as including the potential of integrating multi-omics data to reveal novel insights into the molecular networks and regulatory pathways involved in the response to low-temperature stress. This review also emphasizes the challenges and prospects of multi-omics approaches in oil palm research, providing a roadmap for future investigations. Overall, a better understanding of the molecular basis of the response of oil palm to low-temperature stress will facilitate the development of effective breeding and biotechnological strategies to improve the crop's resilience and productivity in changing climate scenarios.


Assuntos
Arecaceae , Metabolômica , Proteômica , Transcriptoma , Metabolômica/métodos , Proteômica/métodos , Arecaceae/metabolismo , Arecaceae/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica/métodos , Estresse Fisiológico , Resposta ao Choque Frio , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Multiômica
5.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338758

RESUMO

Catalases (CATs) play crucial roles in scavenging H2O2 from reactive oxygen species, controlling the growth and development of plants. So far, genome-wide identification and characterization of CAT genes in oil palm have not been reported. In the present study, five EgCAT genes were obtained through a genome-wide identification approach. Phylogenetic analysis divided them into two subfamilies, with closer genes sharing similar structures. Gene structure and conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the EgCAT genes. Several cis-acting elements related to hormone, stress, and defense responses were identified in the promoter regions of EgCATs. Tissue-specific expression of EgCAT genes in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Stress-responsive expression analysis showed that five EgCAT genes were significantly expressed under cold, drought, and salinity stress conditions. Collectively, this study provided valuable information on the oil palm CAT gene family and the validated EgCAT genes can be used as potential candidates for improving abiotic stress tolerance in oil palm and other related crops.


Assuntos
Arecaceae , Peróxido de Hidrogênio , Catalase/metabolismo , Filogenia , Peróxido de Hidrogênio/metabolismo , Transcriptoma , Arecaceae/genética , Arecaceae/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Óleo de Palmeira , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891808

RESUMO

AP2/ERF transcription factor genes play an important role in regulating the responses of plants to various abiotic stresses, such as cold, drought, high salinity, and high temperature. However, less is known about the function of oil palm AP2/ERF genes. We previously obtained 172 AP2/ERF genes of oil palm and found that the expression of EgAP2.25 was significantly up-regulated under salinity, cold, or drought stress conditions. In the present study, the sequence characterization and expression analysis for EgAP2.25 were conducted, showing that it was transiently over-expressed in Nicotiana tabacum L. The results indicated that transgenic tobacco plants over-expressing EgAP2.25 could have a stronger tolerance to salinity stress than wild-type tobacco plants. Compared with wild-type plants, the over-expression lines showed a significantly higher germination rate, better plant growth, and less chlorophyll damage. In addition, the improved salinity tolerance of EgAP2.25 transgenic plants was mainly attributed to higher antioxidant enzyme activities, increased proline and soluble sugar content, reduced H2O2 production, and lower MDA accumulation. Furthermore, several stress-related marker genes, including NtSOD, NtPOD, NtCAT, NtERD10B, NtDREB2B, NtERD10C, and NtP5CS, were significantly up-regulated in EgAP2.25 transgenic tobacco plants subjected to salinity stress. Overall, over-expression of the EgAP2.25 gene significantly enhanced salinity stress tolerance in transgenic tobacco plants. This study lays a foundation for further exploration of the regulatory mechanism of the EgAP2.25 gene in conferring salinity tolerance in oil palm.


Assuntos
Arecaceae , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Tolerância ao Sal , Arecaceae/genética , Arecaceae/metabolismo , Germinação/genética , Nicotiana/genética , Nicotiana/fisiologia , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Salino/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética
7.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338979

RESUMO

Oil palm, a tropical woody oil crop, is widely used in food, cosmetics, and pharmaceuticals due to its high production efficiency and economic value. Palm oil is rich in free fatty acids, polyphenols, vitamin E, and other nutrients, which are beneficial for human health when consumed appropriately. Therefore, investigating the dynamic changes in free fatty acid content at different stages of development and hypothesizing the influence of regulatory genes on free fatty acid metabolism is crucial for improving palm oil quality and accelerating industry growth. LC-MS/MS is used to analyze the composition and content of free fatty acids in the flesh after 95 days (MS1 and MT1), 125 days (MS2 and MT2), and 185 days (MS3 and MT3) of Seedless (MS) and Tenera (MT) oil palm species fruit pollination. RNA-Seq was used to analyze the expression of genes regulating free fatty acid synthesis and accumulation, with differences in genes and metabolites mapped to the KEGG pathway map using the KEGG (Kyoto encyclopedia of genes and genomes) enrichment analysis method. A metabolomics study identified 17 types of saturated and 13 types of unsaturated free fatty acids during the development of MS and MT. Transcriptomic research revealed that 10,804 significantly different expression genes were acquired in the set differential gene threshold between MS and MT. The results showed that FabB was positively correlated with the contents of three main free fatty acids (stearic acid, myristate acid, and palmitic acid) and negatively correlated with the contents of free palmitic acid in the flesh of MS and MT. ACSL and FATB were positively correlated with the contents of three main free fatty acids and negatively correlated with free myristate acid. The study reveals that the expression of key enzyme genes, FabB and FabF, may improve the synthesis of free myristate in oil palm flesh, while FabF, ACSL, and FATB genes may facilitate the production of free palmitoleic acid. These genes may also promote the synthesis of free stearic acid and palmitoleic acid in oil palm flesh. However, the FabB gene may inhibit stearic acid synthesis, while ACSL and FATB genes may hinder myristate acid production. This study provides a theoretical basis for improving palm oil quality.


Assuntos
Arecaceae , Ácidos Graxos não Esterificados , Humanos , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos/metabolismo , Óleo de Palmeira , Cromatografia Líquida , Miristatos/metabolismo , Arecaceae/genética , Arecaceae/metabolismo , Espectrometria de Massas em Tandem , Ácidos Graxos Insaturados/metabolismo , Ácido Palmítico/metabolismo , Perfilação da Expressão Gênica , Ácidos Esteáricos/metabolismo , Óleos de Plantas/metabolismo
8.
Mol Biol Rep ; 50(3): 2367-2379, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36580194

RESUMO

BACKGROUND: The basidiomycete fungus, Ganoderma boninense is the main contributor to oil palm Basal Stem Rot (BSR) in Malaysia and Indonesia. Lanosterol 14α-Demethylase (ERG11) is a key enzyme involved in biosynthesis of ergosterol, which is an important component in the fungal cell membrane. The Azole group fungicides are effective against pathogenic fungi including G. boninense by inhibiting the ERG11 activity. However, the work on molecular characterization of G. boninense ERG11 is still unavailable today. METHODS AND RESULTS: This study aimed to isolate and characterize the full-length cDNA encoding ERG11 from G. boninense. The G. boninense ERG11 gene expression during interaction with oil palm was also studied. A full-length 1860 bp cDNA encoding ERG11 was successfully isolated from G. boninense. The G. boninense ERG11 shared 91% similarity to ERG11 from other basidiomycete fungi. The protein structure homology modeling of GbERG11 was analyzed using the SWISS-MODEL workspace. Southern blot and genome data analyses showed that there is only a single copy of ERG11 gene in the G. boninense genome. Based on the in-vitro inoculation study, the ERG11 gene expression in G. boninense has shown almost 2-fold upregulation with the presence of oil palm. CONCLUSION: This study provided molecular information and characterization study on the G. boninense ERG11 and this knowledge could be used to design effective control measures to tackle the BSR disease of oil palm.


Assuntos
Ganoderma , Arecaceae/genética , Arecaceae/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Ganoderma/genética , Lanosterol/metabolismo , Doenças das Plantas/microbiologia
9.
Mol Biol Rep ; 50(7): 5609-5620, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37171552

RESUMO

BACKGROUND: Plant microRNA, often known as miRNA, is a novel form of gene expression regulator that is known to play a significant role in phosphate starvation. The identification of microRNAs involved in the response to phosphate starvation in oil palms is beneficial for breeding programs. METHOD: The main nursery stage seedlings of two oil palm progenies were treated with three different fertiliser namely: complete fertiliser with urea, P2O5, K2O, and MgO based on the standard procedure as a control (C); fertiliser with urea, K2O, MgO without P2O5 (P0); and no fertiliser (F0) for 24 weeks. A total of six oil palm roots were subjected to RNA isolation, followed by miRNA sequencing using the Illumina HiSeq 4000 platform, and all reads were computationally analysed. RESULTS: In total, 119 potential miRNAs related to 5,891 genes were identified. The P-specific miRNAs were assumed based on the miRNAs that identified without P fertilizer treatment, resulted of twenty miRNA sequences in the treatment comparison of (C vs P0) vs (C vs F0). Those 20 miRNA sequences were grouped into 9 families, namely EgmiR319; EgmiR399; EgmiR396; EgmiR172; EgmiR156; EgmiR157; miR5648; miR5645; and EgmiRNA_unidentified. Two miRNAs were selected for RT-qPCR validation, namely EgMir399 and EgMir172. Their expression pattern was similar with the RNA sequencing results and shown opposite expression pattern with their target genes, UBC E2 24 and APETALA2, respectively. CONCLUSIONS: The nine micro RNA families was identified in oil palm root tissue at phosphate starvation.


Assuntos
Arecaceae , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatos , Óxido de Magnésio/metabolismo , Melhoramento Vegetal , Arecaceae/genética , Arecaceae/metabolismo
10.
Biochem Genet ; 61(6): 2382-2400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37060482

RESUMO

Oil palm (Elaeis guineensis) is the most important tropical oil-bearing crop species worldwide. MADS-box proteins, which play crucial roles in plant growth and development and are involved in various physiological and biochemical processes, compose one of the largest families of plant transcription factors. In this study, 42 MADS-box genes were screened from the mesocarp transcriptome database of oil palm fruit, and their phylogenetic relationships with Arabidopsis thaliana MADS-box genes were analyzed. Based on the results, MADS-box genes from oil palm mesocarp were classified into four groups: MIKCc-type, MIKC*-type, Mα-type, and Mγ-type MADS-box genes. Members of the subfamilies were classified according to the presence of three specific protein motifs. To explore the differential expression of the MADS-box genes, the dynamic expression of all selected MADS-box genes in oil palm was measured by RNA-seq. The high expression of specific MADS-box genes in the mesocarp of oil palm during different developmental stages indicates that those genes may play important roles in the cell division of and metabolite accumulation in the fruit and could become important targets for fruit development and oil accumulation research in oil palm.


Assuntos
Arecaceae , Frutas , Frutas/metabolismo , Filogenia , Fatores de Transcrição/genética , Motivos de Aminoácidos , Arecaceae/genética , Arecaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
BMC Plant Biol ; 22(1): 139, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331141

RESUMO

BACKGROUND: The development of basal stem rot (BSR) disease in oil palm is associated with lignin during vegetative growth and salicylic acid (SA) biosynthesis. The increase in the lignin content, SA accumulation, growth, and root biomass could indicate the resistance of oil palm seedlings to BSR disease. Therefore, although there are many studies on the interactions between the Ganoderma boninense and oil palm, research on evaluation of physiological processes, biochemistry, and molecules occurring during early internal symptoms of BSR in roots of oil palm (Elaeis guineensis Jacq.) are essential. RESULTS: Ganoderma boninense inoculation indicated that C01, C02, and C05 seedlings were susceptible, while the other three seedlings, C03, C07, and C08, were resistant based on Ganoderma Disease Index (GDI). Infection by G. boninense in the most susceptible seedlings C05 reduced fresh weight of roots (FW) by 9.0%, and lignin content by 10.9%. The most resistant seedlings C08 were reduced by only 8.4%, and 0.2% regarding their fresh weight and lignin content, respectively. BSR disease induced SA accumulation in the most susceptible C08 and decreased peroxidase (PRX) enzyme (EC 1.11.1.7) activities in root tissues of oil palm seedlings except C07 and C08 where PRX activities remained high in the 4 months after planting. Infection with G. boninense also increased glutathione S-transferase U19-like (EgGSTU19) gene expression in the root tissues of susceptible seedlings, while laccase-24 (EgLCC24) gene expression was associated with resistance against BSR disease. Based on the relative expression of twelve genes, two genes are categorized as receptors (EgWAKL5, EgMIK1), two genes as biosynthesis signal transduction compound (EgOPR5, EgACO1), five genes as defense responses (EgROMT, EgSOT12, EgLCC24, EgGLT3, EgGSTU19), and one gene as trans-resveratrol di-O-methyltransferase-like (EgRNaseIII) predicted related to BSR infection. While two other genes remain unknown (EgUnk1, EgUnk2). CONCLUSIONS: Ganoderma infection-induced SA accumulation and lignification in resistant accessions promote the seedlings root biomass. Oil palm seedlings have a synergistic physical, biochemical, and molecular defense mechanism to the BSR disease. The utilization of nucleotide-based molecular markers using EgLCC24 gene is able to detect resistant oil palm seedlings to G. boninense.


Assuntos
Arecaceae , Ganoderma , Arecaceae/genética , Arecaceae/metabolismo , Ganoderma/fisiologia , Doenças das Plantas/genética , Plântula/genética
12.
BMC Plant Biol ; 22(1): 112, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279075

RESUMO

BACKGROUND: Oil palm is the most efficient oil-producing crop in the world, and the yield of palm oil is associated with embryonic development. However, a comprehensive understanding of zygotic embryo development at the molecular level remains elusive. In order to address this issue, we report the transcriptomic analysis of zygotic embryo development in oil palm, specifically focusing on regulatory genes involved in important biological pathways. RESULTS: In this study, three cDNA libraries were prepared from embryos at S1 (early-stage), S2 (middle-stage), and S3 (late-stage). There were 16,367, 16,500, and 18,012 genes characterized at the S1, S2, and S3 stages of embryonic development, respectively. A total of 1522, 2698, and 142 genes were differentially expressed in S1 vs S2, S1 vs S3, and S2 vs S3, respectively. Using Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to identify key genes and pathways. In the hormone signaling pathway, genes related to auxin antagonize the output of cytokinin which regulates the development of embryo meristem. The genes related to abscisic acid negatively regulating the synthesis of gibberellin were strongly up-regulated in the mid-late stage of embryonic development. The results were reported the early synthesis and mid-late degradation of sucrose, as well as the activation of the continuous degradation pathway of temporary starch, providing the nutrients needed for differentiation of the embryonic cell. Moreover, the transcripts of genes involved in fatty acid synthesis were also abundantly accumulated in the zygotic embryos. CONCLUSION: Taken together, our research provides a new perspective on the developmental and metabolic regulation of zygotic embryo development at the transcriptional level in oil palm.


Assuntos
Arecaceae/crescimento & desenvolvimento , Arecaceae/genética , Arecaceae/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , China , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Redes e Vias Metabólicas , Óleo de Palmeira
13.
Nutr Cancer ; 74(10): 3723-3734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35703849

RESUMO

Colorectal cancer is one of the most common types of cancer. Bioactive natural compounds can act in cancer chemoprevention as tumor growth inhibitors. Tucum-do-cerrado (Bactris setosa Mart.) is a Brazilian fruit that contains several phenolic compounds. This study investigated the effect of tucum aqueous extract in Caco-2 cells in comparison to primary human intestinal organoids and fibroblasts. Cells were exposed to 0.5 and 1 mg/ml of tucum aqueous extract for 24 h. ROS production, mRNA levels for SOD1 and SOD2, CAT, GPX1, NFE2L2, HIF1A and NOS2 were evaluated in Caco-2 cells exposed to tucum extract. Cell viability of Caco-2 cells was decreased upon tucum extract exposure. Mitochondrial ROS levels increased in Caco-2 cells exposed to tucum extract. The mRNA levels of SOD1, SOD2, CAT, GPX, NFE2L2 and HIF1A were downregulated in Caco-2 cells exposed to tucum extract, while NOS2 mRNA levels remained unchanged. Protein levels of SOD2, CAT and NRF2 remained unchanged in Caco-2 cells treated with tucum extract, indicating that catalase and SOD2 cellular functions may be unaffected by the tucum extract at 24 h, of exposure. Aqueous extract of tucum-do-cerrado may induce cellular toxicity in a cancer cell-specific manner, possibly through increased mitochondrial ROS production and gene expression regulation.


Assuntos
Adenocarcinoma , Arecaceae , Neoplasias Colorretais , Arecaceae/metabolismo , Células CACO-2 , Neoplasias Colorretais/tratamento farmacológico , Humanos , Extratos Vegetais/farmacologia , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1
14.
J Appl Microbiol ; 133(6): 3288-3295, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35716153

RESUMO

AIMS: The lignocellulosic waste, Borassus flabellifer empty fruit bunch waste (BFEFBW), was employed to produce laccase using Bacillus aestuarii KSK under solid-state fermentation (SSF) conditions and to assess the efficiency of malachite green (MG) dye decolourization. METHODS AND RESULTS: Abiotic factors such as pH (5.0-9.0), temperature (25-45°C) and incubation time (24-96 h) were optimized using Response surface methodology-Box-Behenan Design (RSM-BBD) to exploit the laccase production. The anticipated model revealed that the highest laccase activity of 437 U/ml shows after 60 h of incubation at 35°C at pH 7.0. The bacterial laccase was used to remove 89% of the MG dye in less time. CONCLUSION: The laccase from B. aestuarii KSK decolorizes the MG and thereby making it a suitable choice for wastewater treatment from industrial effluents. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first report on the production of laccase from B. flabellifer empty fruit bunch waste as a substrate. Bacillus aestuarii KSK was isolated from the soil sample and used to produce laccase under SSF conditions. The bacterial laccase has the potential for industrial application in textile waste dye treatment.


Assuntos
Arecaceae , Lacase , Lacase/metabolismo , Frutas/metabolismo , Corantes/metabolismo , Arecaceae/metabolismo , Biodegradação Ambiental
15.
Plant Cell Rep ; 41(6): 1449-1460, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35362736

RESUMO

KEY MESSAGE: EgMYB108 regulates VLCFA anabolism in oil palm. Very long-chain fatty acids (VLCFAs), which are fatty acids with more than 18 C, can not only be used as a form of triglyceride (TAG) but also provide precursors for the biosynthesis of cuticle wax, and they exist in plant epidermal cells in the form of wax in higher plants. However, which and how transcriptional factors (TFs) regulate this process is largely unknown in oil palm. In this study, a MYB transcription factor (EgMYB108) with high expression in the mesocarp of oil palm fruit was characterized. Overexpression of EgMYB108 promoted not only total lipid content but also VLCFA accumulation in oil palm embryoids. Subsequently, transient transformation in protoplasts and qRT-PCR analysis indicated that the EgKCS5 and EgLACS4 genes were significantly increased with the overexpression of EgMYB108. Furthermore, yeast one­hybrid assays, dual-luciferase assays and EMSAs demonstrated that EgMYB108 binds to the promoters of EgKCS5 and EgLACS4 and regulates their transcription. Finally, EgMYB108 interacts with the promoters of EgLACS and EgKCS simultaneously and finally improves the VLCFA and total lipid contents; a pathway summarizing this interaction was depicted.. The results provide new insight into the mechanism by which EgMYB108 regulates lipid and VLCFA accumulation in oil palm.


Assuntos
Arecaceae , Arecaceae/genética , Arecaceae/metabolismo , Ácidos Graxos/metabolismo , Frutas/genética , Frutas/metabolismo , Óleo de Palmeira/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo
16.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499255

RESUMO

Oil palm (Elaeis guineensis Jacq.) is an economically important tropical oil crop widely cultivated in tropical zones worldwide. Being a tropical crop, low-temperature stress adversely affects the oil palm. However, integrative leaf transcriptomic and proteomic analyses have not yet been conducted on an oil palm crop under cold stress. In this study, integrative omics transcriptomic and iTRAQ-based proteomic approaches were employed for three oil palm varieties, i.e., B × E (Bamenda × Ekona), O × G (E. oleifera × Elaeis guineensis), and T × E (Tanzania × Ekona), in response to low-temperature stress. In response to low-temperature stress at (8 °C) for 5 days, a total of 5175 up- and 2941 downregulated DEGs in BE-0_VS_BE-5, and a total of 3468 up- and 2443 downregulated DEGs for OG-0_VS_OG-5, and 3667 up- and 2151 downregulated DEGs for TE-0_VS_TE-5 were identified. iTRAQ-based proteomic analysis showed 349 up- and 657 downregulated DEPs for BE-0_VS_BE-5, 372 up- and 264 downregulated DEPs for OG-0_VS_OG-5, and 500 up- and 321 downregulated DEPs for TE-0_VS_TE-5 compared to control samples treated at 28 °C and 8 °C, respectively. The KEGG pathway correlation of oil palm has shown that the metabolic synthesis and biosynthesis of secondary metabolites pathways were significantly enriched in the transcriptome and proteome of the oil palm varieties. The correlation expression pattern revealed that TE-0_VS_TE-5 is highly expressed and BE-0_VS_BE-5 is suppressed in both the transcriptome and proteome in response to low temperature. Furthermore, numerous transcription factors (TFs) were found that may regulate cold acclimation in three oil palm varieties at low temperatures. Moreover, this study identified proteins involved in stresses (abiotic, biotic, oxidative, and heat shock), photosynthesis, and respiration in iTRAQ-based proteomic analysis of three oil palm varieties. The increased abundance of stress-responsive proteins and decreased abundance of photosynthesis-related proteins suggest that the TE variety may become cold-resistant in response to low-temperature stress. This study may provide a basis for understanding the molecular mechanism for the adaptation of oil palm varieties in response to low-temperature stress in China.


Assuntos
Arecaceae , Proteômica , Temperatura Baixa , Arecaceae/genética , Arecaceae/metabolismo , Transcriptoma , Resposta ao Choque Frio/genética , Proteoma/genética , Proteoma/metabolismo , Regulação da Expressão Gênica de Plantas , Óleo de Palmeira
17.
Molecules ; 27(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36364139

RESUMO

Elaeis guineensis Jacq. has gained a reputation in the food industry as an incredible crop capable of supplying the world's largest edible oil production. In Ecuador, an important oil palm-producing country, this crop is affected in a high percentage by the bud rot disease, which is responsible for palm death. The main objective of the investigation was dedicated to understanding the palm defense mechanism facing bud rot disease, translated in the induction of reactive oxygen species, activation of defensive machinery comprising enzymatic and non-enzymatic antioxidative components, secondary metabolites, carotenoids accumulation in the palm during all stages of disease infection. For this, a survey was conducted in different oil palm plantations in the Esmeraldas province, one of the most representative for its highest incidence of bud rot disease. The survey completed DPPH, FRAP, ABTS, and other spectrophotometric analyses to underline the biochemical, biological, and physiological palm response front of bud rot incidence. The palm defense strategy in each disease stage could be represented by the phenolic compound's involvement, an increment of antioxidant activity, and the high enzymatic activity of phenylalanine ammonia-lyase (PAL). The results of the investigation made understandable the palm defense strategy front of this disease, respectively, the antioxidative defense and the palm secondary compounds involved.


Assuntos
Antioxidantes , Arecaceae , Antioxidantes/metabolismo , Equador , Arecaceae/metabolismo , Fenilalanina Amônia-Liase/metabolismo
18.
Prep Biochem Biotechnol ; 52(3): 311-317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34197716

RESUMO

Fungal xylanase was produced from lignocellulosic palm wastes through combined solid-state fermentation (SSF) and submerged fermentation (SmF) by Aspergillus tubingensis TSIP9 in a helical-impeller equipped bioreactor. The combined SSF-SmF promoted the xylanase production by 15 and 70% higher than SSF and SmF, respectively. Sequential purification yielded 7.4-fold purified xylanase with 9.07% recovery. The maximum activities of crude and purified xylanase were observed at the same pH of 5.0 and the same temperature of 50 °C while purified xylanase is more active and highly stable at a wider pH range of 3-8 and temperature of 30-60 °C. The half-life of purified xylanase at various temperatures was also much improved by 2-8 folds compared to crude xylanase. Michaelis-Menten constants, Vmax and Km, for purified xylanase are 2,602.8 U/mg and 32.4 mg/mL, respectively. Purified xylanase activity was most enhanced with Ca2+ followed by Zn2+ and Fe2+ at 10 mM while significantly inhibited by Co2+, Cu2+, Pb2+, and Ag+. This study has shown the effectiveness of combined SSF-SmF for xylanase production and superior properties of purified xylanase for industrial processes.


Assuntos
Arecaceae/metabolismo , Aspergillus/enzimologia , Endo-1,4-beta-Xilanases/isolamento & purificação , Fermentação , Reatores Biológicos , Endo-1,4-beta-Xilanases/metabolismo , Meia-Vida , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética
19.
Prep Biochem Biotechnol ; 52(3): 325-330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34261412

RESUMO

Lipases (triacylglycerol hydrolases, EC 3.1.1.3) are a class of enzymes with high industrial importance. An option for the production of this enzyme is through fungal growth via solid-state fermentation (SSF). Thus, this research presents a study of lipase production by Penicillium roqueforti ATCC 10110 through SSF using cocoa bran residues (Theobroma cacao) as a substrate. To achieve maximum lipase production, fermentation time (0 to 120 h) and palm oil (PO) percentage (0 to 50%) were optimized through analysis of one factor at a time (OFAT), with lipase activity as the response. The amount of cocoa was fixed (5 g), the incubation temperature was maintained at 27 °C, and the moisture content was established at 70%. For a 72 h incubation, the highest enzyme activity achieved using SSF without adding PO was 14.67 ± 1.47 U g-1, whereas with PO (30%), it was 33.33 ± 3.33 U g-1, thus demonstrating a 44% increase in enzyme activity. Through the OFAT methodology, it was possible to confirm that supplementation with palm residue was efficient and maximized the lipase of P. roqueforti ATCC 10110.


Assuntos
Arecaceae/metabolismo , Cacau/metabolismo , Fermentação , Lipase/biossíntese , Penicillium/metabolismo
20.
BMC Plant Biol ; 21(1): 92, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33573592

RESUMO

BACKGROUND: Fruit abscission depends on cell separation that occurs within specialized cell layers that constitute an abscission zone (AZ). To determine the mechanisms of fleshy fruit abscission of the monocot oil palm (Elaeis guineensis Jacq.) compared with other abscission systems, we performed multi-scale comparative transcriptome analyses on fruit targeting the developing primary AZ and adjacent tissues. RESULTS: Combining between-tissue developmental comparisons with exogenous ethylene treatments, and naturally occurring abscission in the field, RNAseq analysis revealed a robust core set of 168 genes with differentially regulated expression, spatially associated with the ripe fruit AZ, and temporally restricted to the abscission timing. The expression of a set of candidate genes was validated by qRT-PCR in the fruit AZ of a natural oil palm variant with blocked fruit abscission, which provides evidence for their functions during abscission. Our results substantiate the conservation of gene function between dicot dry fruit dehiscence and monocot fleshy fruit abscission. The study also revealed major metabolic transitions occur in the AZ during abscission, including key senescence marker genes and transcriptional regulators, in addition to genes involved in nutrient recycling and reallocation, alternative routes for energy supply and adaptation to oxidative stress. CONCLUSIONS: The study provides the first reference transcriptome of a monocot fleshy fruit abscission zone and provides insight into the mechanisms underlying abscission by identifying key genes with functional roles and processes, including metabolic transitions, cell wall modifications, signalling, stress adaptations and transcriptional regulation, that occur during ripe fruit abscission of the monocot oil palm. The transcriptome data comprises an original reference and resource useful towards understanding the evolutionary basis of this fundamental plant process.


Assuntos
Arecaceae/genética , Arecaceae/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Metabolismo/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA