Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.114
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(10): 1821-1835.e6, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35381197

RESUMO

GLS1 orchestrates glutaminolysis and promotes cell proliferation when glutamine is abundant by regenerating TCA cycle intermediates and supporting redox homeostasis. CB-839, an inhibitor of GLS1, is currently under clinical investigation for a variety of cancer types. Here, we show that GLS1 facilitates apoptosis when glutamine is deprived. Mechanistically, the absence of exogenous glutamine sufficiently reduces glutamate levels to convert dimeric GLS1 to a self-assembled, extremely low-Km filamentous polymer. GLS1 filaments possess an enhanced catalytic activity, which further depletes intracellular glutamine. Functionally, filamentous GLS1-dependent glutamine scarcity leads to inadequate synthesis of asparagine and mitogenome-encoded proteins, resulting in ROS-induced apoptosis that can be rescued by asparagine supplementation. Physiologically, we observed GLS1 filaments in solid tumors and validated the tumor-suppressive role of constitutively active, filamentous GLS1 mutants K320A and S482C in xenograft models. Our results change our understanding of GLS1 in cancer metabolism and suggest the therapeutic potential of promoting GLS1 filament formation.


Assuntos
Glutaminase , Glutamina , Apoptose , Asparagina/genética , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Espécies Reativas de Oxigênio
2.
Nature ; 584(7822): 630-634, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32814900

RESUMO

Integral membrane proteins are encoded by approximately 25% of all protein-coding genes1. In eukaryotes, the majority of membrane proteins are inserted, modified and folded at the endoplasmic reticulum (ER)2. Research over the past several decades has determined how membrane proteins are targeted to the ER and how individual transmembrane domains (TMDs) are inserted into the lipid bilayer3. By contrast, very little is known about how multi-spanning membrane proteins with several TMDs are assembled within the membrane. During the assembly of TMDs, interactions between polar or charged amino acids typically stabilize the final folded configuration4-8. TMDs with hydrophilic amino acids are likely to be chaperoned during the co-translational biogenesis of membrane proteins; however, ER-resident intramembrane chaperones are poorly defined. Here we identify the PAT complex, an abundant obligate heterodimer of the widely conserved ER-resident membrane proteins CCDC47 and Asterix. The PAT complex engages nascent TMDs that contain unshielded hydrophilic side chains within the lipid bilayer, and it disengages concomitant with substrate folding. Cells that lack either subunit of the PAT complex show reduced biogenesis of numerous multi-spanning membrane proteins. Thus, the PAT complex is an intramembrane chaperone that protects TMDs during assembly to minimize misfolding of multi-spanning membrane proteins and maintain cellular protein homeostasis.


Assuntos
Proteínas de Membrana/biossíntese , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Biossíntese de Proteínas , Sequência de Aminoácidos , Asparagina/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Complexos Multiproteicos/química , Mutação , Proteínas Nucleares/metabolismo , Ligação Proteica , Dobramento de Proteína , Subunidades Proteicas/metabolismo , Especificidade por Substrato
3.
J Cell Physiol ; 239(9): e31403, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39129225

RESUMO

A proton (H+) channel, Otopetrin 1 (OTOP1) is an acid sensor in the sour taste receptor cells. Although OTOP1 is known to be activated by extracellular acid, no posttranslational modification of OTOP1 has been reported. As one of the posttranslational modifications, glycosylation is known to modulate many ion channels. In this study, we investigated whether OTOP1 is glycosylated and how the glycosylation affects OTOP1 function. Pharmacological and enzymatic examinations (using an N-glycosylation inhibitor, tunicamycin and peptide: N-glycanase F [PNGase F]) revealed that overexpressed mouse OTOP1 was N-glycosylated. As the N-glycans were Endoglycosidase H (Endo H)-sensitive, they were most likely high-mannose type. A site-directed mutagenesis approach revealed that both two asparagine residues (N238 and N251) in the third extracellular loop between the fifth transmembrane region and the sixth transmembrane region (L5-6) were the glycosylation sites. Prevention of the glycosylations by the mutations of the asparagine residues or by tunicamycin treatment diminished the whole-cell OTOP1 current densities. The results of cell surface biotinylation assay showed that the prevention of the glycosylations reduced the surface expression of OTOP1 at the plasma membrane. These results indicate that mouse OTOP1 is N-glycosylated at N238 and N251, and that the glycosylations are necessary for OTOP1 to show the maximum degree of H+ current densities at the plasma membrane through promoting its targeting to the plasma membrane. These findings on glycosylations of OTOP1 will be a part of a comprehensive understanding on the regulations of OTOP1 function.


Assuntos
Asparagina , Glicosilação , Animais , Asparagina/metabolismo , Asparagina/genética , Camundongos , Humanos , Células HEK293 , Processamento de Proteína Pós-Traducional/genética , Canais Iônicos/metabolismo , Canais Iônicos/genética , Tunicamicina/farmacologia , Polissacarídeos/metabolismo
4.
IUBMB Life ; 76(8): 505-522, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38391119

RESUMO

The amide proteogenic amino acids, asparagine and glutamine, are two of the twenty amino acids used in translation by all known life. The aminoacyl-tRNA synthetases for asparagine and glutamine, asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase, evolved after the split in the last universal common ancestor of modern organisms. Before that split, life used two-step indirect pathways to synthesize asparagine and glutamine on their cognate tRNAs to form the aminoacyl-tRNA used in translation. These two-step pathways were retained throughout much of the bacterial and archaeal domains of life and eukaryotic organelles. The indirect routes use non-discriminating aminoacyl-tRNA synthetases (non-discriminating aspartyl-tRNA synthetase and non-discriminating glutamyl-tRNA synthetase) to misaminoacylate the tRNA. The misaminoacylated tRNA formed is then transamidated into the amide aminoacyl-tRNA used in protein synthesis by tRNA-dependent amidotransferases (GatCAB and GatDE). The enzymes and tRNAs involved assemble into complexes known as transamidosomes to help maintain translational fidelity. These pathways have evolved to meet the varied cellular needs across a diverse set of organisms, leading to significant variation. In certain bacteria, the indirect pathways may provide a means to adapt to cellular stress by reducing the fidelity of protein synthesis. The retention of these indirect pathways versus acquisition of asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase in lineages likely involves a complex interplay of the competing uses of glutamine and asparagine beyond translation, energetic costs, co-evolution between enzymes and tRNA, and involvement in stress response that await further investigation.


Assuntos
Aminoacil-tRNA Sintetases , Evolução Molecular , Biossíntese de Proteínas , Aminoacil-RNA de Transferência , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência/genética , Asparagina/metabolismo , Asparagina/genética , Glutamina/metabolismo , Bactérias/genética , Bactérias/enzimologia , Bactérias/metabolismo , Archaea/genética , Archaea/metabolismo , Archaea/enzimologia , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Amidas/metabolismo , Humanos
5.
BMC Psychiatry ; 24(1): 299, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641826

RESUMO

BACKGROUND: Despite ongoing research, the underlying causes of schizophrenia remain unclear. Aspartate and asparagine, essential amino acids, have been linked to schizophrenia in recent studies, but their causal relationship is still unclear. This study used a bidirectional two-sample Mendelian randomization (MR) method to explore the causal relationship between aspartate and asparagine with schizophrenia. METHODS: This study employed summary data from genome-wide association studies (GWAS) conducted on European populations to examine the correlation between aspartate and asparagine with schizophrenia. In order to investigate the causal effects of aspartate and asparagine on schizophrenia, this study conducted a two-sample bidirectional MR analysis using genetic factors as instrumental variables. RESULTS: No causal relationship was found between aspartate and schizophrenia, with an odds ratio (OR) of 1.221 (95%CI: 0.483-3.088, P-value = 0.674). Reverse MR analysis also indicated that no causal effects were found between schizophrenia and aspartate, with an OR of 0.999 (95%CI: 0.987-1.010, P-value = 0.841). There is a negative causal relationship between asparagine and schizophrenia, with an OR of 0.485 (95%CI: 0.262-0.900, P-value = 0.020). Reverse MR analysis indicates that there is no causal effect between schizophrenia and asparagine, with an OR of 1.005(95%CI: 0.999-1.011, P-value = 0.132). CONCLUSION: This study suggests that there may be a potential risk reduction for schizophrenia with increased levels of asparagine, while also indicating the absence of a causal link between elevated or diminished levels of asparagine in individuals diagnosed with schizophrenia. There is no potential causal relationship between aspartate and schizophrenia, whether prospective or reverse MR. However, it is important to note that these associations necessitate additional research for further validation.


Assuntos
Asparagina , Esquizofrenia , Humanos , Asparagina/genética , Ácido Aspártico/genética , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Estudos Prospectivos
6.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33472860

RESUMO

RNA-dependent RNA polymerases (RdRps) of the Nidovirales (Coronaviridae, Arteriviridae, and 12 other families) are linked to an amino-terminal (N-terminal) domain, called NiRAN, in a nonstructural protein (nsp) that is released from polyprotein 1ab by the viral main protease (Mpro). Previously, self-GMPylation/UMPylation activities were reported for an arterivirus NiRAN-RdRp nsp and suggested to generate a transient state primed for transferring nucleoside monophosphate (NMP) to (currently unknown) viral and/or cellular biopolymers. Here, we show that the coronavirus (human coronavirus [HCoV]-229E and severe acute respiratory syndrome coronavirus 2) nsp12 (NiRAN-RdRp) has Mn2+-dependent NMPylation activity that catalyzes the transfer of a single NMP to the cognate nsp9 by forming a phosphoramidate bond with the primary amine at the nsp9 N terminus (N3825) following Mpro-mediated proteolytic release of nsp9 from N-terminally flanking nsps. Uridine triphosphate was the preferred nucleotide in this reaction, but also adenosine triphosphate, guanosine triphosphate, and cytidine triphosphate were suitable cosubstrates. Mutational studies using recombinant coronavirus nsp9 and nsp12 proteins and genetically engineered HCoV-229E mutants identified residues essential for NiRAN-mediated nsp9 NMPylation and virus replication in cell culture. The data corroborate predictions on NiRAN active-site residues and establish an essential role for the nsp9 N3826 residue in both nsp9 NMPylation in vitro and virus replication. This residue is part of a conserved N-terminal NNE tripeptide sequence and shown to be the only invariant residue in nsp9 and its homologs in viruses of the family Coronaviridae The study provides a solid basis for functional studies of other nidovirus NMPylation activities and suggests a possible target for antiviral drug development.


Assuntos
Coronavirus Humano 229E/genética , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Sequência de Aminoácidos , Substituição de Aminoácidos , Asparagina/genética , Linhagem Celular , Sequência Conservada , Coronavirus Humano 229E/fisiologia , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Humanos , Manganês/metabolismo , Domínios Proteicos , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica , Proteínas não Estruturais Virais/genética
7.
J Biol Chem ; 298(10): 102371, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35970386

RESUMO

Kidney disease often manifests with an increase in proteinuria, which can result from both glomerular and/or proximal tubule injury. The proximal tubules are the major site of protein and peptide endocytosis of the glomerular filtrate, and cubilin is the proximal tubule brush border membrane glycoprotein receptor that binds filtered albumin and initiates its processing in proximal tubules. Albumin also undergoes multiple modifications depending upon the physiologic state. We previously documented that carbamylated albumin had reduced cubilin binding, but the effects of cubilin modifications on binding albumin remain unclear. Here, we investigate the cubilin-albumin binding interaction to define the impact of cubilin glycosylation and map the key glycosylation sites while also targeting specific changes in a rat model of proteinuria. We identified a key Asn residue, N1285, that when glycosylated reduced albumin binding. In addition, we found a pH-induced conformation change may contribute to ligand release. To further define the albumin-cubilin binding site, we determined the solution structure of cubilin's albumin-binding domain, CUB7,8, using small-angle X-ray scattering and molecular modeling. We combined this information with mass spectrometry crosslinking experiments of CUB7,8 and albumin that provides a model of the key amino acids required for cubilin-albumin binding. Together, our data supports an important role for glycosylation in regulating the cubilin interaction with albumin, which is altered in proteinuria and provides new insight into the binding interface necessary for the cubilin-albumin interaction.


Assuntos
Albuminas , Asparagina , Túbulos Renais Proximais , Receptores de Superfície Celular , Animais , Ratos , Albuminas/metabolismo , Endocitose/fisiologia , Glicosilação , Túbulos Renais Proximais/metabolismo , Proteinúria/metabolismo , Asparagina/genética , Asparagina/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
8.
J Biol Chem ; 298(9): 102385, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35985424

RESUMO

Asparagine synthetase (ASNS) catalyzes synthesis of asparagine (Asn) and Glu from Asp and Gln in an ATP-dependent reaction. Asparagine synthetase deficiency (ASNSD) results from biallelic mutations in the ASNS gene. Affected children exhibit congenital microcephaly, continued brain atrophy, seizures, and often premature mortality. However, the underlying mechanisms are unclear. This report describes a compound heterozygotic ASNSD child with two novel mutations in the ASNS gene, c.1118G>T (paternal) and c.1556G>A (maternal), that lead to G373V or R519H ASNS variants. Structural mapping suggested that neither variant participates directly in catalysis. Growth of cultured fibroblasts from either parent was unaffected in Asn-free medium, whereas growth of the child's cells was suppressed by about 50%. Analysis of Asn levels unexpectedly revealed that extracellular rather than intracellular Asn correlated with the reduced proliferation during incubation of the child's cells in Asn-free medium. Our attempts to ectopically express the G373V variant in either HEK293T or JRS cells resulted in minimal protein production, suggesting instability. Protein expression and purification from HEK293T cells revealed reduced activity for the R519H variant relative to WT ASNS. Expression of WT ASNS in ASNS-null JRS cells resulted in nearly complete rescue of growth in Asn-free medium, whereas we observed no proliferation for the cells expressing either the G373V or R519H variant. These results support the conclusion that the coexpression of the G373V and R519H ASNS variants leads to significantly reduced Asn synthesis, which negatively impacts cellular growth. These observations are consistent with the ASNSD phenotype.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Aspartato-Amônia Ligase , Deficiência Intelectual , Microcefalia , Doenças Neurodegenerativas , Trifosfato de Adenosina , Asparagina/genética , Aspartato-Amônia Ligase/química , Atrofia , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Criança , Células HEK293 , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Mutação
9.
J Biol Chem ; 298(9): 102329, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921896

RESUMO

Antibodies engage Fc γ receptors (FcγRs) to elicit healing cellular immune responses following binding to a target antigen. Fc γ receptor IIIa/CD16a triggers natural killer cells to destroy target tissues with cytotoxic proteins and enhances phagocytosis mediated by macrophages. Multiple variables affect CD16a antibody-binding strength and the resulting immune response, including a genetic polymorphism. The predominant CD16a F158 allotype binds antibodies with less affinity than the less common V158 allotype. This polymorphism likewise affects cellular immune responses and clinical efficacy of antibodies relying on CD16a engagement, though it remains unclear how V/F158 affects CD16a structure. Another relevant variable shown to affect affinity is composition of the CD16a asparagine-linked (N)-glycans. It is currently not known how N-glycan composition affects CD16a F158 affinity. Here, we determined N-glycan composition affects the V158 and F158 allotypes similarly, and N-glycan composition does not explain differences in V158 and F158 binding affinity. Our analysis of binding kinetics indicated the N162 glycan slows the binding event, and shortening the N-glycans or removing the N162 glycan increased the speed of binding. F158 displayed a slower binding rate than V158. Surprisingly, we found N-glycan composition had a smaller effect on the dissociation rate. We also identified conformational heterogeneity of CD16a F158 backbone amide and N162 glycan resonances using NMR spectroscopy. Residues exhibiting chemical shift perturbations between V158 and F158 mapped to the antibody-binding interface. These data support a model for CD16a F158 with increased interface conformational heterogeneity, reducing the population of binding-competent forms available and decreasing affinity.


Assuntos
Afinidade de Anticorpos , Antígenos CD1 , Polissacarídeos , Receptores de IgG , Antígenos CD1/genética , Antígenos CD1/imunologia , Asparagina/genética , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Polissacarídeos/imunologia , Receptores de IgG/química , Receptores de IgG/genética , Receptores de IgG/imunologia
10.
Planta ; 257(5): 95, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37036535

RESUMO

MAIN CONCLUSION: The keys to alkali-stress resistance of barren-tolerant wild soybean lay in enhanced reutilization of reserves in cotyledons as well as improved antioxidant protection and organic acid accumulation in young roots. Soil alkalization of farmlands is increasingly serious, adversely restricting crop growth and endangering food security. Here, based on integrated analysis of transcriptomics and metabolomics, we systematically investigated changes in cotyledon weight and young root growth in response to alkali stress in two ecotypes of wild soybean after germination to reveal alkali-resistance mechanisms in barren-tolerant wild soybean. Compared with barren-tolerant wild soybean, the dry weight of common wild soybean cotyledons under alkali stress decreased slowly and the length of young roots shortened. In barren-tolerant wild soybean, nitrogen-transport amino acids asparagine and glutamate decreased in cotyledons but increased in young roots, and nitrogen-compound transporter genes and genes involved in asparagine metabolism were significantly up-regulated in both cotyledons and young roots. Moreover, isocitric, succinic, and L-malic acids involved in the glyoxylate cycle significantly accumulated and the malate synthetase gene was up-regulated in barren-tolerant wild soybean cotyledons. In barren-tolerant wild soybean young roots, glutamate and glycine related to glutathione metabolism increased significantly and the glutathione reductase gene was up-regulated. Pyruvic acid and citric acid involved in pyruvate-citrate metabolism increased distinctly and genes encoding pyruvate decarboxylase and citrate synthetase were up-regulated. Integrated analysis showed that the keys to alkali-stress resistance of barren-tolerant wild soybean lay in enhanced protein decomposition, amino acid transport, and lipolysis in cotyledons as well as improved antioxidant protection and organic acid accumulation in young roots. This study provides new ideas for the exploitation and utilization of wild soybean resources.


Assuntos
Fabaceae , Glycine max , Glycine max/metabolismo , Germinação , Transcriptoma , Álcalis/metabolismo , Asparagina/genética , Asparagina/metabolismo , Antioxidantes/metabolismo , Fabaceae/genética , Nitrogênio/metabolismo , Citratos/metabolismo , Glutamatos/genética , Glutamatos/metabolismo
11.
Anal Biochem ; 668: 115099, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871622

RESUMO

Recombinant adeno-associated viral (AAV) vectors have taken center stage as gene delivery vehicles for gene therapy. Asparagine deamidation of AAV capsid proteins has been reported to reduce vector stability and potency of AAV gene therapy products. Deamidation of asparagine residue is a common post-translational modification of proteins that is detected and quantified by liquid chromatography-tandem mass spectrometry (LC-MS)-based peptide mapping. However, artificial deamidation can be spontaneously induced during sample preparation for peptide mapping prior to LC-MS analysis. We have developed an optimized sample preparation method to reduce and minimize deamidation artifacts induced during sample preparation for peptide mapping, which typically takes several hours to complete. To shorten turnaround time of deamidation results and to avoid artificial deamidation, we developed orthogonal RPLC-MS and RPLC-fluorescence detection methods for direct deamidation analysis at the intact AAV9 capsid protein level to routinely support downstream purification, formulation development, and stability testing. Similar trends of increasing deamidation of AAV9 capsid proteins in stability samples were observed at the intact protein level and peptide level, indicating that the developed direct deamidation analysis of intact AAV9 capsid proteins is comparable to the peptide mapping-based deamidation analysis and both methods are suitable for deamidation monitoring of AAV9 capsid proteins.


Assuntos
Proteínas do Capsídeo , Cromatografia de Fase Reversa , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/análise , Cromatografia de Fase Reversa/métodos , Dependovirus/genética , Dependovirus/metabolismo , Asparagina/química , Asparagina/genética , Asparagina/metabolismo , Sorogrupo
12.
Physiol Plant ; 175(1): e13863, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36688582

RESUMO

Salt stress has become one of the main factors limiting crop yield in recent years. The post-germinative growth is most sensitive to salt stress in soybean. In this study, cultivated and wild soybeans were used for an integrated metabonomics and transcriptomics analysis to determine whether wild soybean can resist salt stress by maintaining the mobilization of stored substances in cotyledons and the balance of carbon and nitrogen in the hypocotyl/root axis (HRA). Compared with wild soybean, the growth of cultivated soybean was significantly inhibited during the post-germinative growth period under salt stress. Integrating analysis found that the breakdown products of proteins, such as glutamate, glutamic acid, aspartic acid, and asparagine, increased significantly in wild soybean cotyledons. Asparagine synthase and fumarate hydratase genes and genes encoding HSP20 family proteins were specifically upregulated. In wild soybean HRA, levels of glutamic acid, aspartic acid, asparagine, citric acid, and succinic acid increased significantly, and the glutamate decarboxylase gene and the gene encoding carbonic anhydrase in nitrogen metabolism were significantly upregulated. The metabolic model indicated that wild soybean enhanced the decomposition of stored proteins and the transport of amino acids to the HRA in cotyledons and the GABA shunt to maintain carbon and nitrogen balance in the HRA to resist salt stress. This study provided a theoretical basis for cultivating salt-tolerant soybean varieties and opened opportunities for the development of sustainable agricultural practices.


Assuntos
Fabaceae , Glycine max , Glycine max/metabolismo , Hipocótilo/metabolismo , Cotilédone/metabolismo , Tolerância ao Sal/genética , Asparagina/genética , Asparagina/metabolismo , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Fabaceae/metabolismo , Ácido Glutâmico , Nitrogênio/metabolismo , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
13.
J Chem Inf Model ; 63(1): 270-280, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36469738

RESUMO

The l-asparaginase (l-ASNase) enzyme catalyzes the conversion of the non-essential amino acid l-asparagine into l-aspartic acid and ammonia. Importantly, the l-ASNases are used as a key part of the treatment of acute lymphoblastic leukemia (ALL); however, despite their benefits, they trigger severe side effects because they have their origin in bacterial species (Escherichia coli and Erwinia chrysanthemi). Therefore, one way to solve these side effects is the use of l-ASNases with characteristics similar to those of bacterial types, but from different sources. In this sense, Cavia porcellus l-ASNase (CpA) of mammalian origin is a promising enzyme because it possesses similarities with bacterial species. In this work, the hydrolysis reaction for C. porcellus l-asparaginase was studied from an atomistic point of view. The QM/MM methodology was employed to describe the reaction, from which it was found that the conversion mechanism of l-asparagine into l-aspartic acid occurs in four steps. It was identified that the nucleophilic attack and release of the ammonia group is the rate-limiting step of the reaction. In this step, the nucleophile (Thr19) attacks the substrate (ASN) leading to the formation of a covalent intermediate and release of the leaving group (ammonia). The calculated energy barrier is 18.9 kcal mol-1, at the M06-2X+D3(0)/6-311+G(2d,2p)//CHARMM36 level of theory, which is in agreement with the kinetic data available in the literature, 15.9 kcal mol-1 (derived from the kcat value of 38.6 s-1). These catalytic aspects will hopefully pave the way toward enhanced forms of CpA. Finally, our work emphasizes that computational calculations may enhance the rational design of mutations to improve the catalytic properties of the CpA enzyme.


Assuntos
Asparaginase , Asparagina , Animais , Cobaias/metabolismo , Amônia/química , Asparaginase/genética , Asparaginase/metabolismo , Asparaginase/uso terapêutico , Asparagina/química , Asparagina/genética , Asparagina/metabolismo , Ácido Aspártico , Mamíferos/metabolismo , Mutação
14.
J Pak Med Assoc ; 73(7): 1521-1523, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37469072

RESUMO

Asparagine-linked glycosylation thirteen (ALG13) gene-related congenital disorders of glycosylation (CDGs) include early onset epileptic encephalopathy (EIEE), developmental delays (DD) with intellectual disability (ID), speech and visual abnormalities, and haematologic and endocrine dysfunctions. Worldwide there is a scarcity of available data on this. To add to this scarce data, we report the case of a young girl with this rare genetic mutation who showed remarkable improvement in her seizures by addition of ketogenic diet (KD) to her management regimen. With an already high rate of consanguineous marriages, metabolic and genetic errors are widely prevalent; hence, to bridge the huge gap in the understanding of such diseases, further research and trials are needed to be carried out to improve identification of the disease along with outcomes.


Assuntos
Dieta Cetogênica , Espasmos Infantis , Humanos , Feminino , Asparagina/genética , Glicosilação , Espasmos Infantis/genética , Mutação , N-Acetilglucosaminiltransferases/genética
15.
Biochemistry ; 61(11): 981-991, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35533300

RESUMO

Human parathyroid hormone (PTH) is an 84-amino acid peptide that contains two methionine (Met) residues located at positions 8 and 18. It has long been recognized that Met residues in PTH are subject to oxidation to become Met sulfoxide, resulting in a decreased biological function of the peptide. However, the mechanism of the lost biological function of PTH oxidation remains elusive. To characterize whether the shift from the hydrophobic nature of the native Met residue to the hydrophilic nature of Met sulfoxide plays a role in the reduction of biological activity upon PTH oxidation, we conducted in silico and in vitro site-directed mutagenesis of Met-8 and Met-18 to the hydrophilic residue asparagine (Asn) or to the hydrophobic residue leucine (Leu) and compared the behavior of these mutated peptides with that of PTH oxidized at Met-8 and/or Met-18. Our results showed that the biological activity of the Asn-8 and Asn-8/Asn-18 mutants was significantly reduced, similar to Met-8 sulfoxide and Met-8/Met-18 sulfoxide analogues, while the functions of Asn-18, Leu-8, Leu-8/Leu-18 mutants, or Met-18 sulfoxide analogues were similar to wild-type PTH. This is rationalized from molecular modeling and immunoprecipitation assay, demonstrating disruption of hydrophobic interactions between Met-8 and Met-18 of PTH and type-1 PTH receptor (PTHR1) upon mutation or oxidation. Thus, these novel findings support the notion that the loss of biological function of PTH upon oxidation of Met-8 is due, at least in part, to the conversion from a hydrophobic to a hydrophilic residue that disrupts direct hydrophobic interaction between PTH and PTHR1.


Assuntos
Asparagina , Metionina , Humanos , Leucina/genética , Leucina/química , Asparagina/genética , Metionina/genética , Metionina/química , Hormônio Paratireóideo/genética , Hormônio Paratireóideo/química , Peptídeos/química , Racemetionina , Mutação , Sulfóxidos
16.
J Cell Biochem ; 123(3): 568-580, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34981854

RESUMO

Recent advances in targeted treatment for cholangiocarcinoma have focused on fibroblast growth factor (FGF) signaling. There are four receptor tyrosine kinases that respond to FGFs, and posttranslational processing has been demonstrated for each FGF receptor. Here, we investigated the role of N-linked glycosylation on the processing and function of FGFR4. We altered glycosylation through enzymatic deglycosylation, small molecule inhibition of glycosyltransferases, or through site-directed mutagenesis of selected asparagine residues in FGFR4. Signaling was tested through caspase activation, migration, and subcellular localization of FGFR4. Our data demonstrate that FGFR4 has multiple glycoforms, with predominant bands relating to the full-length receptor that has a high mannose- or hybrid-type form and a complex-type glycan form. We further identified a set of faster migrating FGFR4 bands that correspond to the intracellular kinase domain, termed FGFR4 intracellular domain (R4-ICD). These glycoforms and R4-ICD were detected in human cholangiocarcinoma tumor samples, where R4-ICD was predominant. Removal of glycans in intact cells by enzymatic deglycosylation resulted in increased processing to R4-ICD. Inhibition of glycosylation using NGI-1, an oligosaccharyltransferase inhibitor, reduced both high mannose- or hybrid- and complex-type glycan forms of FGFR4, increased processing and sensitized to apoptosis. Mutation of Asn-112, Asn-258, Asn-290, or Asn-311 to glutamine modestly reduced apoptosis resistance, while mutation of Asn-322 or simultaneous mutation of the other four asparagine residues caused a loss of cytoprotection by FGFR4. None of the glycomutants altered the migration of cancer cells. Finally, mutation of Asn-112 caused a partial localization of FGFR4 to the Golgi. Overall, preventing glycosylation at individual residues reduced the cell survival function of FGFR4 and receptor glycosylation may regulate access to an extracellular protease or proteolytic susceptibility of FGFR4.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Asparagina/genética , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Glicosilação , Humanos , Manose/metabolismo , Polissacarídeos/química , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo
17.
Biochem Biophys Res Commun ; 615: 49-55, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35605405

RESUMO

Asparagine-linked glycosylation (ALG, N-glycosylation) is one of the most prevalent protein modifications in eukaryotes and regulates protein folding, trafficking and function. Recently, we reported that the mutation of N154Q significantly led to the ER retention of brassinosteroids insensitive 1 (BRI1), the receptor of brassinosteroids (BRs). However, the mechanism of how the N154 site affects BRI1 structure is still not completely clear. In current study, we found that the removal of N154-glycan with S156A replacement significantly enhanced the ability of bri1 to complement bri1-301 mutant and plasma membrane localization compared with N154Q. In addition, the various mutations on N154 site resulted in bri1 retention in the ER, except for N154D. The 3D modeling suggested that there existed polar contacts around N154 site and the mutations not only destroyed the addition of N-glycan on the site, but also led to the disorder of hydrogen bonds formation. The sequence analysis showed that the N275 shared more similarity with N154 site and the removal of N275-glycan further enhanced the retention of bri1 carrying S156A mutation in the ER. Our results showed that N154 was special and essential for maintaining BRI1 structure and explored the role of those residues and key N-glycans lying in the LRR inner surface on protein conformation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Asparagina/genética , Asparagina/metabolismo , Brassinosteroides , Mutação , Polissacarídeos/metabolismo , Conformação Proteica , Proteínas Quinases/metabolismo
18.
Microb Pathog ; 172: 105769, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36103901

RESUMO

Bovine respiratory diseases (BRD) are one of the significant health problems for cattle breeding industry. Influenza D virus (IDV) alone or in combination with other respiratory pathogens plays a role in BRD. According to the IDV-HEF gene region, phylogenetic analyzes revealed five lineages: D/OK, D/660, D/Yama2016, D/Yama2019, and D/CA2019, so far. In this study, despite no success in virus isolation, the presence of IDV was investigated by RT-PCR (partial HEF gene region) in 219 nasal swab samples collected from cattle with BRD between 2012 and 2021. The presence of IDV was demonstrated in two samples, and genome characterization data of the IDV sequences both in the partial and complete HEF gene regions showed that one of the obtained sequences (D/bovine/Turkey-Bursa/ET-138/2021) was in the lineage D/Yama2019 while the other (D/bovine/Turkey-Bursa/ET-130/2013) created a new lineage tentatively called D/Bursa2013 as including few partial IDV sequences reported in Europe. Two nucleotide substitutions (nt252A→G, nt299T→C) were typically characterized for the tentative lineage D/Bursa2013, one of which also leads to a unique amino acid change at position aa100 (V→A). When the amino acid differences between the lineages were evaluated, amino acid substitution changes were detected in four regions [aa12 (Alanine→Aspartic acid), aa19 (Glycine→Arginine), aa22 (Proline→Serine), and aa110 (Aspargine→Arginine)] of the D/Yama2019 lineage, unlike the other lineages. Considering the most common D/OK lineage in Europe, many nucleotide substitutions were shown between D/OK and D/Bursa2013. Accordingly, aminoacid substitutions were observed in aa27 (Threonine→Asparagine) and aa100 (Valine→Alanine) in the D/bovine/Turkey-Bursa/ET-138/2021 sequence. Study results describe the circulation of D/Yama2019 and D/Bursa2013 (new lineage) in Turkey. Expansion of new strains seems possible due to the high mutation rate of influenza viruses. It is important to understand the development of IDV with comprehensive characterization studies.


Assuntos
Doenças dos Bovinos , Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Bovinos , Animais , Thogotovirus/genética , Filogenia , Asparagina/genética , Ácido Aspártico , Infecções por Orthomyxoviridae/veterinária , Nucleotídeos , Arginina/genética , Alanina , Treonina , Serina/genética , Valina/genética , Prolina/genética , Glicina
19.
Mol Biol Rep ; 49(5): 3713-3720, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35129766

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinomas (PDACs) is a malignant disorder and is the most common pancreatic cancer type. The malignant cells depend on the uptake of asparagine (Asn) for growth. The synthesis of Asn occurs through the enzyme asparagine synthetase (ASNS). Interestingly, ASNS is known as is direct target of nonsense-mediated RNA decay (NMD). We have previously reported that NMD major factor UPF1 mutations in the pancreatic tumors. However, the relationship between NMD and the level of ASNS is unknown. METHOD: We constructed point mutations by site-specific mutagenesis. To evaluate NMD magnitude, we assessed the expression ratio of an exogenously expressed wild-type and mutated ß-globin mRNA with N39 allele, and five known NMD targets. Then, reverse transcription-polymerase chain reaction (RT-PCR), RT-qPCR and western bolt to determine RNA or protein levels, after knockdown of endogenous UPF1 by small RNA interference in the cells. RESULTS: An RNA editing event (c.3101 A > G) at UPF1 transcripts resulting in an Asparagine (p.1034) changed to a Serine is found in one primary PDAC patient. The edited UPF1 increases the ability of degrading of NMD provoking transcripts, such as ß-globin mRNA with N39 allele and 5 out of 5 known endogenous NMD substrate mRNAs, including ASNS. In addition, ASNS mRNA is subjected to NMD degradation by virtue of its possessing uORFs at the 5'UTR. A reduction of endogenous ASNS RNA and the increased protein expression level is found either in the PDAC patient or in the cells with edited UPF1 at c.3101 A > G relative to the controls. CONCLUSIONS: This edited UPF1 found in the PDAC results in hyperactivated NMD, which is tightly correlation to elevated expression level of ASNS. The targeting of knockdown of ASNS may improve the antitumor potency in PDACs.


Assuntos
Aspartato-Amônia Ligase , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , Neoplasias Pancreáticas , Transativadores , Asparagina/genética , Asparagina/metabolismo , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/genética , Transativadores/metabolismo , Globinas beta/metabolismo
20.
Nature ; 530(7591): 490-4, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26878238

RESUMO

Tumour growth and metabolic adaptation may restrict the availability of certain amino acids for protein synthesis. It has recently been shown that certain types of cancer cells depend on glycine, glutamine, leucine and serine metabolism to proliferate and survive. In addition, successful therapies using L-asparaginase-induced asparagine deprivation have been developed for acute lymphoblastic leukaemia. However, a tailored detection system for measuring restrictive amino acids in each tumour is currently not available. Here we harness ribosome profiling for sensing restrictive amino acids, and develop diricore, a procedure for differential ribosome measurements of codon reading. We first demonstrate the functionality and constraints of diricore using metabolic inhibitors and nutrient deprivation assays. Notably, treatment with L-asparaginase elicited both specific diricore signals at asparagine codons and high levels of asparagine synthetase (ASNS). We then applied diricore to kidney cancer and discover signals indicating restrictive proline. As for asparagine, this observation was linked to high levels of PYCR1, a key enzyme in proline production, suggesting a compensatory mechanism allowing tumour expansion. Indeed, PYCR1 is induced by shortage of proline precursors, and its suppression attenuated kidney cancer cell proliferation when proline was limiting. High PYCR1 is frequently observed in invasive breast carcinoma. In an in vivo model system of this tumour, we also uncover signals indicating restrictive proline. We further show that CRISPR-mediated knockout of PYCR1 impedes tumorigenic growth in this system. Thus, diricore has the potential to reveal unknown amino acid deficiencies, vulnerabilities that can be used to target key metabolic pathways for cancer treatment.


Assuntos
Neoplasias da Mama/metabolismo , Códon/genética , Neoplasias Renais/metabolismo , Prolina/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Animais , Asparaginase/metabolismo , Asparagina/genética , Asparagina/metabolismo , Aspartato-Amônia Ligase/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Técnicas de Inativação de Genes , Humanos , Neoplasias Renais/patologia , Camundongos , Prolina/biossíntese , Prolina/deficiência , Biossíntese de Proteínas/genética , Pirrolina Carboxilato Redutases/deficiência , Pirrolina Carboxilato Redutases/genética , Pirrolina Carboxilato Redutases/metabolismo , delta-1-Pirrolina-5-Carboxilato Redutase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA