Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Wei Sheng Wu Xue Bao ; 56(7): 1079-88, 2016 Jul 04.
Artigo em Zh | MEDLINE | ID: mdl-29732874

RESUMO

Recent studies have found that the matrix protein of paramyxoviruses is a multifunctional viral protein. In addition to inhibiting the transcription and translation of cell genes, regulating the replication and transcription of viral genome and recruiting cellular proteins to facilitate viral assembly and budding, the matrix protein can enhance the replication of paramyxoviruses through its ubiquitination and phosphorylation. However, as a member of paramyxoviruses, the matrix protein of Newcastle disease virus (NDV) is only demonstrated to participate in viral assembly and budding. Moreover, the functions of matrix protein identified in other paramyxoviruses still remain unknown in NDV. This review compares the functions of matrix protein between NDV and other paramyxoviruses, and focuses on the relationship of matrix protein to the virulence, replication and pathogenicity of NDV. Meanwhile, challenges and research prospects of NDV matrix protein are also discussed.


Assuntos
Infecções por Avulavirus/veterinária , Avulavirus/metabolismo , Vírus da Doença de Newcastle/metabolismo , Proteínas da Matriz Viral/metabolismo , Animais , Avulavirus/genética , Infecções por Avulavirus/virologia , Galinhas , Genoma Viral , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/virologia , Proteínas da Matriz Viral/genética
2.
Viruses ; 13(2)2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669530

RESUMO

A reverse genetic system for avian paramyxovirus type-3 (APMV-3) strain Wisconsin was created and the infectious virus was recovered from a plasmid-based viral antigenomic cDNA. Green fluorescent protein (GFP) gene was cloned into the recombinant APMV-3 genome as a foreign gene. Stable expression of GFP by the recovered virus was confirmed for at least 10 consecutive passages. APMV-3 strain Wisconsin was evaluated against APMV-3 strain Netherlands and APMV-1 strain LaSota as a vaccine vector. The three viral vectors expressing GFP as a foreign protein were compared for level of GFP expression level, growth rate in chicken embryo fibroblast (DF-1) cells, and tissue distribution and immunogenicity in specific pathogen-free (SPF) day-old chickens. APMV-3 strain Netherlands showed highest growth rate and GFP expression level among the three APMV vectors in vitro. APMV-3 strain Wisconsin and APMV-1 strain LaSota vectors were mainly confined to the trachea after vaccination of day-old SPF chickens without any observable pathogenicity, whereas APMV-3 strain Netherlands showed wide tissue distribution in different body organs (brain, lungs, trachea, and spleen) with mild observable pathogenicity. In terms of immunogenicity, both APMV-3 strain-vaccinated groups showed HI titers two to three fold higher than that induced by APMV-1 strain LaSota vaccinated group. This study offers a novel paramyxovirus vector (APMV-3 strain Wisconsin) which can be used safely for vaccination of young chickens as an alternative for APMV-1 strain LaSota vector.


Assuntos
Infecções por Avulavirus/veterinária , Avulavirus/genética , Vetores Genéticos/genética , Doenças das Aves Domésticas/virologia , Vacinas Virais/genética , Animais , Avulavirus/metabolismo , Infecções por Avulavirus/prevenção & controle , Infecções por Avulavirus/virologia , Galinhas , Vetores Genéticos/metabolismo , Doenças das Aves Domésticas/prevenção & controle , Genética Reversa , Organismos Livres de Patógenos Específicos , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Wisconsin
3.
Viruses ; 12(7)2020 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605292

RESUMO

Viral vectored vaccines are desirable alternatives for conventional infectious bronchitis virus (IBV) vaccines. We have recently shown that a recombinant Newcastle disease virus (rNDV) strain LaSota expressing the spike (S) protein of IBV strain Mass-41 (rLaSota/IBV-S) was a promising vaccine candidate for IBV. Here we evaluated a novel chimeric rNDV/avian paramyxovirus serotype 2 (rNDV/APMV-2) as a vaccine vector against IBV. The rNDV/APMV-2 vector was chosen because it is much safer than the rNDV strain LaSota vector, particularly for young chicks and chicken embryos. In order to determine the effectiveness of this vector, a recombinant rNDV/APMV-2 expressing the S protein of IBV strain Mass-41 (rNDV/APMV-2/IBV-S) was constructed. The protective efficacy of this vector vaccine was compared to that of the rNDV vector vaccine. In one study, groups of one-day-old specific-pathogenic-free (SPF) chickens were immunized with rLaSota/IBV-S and rNDV/APMV-2/IBV-S and challenged four weeks later with the homologous highly virulent IBV strain Mass-41. In another study, groups of broiler chickens were single (at day one or three weeks of age) or prime-boost (prime at day one and boost at three weeks of age) immunized with rLaSota/IBV-S and/or rNDV-APMV-2/IBV-S. At weeks six of age, chickens were challenged with a highly virulent IBV strain Mass-41. Our challenge study showed that novel rNDV/APMV-2/IBV-S provided similar protection as rLaSota/IBV-S in SPF chickens. However, compared to prime-boost immunization of chickens with chimeric rNDV/APMV-2, rLaSota/IBV-S and/or a live IBV vaccine, single immunization of chickens with rLaSota/IBV-S, or live IBV vaccine provided better protection against IBV. In conclusion, we have developed the novel rNDV/APMV-2 vector expressing S protein of IBV that can be a safer vaccine against IB in chickens. Our results also suggest a single immunization with a LaSota vectored IBV vaccine candidate provides better protection than prime-boost immunization regimens.


Assuntos
Avulavirus/genética , Infecções por Coronavirus/veterinária , Vetores Genéticos/genética , Vírus da Bronquite Infecciosa/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Virais/administração & dosagem , Animais , Avulavirus/metabolismo , Galinhas , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Vetores Genéticos/metabolismo , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/patogenicidade , Doenças das Aves Domésticas/virologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Virais/administração & dosagem , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
4.
Sci Rep ; 9(1): 5520, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940854

RESUMO

Paramyxovirus vaccine vectors based on human parainfluenza virus type 3 (HPIV-3) and Newcastle disease virus (NDV) have been previously evaluated against Ebola virus (EBOV) challenge. Although both the viral vectored vaccines efficiently induce protective immunity, some concerns remain to be solved. Since HPIV-3 is a common human pathogen, the human population has pre-existing immunity to HPIV-3, which may restrict the replication of the vaccine vector. For NDV, mesogenic (intermediate virulent) strain used in previous studies is currently classified as a Select Agent in the United States, thus making it unsuitable to be used as a vaccine vector. To overcome these concerns, we have developed a modified NDV vector based on a mesogenic NDV strain, in which the ectodomains of envelope glycoproteins were replaced with the corresponding ectodomains from avian paramyxovirus serotype 3 (APMV-3). The modified NDV vector was highly attenuated in chickens and was able to express the EBOV glycoprotein (GP) gene at high level. In addition, the recombinant APMV-3 was also evaluated as a vaccine vector to express the EBOV GP gene. Guinea pigs immunized with these two vector vaccines developed high levels of neutralizing GP-specific IgG and IgA antibodies.


Assuntos
Avulavirus/metabolismo , Vacinas contra Ebola/administração & dosagem , Vírus da Doença de Newcastle/metabolismo , Proteínas do Envelope Viral/química , Animais , Anticorpos Neutralizantes/metabolismo , Avulavirus/química , Avulavirus/genética , Galinhas , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Cobaias , Imunidade Humoral , Vírus da Doença de Newcastle/química , Vírus da Doença de Newcastle/genética , Domínios Proteicos , Vacinas Atenuadas , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA